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Outline syllabus

• Basic concepts and designs, terminology,

• Descriptive statistics, graphical methods,

• Classical and nonparametric inference,

• (Generalized) Linear models,

• Contingency tables,

• Survival analysis.

Basic concepts

• observational study vs. experiment,

• study unit, cohort,

• clinical trials,

• laboratory and comparative experiment,

• placebo,

• controlled vs. uncontrolled designs,

• randomization (simple, restricted, stratified),

Basic concepts

• parallel, in series, cross-over design,

• blind and double blind trials,

• longitudinal vs. cross-sectional study,

• prospective vs. retrospective study.



Basic concepts

History:

• prior to 1950: haphazard development of medicine. Medical

literature emphasized individual case studies ⇒ unscientific

and inefficient.

• 1948: UK Medical Research Concil used randomized control

in a Stroptomycin trial for Tuberculosis.

• 1954: field trial of Salk Polio vaccine in certain areas of the

U.S.

2nd grade children were offered treatment, 1st and 3rd gra-

de control (total 1 million children), but volunteer bias and

Basic concepts

lack of blindness ⇒ valid control still difficult. Children not

agreeing to vaccination had a lower incident rate of inci-

dence/paralysis/death.

• Further 0.8 million took part in a randomised double-blind tri-

al. Every child received injection but half these did not con-

tain vaccine and child/parent/evaluating physician did not

know which.

– incidence reduced by 50%

– paralysis from those getting polio 70% less

– no deaths in vaccine group (4 in placebo group)

Basic concepts

John Stuart Mill established three criteria for inferring causality:

• covariation,

• temporal precedence,

• elimination of alternative explanations.

How are these accomplished in clinical trials?

• clinical treatment and assessment

• randomization, blindness of trials

Basic concepts

The 4 stages of a clinical trial programme:

1. Clinical pharmacology & toxicity concerned with drug safety,
performed on non-patients (n = 10− 50),

2. Initial clinical investigation for saftey & efficacy (n = 50 −
100),

3. Full-scale evaluation of drug vs. control (n = 100− 1000),

4. Post-marketing surveillance of side effects etc.

1 in 10,000 drugs get to clinical stage, of these 1 in 5 reach
marketing.



Basic concepts

The protocol contains all details of the trial conduct and is nee-

ded to gain permission to conduct the trial. It should contain

items on

• Purpose

– motivation

– aims

• Design & conduct

– patient selection critieria (inclusion / exclusion)

– number of patiens

– schedule: assignment, design, randomization, evaluation

– principal response

– forms: “informed consent”, monitoring, record

– analysis methods

Basic concepts

Protocol deviations:

• Things always go wrong: patients drop out, do not meet the

inclusion/exclusion criteria, forget to take medicine, take too

much, take other medicine, ...,

• Analysis: per protocol vs. intention to treat,

• Example: surgery vs. radiotherapy for cancer,

• Record protocol deviations.

Basic concepts

Be careful with:

• Multiplicity: multiple responses or tests,

• Interim analysis,

• Bonferroni correction: α = 1− (1− ε)k ≈ kε,

• Combination of trials,

• Simpson’s paradox,

• Publication bias.

Descriptive Statistics

A variable is a quantity that may vary from object to object.
A sample (data set) is a collection of values of one or more
variables. A member of the sample is called an element.

Taxonomy of variables

• qualitative vs. quantitative

• discrete vs. continous

In R qualitative variables are coded as factors:

factor(x, levels = sort(unique(x)), labels, ordered = FALSE,

exclude = NA)



Descriptive Statistics

Scale of variables

• nominal (diseases, marital status),

• ordinal (quality of teaching),

• interval (temperatures, dates),

• scale (distance, age, height).

Descriptive Statistics

A statistic is a numerical characteristic of a sample.

Statistics derived from counts

• contingency tables,

• empirical frequency distribution,

• empirical cumulative distribution function,

• mode.

Descriptive Statistics

Statistics derived from ranks

• quantiles, percentiles, median,

• min, max, range, IQR, five number summary.

Statistics derived from moments

• (sample) mean, variance,

• skewness, kurtosis.

Descriptive Statistics

Plots

• boxplot,

• histogram,

• mosaic display,

• stem and leaf plot,

• cleveland dotplot,

• no pie charts.



Exploratory Analysis

Univariate: 1 numerical variable

numeric description: univariate statistics like mean, variance,

standard deviation, five number summary.

visualization: histogram, boxplot.

Univariate: 1 categorical variable

numeric description: contigency tables (absolute and relative fre-

quencies).

visualization: barplot, (pie chart).

Exploratory Analysis

Bivariate: 2 numerical variables

numeric description: correlation coefficients.

visualization: scatter plot.

Bivariate: 2 categorical variables

numeric description: contigency tables, odds ratio.

visualization: mosaic plot.

Exploratory Analysis

Bivariate: 1 dependent numerical and 1 explanatory categorical
variable.

numeric description: groupwise statistics (e.g., means).

visualization: parallel boxplots.

Bivariate: 1 dependent categorical and 1 explanatory numerical
variable.

Idea: transform the numerical variable into a categorical and then
proceed as before.

numeric description: discretized contingency tables

visualization: discretized mosaic plots.

Inference

A parameter is a numerical characteristic of a population.

Correspondence: statistic::sample, parameter::population.

Common approaches to making statements about population

parameters are estimation and hypothesis testing.

A random variable is associated with a random sample. If a stati-

stic is computed from a random sample, it is a random variable.

Its distribution is called the sampling distribution.



Inference

• null hypothesis: a collection of hypothesized values for a

parameter (H0).

• alternative hypothesis: a collection of values for a parame-

ter which will be considered if H0 is rejected (HA or H1).

• rejection region: set of values of a statistic for which H0 is

rejected. The boundaries are called critical values.

• type I error: error if H0 is rejected when it is true.

• type II error: error if H0 is not rejected when it is false.

Inference

• significance level: the probability of a type I error, usually

denoted α. 1− α is called the confidence level.

• power: probability to reject H0 when it is false, usually de-

noted 1− β. Hence, β is the probability of a type II error.

• p value: the value p (0 < p < 1), such that for α > p the test

rejects H0 and for α < p it does not. More intuitively, p is the

probability under H0 of observing a value at least as unlikely

as the value of the test statistic.

Inference

Notation:

Let ξ1, . . . , ξn be independently identically distributed (i.i.d.)

random variables with distribution F (θ) and with observations

x1, . . . , xn.

ξ̄ =
1

n

n∑
i=1

ξi.

s2 =
1

n− 1

n∑
i=1

(ξi − ξ̄)2

Inference

Inference about the mean and variance of a population (exact

for F (θ) = N (µ, σ2)):

Z =
ξ̄ − µ

σ/
√

n
, Z ∼ N (0,1).

1− α confidence interval for µ:

ξ̄ ± z1−α/2σ/
√

n.

X2 =
(n− 1)s2

σ2
, X2 ∼ χ2

n−1.



Inference

One-sample t test: variance unknown

t =
ξ̄ − µ

s/
√

n
, t ∼ tn−1.

Two-sample t test: two independent samples with variances un-
known, but equal

t =
(ξ̄1 − ξ̄2)− (µ1 − µ2)

sp

√
1/n1 + 1/n2

, t ∼ tn1+n2−2,

with

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
.

Inference

If the variances are unknown and not equal an approximate t can

be used (Welch approximation).

A special case is that of paired data, e.g. gain of sleep after usage

of drug. Convert to the one-sample case by taking differences ⇒
independence within the pairs is not needed.

In R:

t.test(x, y = NULL, alternative = "two.sided", mu = 0, paired = FALSE,

var.equal = FALSE, conf.level = 0.95)

The argument alternative can also be "less" or "greater".

Inference

If the observations are normal the t distribution is exact, other-

wise it is the unconditional asymptotic distribution.

Alternative approach for optaining the sampling distribution: use

the conditional permutation distribution (conditional on obser-

vations) and approximate this by simulation.

Motivation: if ξ1 and ξ2 are from the same distribution the labels

1 and 2 can be permuted ⇒ re-randomization test.

Inference

F test: two independent samples

F =
s21/σ2

1

s22/σ2
2

, F ∼ Fn1−1,n2−1

In R:

var.test(x, y, ratio = 1, alternative = "two.sided", conf.level = 0.95)

The argument alternative can again be "less" or "greater".

Both test functions return an object of class "htest" which has

its own print method.



Inference

Distributions in R: dnorm, pnorm, qnorm, rnorm, etc.

To check if a sample is normally distributed a Q-Q plot can be

used, which plots the quantiles of a normal distribution against

the ordered sample.

qqplot(x)

qqline(x, col = 4)

This does mainly

plot(qnorm(1:n - 0.5)/n, sort(x))

This is similar to the “normal probability paper”, which plot x(i)
against qnorm(i/n).

Inference

Count data and binomial random variables (i.e., F (θ) =

Bin(n, π)):

Binary responses are observed in mutually independent “Bernoulli

trials” with identical outcome probabilities.

Outcome is usually labelled as “success” or “failure”. A binomial

random variable is the count of the number of successes in n

Bernoulli trials with probability of success π. Density:

b(x;n, π) =

(
n
x

)
πx(1− π)n−x,

with E[ξ] = nπ and VAR[ξ] = nπ(1− π).

Inference

Exact testing: use the number of successes x as test statistic.

Problem: discrete distribution ⇒ exact level α cannot be obtai-

ned.

One possibility: reject H0 if the probability of observing a value no

less or no greater than x is no greater than α/2. This corresponds

to a p value of 2 ·min(F (x),1− F (x− 1)).

In R:

binom.test(x, n, p = 0.5, alternative = "two.sided")

Inference

Approximate (large-sample) testing: use normal approximation.

Z =
ξ − nπ√

nπ(1− π)

is approximately standard normal. Rule of thumb: n is large if

VAR[ξ] = nπ(1 − π) ≥ 10). In fact, if variance ≤ 100 better use

“continuity corrected” statistic:

Zc =
ξ − nπ − sign(ξ − nπ − 1/2)/2√

nπ(1− π)



Inference

Association and prediction: if two (quantitative) variables are col-
lected for each data item they can be visualized in a scatterplot.
In R:

plot(x, y, xlim = range(x), ylim = range(y), type = "p",

main, xlab, ylab, ...)

Pairwise scatterplots can be plotted for data frames:

pairs(x, labels = dimnames(x)[[2]], panel = points, ...)

The sample Pearson product moment correlation coefficient
measures the linear association between two vector x and y:

r =
sxy

sxsy
=

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
.

Inference

This is corresponding to the theoretical ρ = σXY /(σXσY ). In R:

cor(x, y = x, use = "all.obs")

If (X, Y ) are jointly normally distributed independence is equiva-

lent to zero correlation. One can show that

1

2
log

(
1 + r

1− r

)
≈ N

(
1

2
log

(
1 + ρ

1− ρ

)
,

1

n− 3

)
This can be used for testing hypotheses about ρ. In R:

cor.test(x, y, alternative = "two.sided", method = "pearson")

tests the null of no correlation.

Inference

The correlation coefficient is quite sensitive to outliers. One ro-

bust nonparametric measure of association is the Spearman rank

correlation coefficient, the Pearson correlation applied to the

ranks of x and y.

A second one is Kendall’s τ which is given by

τ =
κ

n(n− 1)/2
,

where κ basically counts the number of concordant pairs and is

the sum of sign((xi − xj)(yi − yj)) over all distinct pairs i < j.

(Note that the same is obtained when using the ranks.)

Both Spearman’s and Kendall’s rank correlation coefficients have

an asymptotic zero mean normal distribution under the null of

independence.

Terminology

• A statistical procedure is robust if the procedure performs
well

– when the needed assumptions are not violated “too bad-
ly”,

– for a large family of probability distributions.

• A family of probability distributions is nonparametric if the
distributions of the family cannot conveniently characterized
by a few parameters.

• Statistical procedures that are valid for a nonparametric fa-
mily of distributions are called nonparametric statistical pro-
cedures.



Terminology

• A statistical procedure is distribution-free over a specific fa-

mily of distributions if the statistical properties of the pro-

cedure do not depend on the underlying distribution being

sampled.

• A statistical test is distribution-free if under the null it has

the same distribution for all members of the family.

• To compare two procedures, one could use the relative ef-

ficiency defined as the ratio of the sample sizes needed to

have the same statistical power.

Terminology

Usual assumption in classical inference about distribution in po-

pulation: normal (due to CLT).

Implicitly: continuous, symmetric, support = IR, all moments

exist, short-tailed.

Advandtages: flexible properties, well-known theory.

Usual assumptions in nonparametric inference: continuous (and

symmetric).

Advantages: few assumptions needed, simple to understand.

Disadvantages: lower efficiency under normality, few applications

for regression, time series and multivariate models.

Terminology

• ξ ∼ F ⇒ F ◦ ξ ∼ U [0,1],

• ECDF: n · Fn(x) ∼ Bin(n, F (x)),

• ||Fn − F ||∞
p−→ 0,

• ordered sample: P[x(1) < . . . < x(n)] = 1,

• ranks: x(Ri)
= xi, distribution of Ri = r(xi) does not depend

on F , E[Ri] = (n + 1)/2, usually CORR[ξi, Ri] “high”.

Terminology

Problem: ties

• omit tied values (only if fraction very small!),

• randomize (does not affect distribution of Ri),

• average ranks (distribution changes!), this is most common

and also implemented in R: rank(x),

• for test statistics consider most extreme values.



Tests for the mean

Sign test:

Let ξ0.5 be the median of F (continuous), then:

T =
n∑

i=1

1I(0,∞)(ξi − ξ0.5) ∼ Bin(n,0.5)

This can be used for a binomial test of hypotheses about the

median (or other quantiles):

H0 : ξ0.5 = ξ0.

Asymptotic Relative Efficiency (ARE) compared to t test: 0.64.

Tests for the mean

If F additionally symmetric: Wilcoxon signed rank test.

Use a weighted version of the statistic T :

W+ =
n∑

i=1

1I(0,∞)(ξi − ξ0.5) · r(|ξi − ξ0.5|).

Under H0 the distribution of W+ is symmetric about E[W+] =
n(n + 1)/4.

P[W+ = w] =
an(w)

2n

(
w ∈ 0, . . . ,

n(n + 1)

2

)
,

where an(w) is the number of subsets of {1, . . . , n} with sum w.
The following recursion holds: an(w) = an−1(w − n) + an−1(w).

Tests for the mean

2-sample case: Wilcoxon rank sum test.

Assumption: two independent samples of size m and n from F1
and F2 with F2(x) = F1(x−∆).

For a test of H0 : ∆ = 0 use the ranks of ξ2 in the pooled sample
of size N = n + m; the test statistic is the sum of these ranks:

W =
n∑

j=1

Rj.

This test is equivalent to the Mann-Whitney test:

U =
∑
i,j

1I(0,∞)(ξ2j − ξ1i) = W −
n(n + 1)

2
.

Tests for the mean

The distribution (without ties) can again be computed by a sim-

ple recursion. The ARE of the Wilcoxon test relative to the

2-sample t test is 0.955.

In R:

wilcox.test(x, y = NULL, alternative = "two.sided", mu = 0,

paired = FALSE, exact = FALSE, correct = TRUE)

This function cannot handle ties, if there are any use the function

wilcox.exact() in the package exactRankTests.



Tests for the mean

k-sample case: Kruskal Wallis test:

Let Rij be the rank of the observation j in group i with E[Ri·] =

ni · (N + 1)/2, then the test statistic is:

H =
12

N(N + 1)

k∑
i=1

(
Ri· − ni

N+1
2

)2
ni

.

In R:

kruskal.test(x, g)

Rank tests

The idea of the Wilcoxon rank sum test can be generalized to

linear rank statistics

S =
N∑

i=1

c(i)a(R∗
i ),

where c(·) is a regression function (typically, c(i) = 1Im+1,...,N(i)

in the 2-sample case) and a(·) is a score function (or influence

function) that depends on the ranks R∗
i from the pooled sample.

Special cases of S are the Wilcoxon test, the Median test, the

Von Der Waerden test etc. all with suitable scores. Included in

this class are also tests for scale.

Rank tests

To compute the distribution of S, there are again two strategies:

The asymptotic distribution is normal (under suitable assumpti-

ons).

The the exact permutation distribution can be also computed.

One possibility is the Mehta & Patel network algorithm, another

way (which is implemented in exactRankTests) is the Streitberg

& Röhmel shift algorithm. The latter relies on the fact that the

scores are integer-valued, the former is essentially only available

in commercial software packages.

Tests for scale

Assumption: F1(x− ξ0.5) = F2((x− ξ0.5)/η), i.e., equal medians,

different scales.

Mood test:

SM =
n∑

j=1

(
Rj −

N + 1

2

)2

If η > 1 then ξ2 tends to have more extreme values and hence

SM will be “large”.



Tests for scale

Alternatively : Ansari-Bradley test.

Scores:

aAB(i) = min{i, N + 1− i},

thus the largest and smallest observation have the same weight

etc.

In R:

mood.test(x, y, alternative = c("two.sided", "less", "greater"))

ansari.test(x, y, alternative = c("two.sided", "less", "greater"),

exact = NULL, conf.int = FALSE, conf.level = 0.95)

Conditional inference

Recently, there was an increased interest in more general per-

mutation tests than only rank-based tests. The corresponding

theory is also referred to as conditional inference.

Strasser & Weber (1999) established a unified framework for the

asymptotic permutation distribution of linear statistics

S = vec

 N∑
i=1

c(Xi)a(Yi)

 ,

where Xi is the explanatory variable (e.g., factor with two ca-

tegories) and Yi is the dependent variable (corresponding to ξi

in the previous notation). Furthermore, c(·) is again a regression

function and a(·) again a score function or influence function.

Conditional inference

The influence function a(·) may depend on the full vector

(Y1, . . . , YN)> but only in a permutation symmetric way, i.e., it

can depend on statistics that do not exploit the order of the

observations.

Examples for the influence function:

• observations: a(Yi) = Yi,

• ranks: a(Yi) = r(Yi),

• other transformations based on moments or counts.

Conditional inference

Examples for the regression function:

• for qualitative X: dummy coding

c(Xi) = (0, . . . ,0,1,0, . . . ,0)>,

• for quantitative X: as above, observations or ranks, etc.

The conditional distribution of the statistic S conditional on the

observations (Xi, Yi)
> (i = 1, . . . , n) is derived under the null

hypothesis of independence

F (y) = F (y | x)

given all permutations from σ(X, Y ).



Conditional inference

Given the first two moments of the scores

Eσ[a] =
1

N

N∑
i=1

a(Yi)

VARσ[a] =
1

N

N∑
i=1

(a(Yi)− Eσ[a])(a(Yi)− Eσ[a])
>

the first two moments of the conditional distribution of S can

be computed:

µ = Eσ[S] = vec

 N∑
i=1

c(Xi)

Eσ[a]
>


and similarly for Σ = VARσ[S].

Conditional inference

Based on S (which might be a vector) different types of scalar

test statistics can be derived, e.g., a maximum type statistic or

a quadratic type of test statistic:

tmax = max
k

∣∣∣∣∣∣∣
Sk − µk√
(Σkk)

∣∣∣∣∣∣∣
tquad = (S − µ)Σ−1(S − µ)

If S is scalar, the tquad = t2max and both statistics are equivalent.

Conditional inference

To compute the conditional permutation distribution, there are
again several possibilities:

• The asymptotic permutation distribution is again normal.

• The exact permutation distribution can be computed by va-
rious algorithms including the Streitberg & Röhmel shift al-
gorithm (for integer-valued scores) and the van de Wiel split
algorithm (which is memory-intensive).

• The exact permutation distribution can also be approximated
by resampling (or re-randomization) techniques.

This general framework is implemented in the package coin.

Conditional inference

Special cases of this framework include 2-sample tests (y numeric

and x a factor):

• Choosing c(·) = 2-sample regression function and a(Yi) = Yi,

yields a statistic similar to the t test statistic (with slightly

different standard deviation).

In R: independence_test(y ~ x)

• Choosing c(·) = 2-sample regression function and a(Yi) =

r(Yi), yields a statistic similar to the Wilcoxon test statistic.

In R: wilcox_test(y ~ x)



Conditional inference

Other special cases are correlation tests (y and x both numeric):

• Choosing c(Xi) = Xi and a(Yi) = Yi yields a correlation test

similar to the Pearson correlation test in cor.test(x, y).

In R: independence_test(y ~ x)

• Choosing ranks c(Xi) = r(Xi) and a(Yi) = r(Yi) yields a

correlation test similar to the Spearman correlation test in

cor.test(x, y, method = "spearman").

In R: spearman_test(y ~ x)

Inference procedures

Classical parametric inference: early 1900s

Idea:

1. Impose a distribution (typically normal) on all variables.

2. Compute a test statistic that highlights deviation of interest

(e.g., difference in means or ratio of variances).

3. Compute exact unconditional distribution based on the as-

sumption.

Problem: What if distribution assumptions are violated?

Inference procedures

Solution:

1. Rely on the central limit theorem. The distribution is still

valid asymptotically, it is the unconditional asymptotic dis-

tribution.

2. Use the conditional permutation distribution.

Problem with 2.: exact conditional distribution could only be

computed for small samples, only limited asymptotic theory

available → approach 2. not used for a long time.

Inference procedures

Rank-based inference: mid 1900s

Idea:

1. Transform the observations by taking ranks.
2. Compute a test statistic that highlights deviation of interest

(e.g., by choosing a suitable score function).
3. Compute exact conditional permutation distribution by sim-

ple recursion or the asymptotic permutation distribution
(normal).

Problem: Not (directly) applicable to original observations (in-
stead of ranks).

Justification: Ranks introduce a certain robustness in the pro-
cedures. Be careful: The procedures are only robust in certain
directions and they do also make assumptions!



Inference procedures

Conditional inference: increased interest again since late 1900s

Idea:

1. Take an arbitrary transformation of the data (including iden-
tity) that is appropriate for the problem (i.e., choice of re-
gression and score function).

2. Compute the independence test statistic.
3. Compute exact conditional permutation distribution (via dif-

ferent algorithms), asymptotic conditional permutation dis-
tribution (normal), or approximate the exact conditional per-
mutation distribution by resampling.

Problem: Although conditional inference is applicable in much
more general situations, it is not (yet) well-known in many sta-
tistical communities.

Goodness-of-fit tests

Tests for the hypothesis

H0 : F = F0 vs. H1 : F 6= F0

Kolmogorov-Smirnov test

Test statistic: Dn = ||F0 − Fn||∞.

The test can be used to construct confidence bounds for F .

Tests are also available for one-sided alternatives. If F0 not fully

specified parameters can be estimated by Maximum Likelihood

(ML), but the test becomes conservative.

Goodness-of-fit tests

There is also a Kolmogorov-Smirnov test in the 2-sample case:

Dm,n = ||F1m − F2n||∞.

In R:

ks.test(x, y, ..., alternative = "two.sided")

where y can be a string specifying a distribution.

Goodness-of-fit tests

Alternative: χ2 test,

especially for F discrete, otherwise use class probabilities.

Use χ2 statistic: (observed - expected)2/expected.

Let Nj be the empirical class frequencies with n =
∑k

j=1 Nj and

pj the expected class probabilities:

X2 =
k∑

j=1

(Nj − npj)
2

npj
,

which is asymptotically χ2
k−1 distributed.



Goodness-of-fit tests

If F0 not fully specified and depends on an r-dimensional para-

meter vector which has to be estimated:

1. (grouped) Maximum Likelihood, usual ML is anti-

conservative and X2 is not χ2 distributed. Likelihood:

L =
k∏

j=1

pj(θ)
Nj .

2. Minimum χ2, choose θ by minimizing X2(θ).

In both cases X2 is asymptotically χ2
k−r−1 distributed.

Types of test statistics

This chapter includes a large collection statistics in a 2-sample

setting, so one could ask: Why so many? What are the diffe-

rences?

Interestingly, the null hypothesis is typically equivalent. It is es-

sentially that the distribution F1 in the first sample is the same

as the distribution F2 in the second sample.

Types of test statistics

The main difference between the tests is that the test statistics
are derived for different potential differences between F1 and F2:

• test statistics for the mean highlight deviations in the loca-
tion of the distributions,

• test statistics for the scale highlight deviations in the scale
of the distributions,

• goodness-of-fit test statistics try to highlight in any direction
(omnibus tests).

The consequence is that different types of test statistics have
different power for detecting certain alternatives.

Finally, some tests differ in the way they compute the sampling
distribution: exact vs. asymptotic, and conditional vs. uncondi-
tional.

Robust mean

• The α-trimmed mean

1

n− 2k

n−k∑
i=k+1

x(i) (k = bαnc).

• The α-winsorized mean

1

n

(k + 1)(x(k+1) + x(n−k)) +
n−k−1∑
i=k+2

x(i)

 , (k = bαnc).

• The weighted mean∑
i wix(i)∑

i wi
, wi > 0.

In R, weighted.mean(x, w, na.rm = FALSE).



The general linear model

Consider the linear regression model:

yi = x>i β + εi, (i = 1, . . . , n),

where for observation i:

• yi — dependent variable,

• xi — vector of k regressors,

• β — vector of k unknown regression coefficients,

• εi — a disturbance term.

The general linear model

In matrix notation:

y = Xβ + ε.

Assumptions:

(A.1) X is nonstochastic with rank(X) = k,

(A.2) E[εi] = 0, thus µi = E[yi] = x>i β,

(A.3) The disturbance terms are iid. with variance σ2,

(A.4) The disturbances are normal, thus yi ∼ N (µi, σ
2) indepen-

dently.

The general linear model

• OLS estimate: β̂ = (X>X)−1X>y.

• Fitted values: ŷ = Xβ̂.

• Residuals: e = y − ŷ.

• Residual Sum of Squares: RSS = e>e = (y − ŷ)>(y − ŷ).

• Variance estimate: σ̂ = RSS
n−k .

• R2 = 1−RSS/
∑n

i=1(yi − ȳ)2.

The general linear model

Tests of the regression coefficients:

• β̂ ∼ N
(
β, σ2(X>X)−1

)
.

• Under H0 : βj = 0

β̂j√
σ̂2(X>X)−1

jj

∼ tn−k.

• To test q restrictions Rβ = r fit a full model with RSS1 and a
restricted model with RSS0 and compare these in an F test:

(RSS0 −RSS1)/q

RSS1/(n− k)
∼ Fq,n−k.



The general linear model

Modelchecking:

• plots: residuals vs. fitted, residuals vs. regressors

• F test: actual vs. trivial model

Model selection:

• best subsets regression

• stepwise procedures, e.g., based on Akaike Information Cri-

terion (AIC).

The general linear model

Analysis of variance (ANOVA): 1-way design, i.e., observations

fall into k groups

yij = µ + αi + εij.

• overparamterized: k + 1 paramters but only k groups,

• fit using some constraint, e.g.,

µ = 0, α1 = 0,
∑

i αi = 0

the latter two correspond to contrasts.

This can be interpreted as a linear regression with a qualitative

regressor.

The general linear model

The model matrix can be written as

X = [1 Xa]

where Xa is a binary incidence or dummy matrix. To remove

over-parametrization consider

X∗ = [1 XaCa]

where Ca is a k × (k − 1) contrast matrix. This defines a model

with parameters α∗ which is equivalent to estimating the original

parameters α subject to the identification constraint

c>a α = 0

where ca is such that c>a Ca = 0.

The general linear model

2-way ANOVA: two explanatory factors (qualitative variables)

with interaction:

yijk = µ + αi + βj + (αβ)ij + εijk.

Analysis of covariance (ANCOVA): qualitative and quantitati-

ve regressors, i.e., fit separate regressions for several groups—

potentially with restrictions about the regression coefficients.



The general linear model

The R function lm() is used to fit all such linear models.

lm(formula, data, subset, weights, na.action, ...)

where

• formula — a symbolic description of the model to be fit,

• data — an optional data frame containing the variables,

• subset — an optional vector specifying a subset of observa-

tions to be used in the fitting process.

The general linear model

y ~ x

y ~ 1 + x

Simple linear regression model of y on

x. The intercept is implicit in the first

and explicit in the second formula.

y ~ x - 1

y ~ x + 0

Simple linear regression of y on x

through the origin (without an inter-

cept term).

log(y) ~ x1 + x2 Multiple regression of the transformed

variable log(y) on x1 and x2 (with an

implicit intercept term).

y ~ 1 + x + I(x^2)

y ~ poly(x, 2)

Polynomial regression of y on x of de-

gree 2.

y ~ X Multiple linear regression of y on the

variables (i.e., the columns) of X.

The general linear model

y ~ a Single classification (one-way) analysis

of variance of y with classes determi-

ned by a.

y ~ a + x Single classification (one-way) analysis

of covariance of y with classes deter-

mined by a and covariate x.

y ~ a + b Two factor (two-way) analysis of va-

riance of y, without interaction terms.

y ~ a * b

y ~ a + b + a : b

y ~ b %in% a

y ~ a / b

Two factor (two-way) analyses of va-

riance of y on a and b. The first two

specify the same crossed classification

and the second the same nested one.

In abstract terms all four specify the

same model subspace.

The general linear model

y ~ (a + b + c)^2

y ~ a*b*c - a:b:c

Three factor experiment with a model

containing main effects and two factor

interactions only.

y ~ a * x

y ~ a / x

Separate linear regression models of y

on x within the levels of a, with diffe-

rent codings. The last form produces

explicit estimates of as many different

intercepts and slopes as there are levels

in a.



The general linear model

The model operators are as follows.

Y ~ M Y is modelled as M
M1 + M2 Include M1 and M2
M1 - M2 Include M1 leaving out terms of M2
M1 : M2 The tensor product of M1 and M2
M1 %in% M2 Similar to M1 : M2, but with a different

coding
M1 * M2 M1 + M2 + M1 : M2
M1 / M2 M1 + M2 %in% M1
M ^ n All terms in M together with “interac-

tions” up to order n.
I(M) Insulate M . Inside M all operators have

their normal arithmetic meaning.

The general linear model

coefficients(lmobj) Extract the regression co-

efficient (matrix). Short:

coef(lmobj).
deviance(lmobj) Residual sum of squares.
fitted.values(lmobj)Extract the fitted values. Short:

fitted(lmobj).
formula(lmobj) Extract the model formula.
plot(lmobj) Produce useful diagnostics

plots.
predict(lmobj) For extracting the fitted values

or making new predictions.
print(lmobj) Print call and coefficients.
residuals(lmobj) Extract the (matrix of) residu-

als. Short: resid(lmobj).
summary(lmobj) Print a comprehensive summary

of the results of the regression

analysis.

The GLM

Motivation: The general linear model (glm) is appropriate in ma-
ny situations, but not always, e.g.,

• does not fit well,

• needs too many parameters,

• non-linear relationship between response and regressors,

• a change in mean is accompanied by a change in variance,

• response is not normal: binary, counts, survival time etc.

This leads to the Generalized Linear Model (GLM).

The GLM

As in the general linear model the influence of the explanatory
variables is linear:

ηi = x>i β,

where ηi is called linear predictor. The relationship between the
linear predictor and the modelled mean is generalized from µi = ηi

to

g(µi) = ηi,

where g is called the link function and h = g−1 the inverse link
function. The assumption that yi is normal is generalized to the
assumption that yi has a specified exponential family distribution:

fY (y|θ, φ) = exp

(
yθ − γ(θ)

φ
+ τ(y, φ)

)
,

where φ is a (possibly known) scale parameter and θ controls the
distribution of y.



The GLM

The assumptions imply that

E[y] = µ = γ′(θ), VAR[y] = φ · γ′′(θ).
That is, up to a scale parameter, the distribution of µ is de-
termined by its mean, and the variance of y is proportional to
V (µ) = γ′′(θ(µ)) which is called the variance function.

Three important classes of models can be described in this fra-
mework:

• Gaussian,

• Poisson,

• Binomial.

The GLM

Gaussian: The classical Gaussian case has

log(fY (y, θ, φ))

= −(y − µ)2/(2σ2)− log(2πσ2)/2

= (yµ− µ2/2)/σ2 − (y2/σ2 + log(2πσ2))/2,

so θ = µ, γ(θ) = θ2/2, and φ = σ2.

Poisson: For the Poisson distribution with mean µ we have

log f(y) = y logµ− µ− log(y!),

so θ = log(µ), φ = 1, and γ(θ) = µ = eθ.

The GLM

Binomial: In the binomial case the response y can be the number

of successes in n trials with probability of success π or a single

Bernoulli variable coding success or failure. The latter view is

also called logistic regression. The density is

log f(y)

= log
(
πy(1− π)1−y

)
= y log

(
π

1− π

)
+ log(1− π),

so we take φ = 1, θ as the logit transform of π, and γ(θ) =

− log(1− π) = log(1 + eθ).

The GLM

The R function glm() is used for fitting GLMs:

glm(formula, family = gaussian, data, weights, subset, na.action, ...)

Family Canonical Link Name Variance Name
gaussian µ identity 1 constant

binomial log(µ/(1− µ)) logit µ(1− µ) mu(1-mu)

poisson log(µ) log µ mu

Gamma −1/µ inverse µ2 mu^2

inverse.gaussian −2/µ2 1/mu^2 µ3 mu^3

quasi g(µ) V (µ)



The GLM

Each response distribution allows for a variety of link functions.

The combination of a response distribution and a link function

is called the family of the model. The canonical link function

is g = (γ′)−1, i.e., the one for which θ = η. The gaussian and

inverse gaussian families only admit the canonical link. For the

others, the situation is as follows:

Family Possible Links
binomial logit, probit, cloglog (complementary log-log)
poisson identity, log, sqrt
Gamma identity, inverse, log
quasi logit, probit, cloglog, identity, inverse, log, 1/muˆ2, sqrt

The GLM

Logistic regression:
Logistic modelling is very popular for binary data, it assumes a
log-linear relation between the regressors and the odds:

π

1− π
=

P[Y = 1|xi]

P[Y = 0|xi]
= exp

(
x>i β

)
.

A useful way of describing the importance of a factor (e.g., treat-
ment) is the odds ratio.

P[Y = 1|x1 = 1]

P[Y = 0|x1 = 1]

/
P[Y = 1|x1 = 0]

P[Y = 0|x1 = 0]
= exp(β1) ,

so if for example exp(β1) = 1.3 the odds for success are 30%
higher on treatment.

The GLM

Probit link:

g(µ) = Φ−1(µ).

Motivation:

Suppose π is the probability to kill an insect with a certain poison

dose and each insect has a random normal tolerance T , then:

π = P[T ≤ dose] = Φ

(
dose− µT

σT

)
⇒ Φ−1(π) = α + β · dose.

Complementary log-log link:

g(µ) = log (− log(1− µ)) ,

which is not symmetric, i.e., gives different results, if modelling

successes or failures.

The GLM

The parameters in GLMs are usually estimated by Maximum
Likelihood, using the IWLS (Iterative Weighted Least Squares)
algorithm.

Discrepancy of a fit:
Having estimated a model, usually the discrepancy of the fit is of
interest. Commonly this is measured by the logarithm of a ratio
of likelihoods, called the deviance.

Given n observations, the simplest model just has one parameter
(a common µ for all y) and the full model has n parameters
yielding a perfet match of the y and the µ.

Log likelihood:

logL(µ|y) =
n∑

i=1

log f(yi|θi).



The GLM

The (scaled) deviance is defined as

D∗(y, µ) = 2 logL(y|y)− 2 logL(µ|y) = φD(y, µ),

which is just the residual sum of squares for the normal distribu-

tion. In the other models:

Family Deviance
Gaussian

∑
(y − µ̂)2

Poisson 2
∑
{y log(y/µ̂)− (y − µ̂)}

binomial 2
∑
{y log(y/µ̂) + (1− y) log((1− y)/(1− µ̂))}

Gamma 2
∑
{− log(y/µ̂) + (y − µ̂)/µ̂}

inverse Gaussian
∑

(y − µ̂)2/(µ̂2y)

The GLM

Another possibility to measure the discrepancy of a fit is the

generalized Pearson X2 statistic

X2 =
∑ (y − µ̂)2

V (µ̂)
,

which is again the residual sum of squares for the normal distri-

bution and the original Pearson X2 statistic for the Poisson and

binomial distribution.

Both D and X2 have asymptotic χ2 distributions, but the ap-

proximation may be poor even for large n. The deviance has the

advantage of being additive for nested sets of models (with ML

estimates).

The GLM

Analysis of deviance: To compare a full model with estimate

µ̂1 with a restricted model with q restrictions and an estimate µ̂0

the excess deviance can be used

D(y, µ̂0)−D(y, µ̂1),

which has an asymptotic χ2
q distribution.

Residuals: There are various definitions of residuals in GLMs,

the most common ones are:

• Pearson residuals: rP = (y − µ̂)/
√

V (µ̂),

• deviance residuals: rD = sign(y − µ̂)
√

di,

The GLM

where di is the contribution of each unit to the deviance such

that
∑

i di = D. In both cases the sum of squared residuals yields

the respective statistic for the discrepancy of a fit.

In R: Mostly the same commands can be used for objects of

class "lm" and "glm". Thus the same extractor functions like

residuals(), fitted() or coef() can be used as well as anova().

Possibly an argument specifying the type of residual/test/etc.

has to be supplied.



Multiple testing

In the general linear model Y = Xβ + ε mulitple comparisons of

parameters of the form c>i β or of interest which can be tested

using

Ti =
c>i β̂ − c>i β

σ̂
√

c>i (X>X)−1ci

.

For p such contrasts {c>1 β, . . . , c>p β} the joint distribution for T =

{T1, . . . , Tp} is multivariate t.

In R this procedure is available in the package multcomp.

Contingency tables

Data on categorical variables is usually represented in contingen-

cy tables—the cross-classification of the variables.

First consider the following special case: comparing two binary

variables.

Success Failure
Sample 1 n11 n12
Sample 2 n21 n22

We want to test the hypothesis that the probabilities of success

are the same in both samples.

Contingency tables

Fisher’s exact test: Conditional on the row and column totals

n11 has a hypergeometric distribution with parameters n·1, n·2,
and n1·. In R:

fisher.test(x, y = NULL, alternative = "two.sided")

Large sample test: If we have two independent Bernoulli trials,

Z =
p1 − p2 − (π1 − π2)√

p1(1− p1)/n1 + p2(1− p2)/n2

is approximately standard normal, and can be used for approxi-

mate confidence intervals and significance tests for the difference

of proportions.

Contingency tables

χ2 test: Under H0 the success probabilities are equal π1 = π2

and the expected counts are:

Success Failure
Sample 1 n1·π n1·(1− π)
Sample 2 n2·π n2·(1− π)

Estimate π by the pooled sample proportion p = (n11 + n21)/n··
and calculate the X2 statistic that simplifies to

X2 =
n··(n11n22 − n12n21)

2

n1·n2·n·1n·2

which is asymptotically χ2 with one degree of freedom. X2 equals

Z2 if the pooled estimate p(1 − p)(1/n1 + 1/n2) is used for the

variance.



Contingency tables

In R

prop.test(x, n, p = NULL, alternative = "two.sided", conf.level = 0.95,

correct = TRUE)

can be used for both testing whether proportions (probabilities
of success) in several groups are the same, or that they equal
certain given values.

The same statistic (and p value) is computed by

chisq.test(x, y = NULL, correct = TRUE,

p = rep(1/length(x), length(x)))

but prop.test() is more appropriate for this specific situation.

Contingency tables

Association measures for two binary variables: Suppose we

have given the cross-tabulation of true population proportions

for disease and exposure:

Disease
Exposure + (Yes) − (No)
+ (Yes) π11 π12
− (No) π21 π22

The relative risk is defined as

ρ =
P[disease +|exposure +]

P[disease +|exposure −]
=

π11/π1·
π21/π2·

Note that any information on the amounts of disease and expos-

ure is missing.

Contingency tables

Given one has the exposure, the odds of getting the disease are

P[disease +|exposure +]

P[disease −|exposure +]
=

π11

π21

The odds ratio is defined as

odds(disease|exposure +)

odds(disease|exposure −)
=

π11/π21

π12/π22
=

π11π22

π12π21
= ω

Note that
ρ

ω
=

π2·
π22

π12

π1·
;

hence, if the disease is rare, π2· ≈ π22 and π1· ≈ π12 and thus

ρ ≈ ω.

Contingency tables

Data for measuring association between two binary variables ty-

pically come in 2× 2 contingency tables

Disease
Exposure + (Yes) − (No)
+ (Yes) n11 n12
− (No) n21 n22

We have to distinguish three sampling patterns.



Contingency tables

Pattern 1: Cross-sectional study. For a sample of size n··, both

traits (disease and exposure) are measured on each subject. The

expected numbers in the cells are given by

n··π11 n··π12
n··π21 n··π22

Pattern 2: Prospective Study of Exposure. Fixed numbers

(n1· and n2·) of individuals with and without the exposure are

followed. The endpoints are then noted. Expected numbers are

obtained as

n··π11/π1· n··π12/π1· n1·
n··π21/π2· n··π22/π2· n2·

Note that in this case, one cannot estimate the proportion of

exposure.

Contingency tables

Pattern 3: Retrospective Study of Disease. Usually, cases

and an appropriate control group are identified. In this case, the

size of the disease and control groups, n·1 and n·2, are specified.

Expected cell counts are

n··π11/π·1 n··π12/π·2
n··π21/π·1 n··π22/π·2

n·1 n·2

The probability of getting the disease and hence also the relative

risk cannot be estimated (it can only be approximated by the

odds ratio if the disease is rare).

Contingency tables

For all three patterns, we find that

E[n11]E[n22]

E[n12]E[n21]
=

π11π22

π12π21
= ω,

and one thus estimates the odds ratio by

ω̂ =
n11n22

n12n21

The hypothesis of no association is equivalent to

H0 : πij = πi·π·j, i, j ∈ {1,2}

and hence implies (but is not equivalent to!) ω = 1.

Contingency tables

H0 can be tested with a Fisher or χ2 test or use that log(ω̂) is

approximately normal with mean log(ω) and variance
∑

ij 1/nij.

Often H0 is to be investigated with stratified data, e.g. multi-

center study. This data cannot simply be merged as it can lead

to Simpson’s paradox.

The standard approach to estimating an overall odds ratio is

as follows. Compute continuity corrected odds ratios in every

stratum

ω̂i =
(n11 + 0.5)(n22 + 0.5)

(n21 + 0.5)(n12 + 0.5)
, si =

√√√√∑
ij

1

nij + 0.5
.

Let ai = log(ω̂i). Under H0 X2 =
∑k

i=1(ai/si)
2 is approximately

χ2
k.



Contingency tables

One now partitions

X2 =
k∑

i=1

(ai − ā)2

s2i
+ ā2

k∑
i=1

1

s2i
= X2

H + X2
A,

where

ā =
k∑

i=1

(ai/s2i )

/ k∑
i=1

(1/s2i )

is an appropriate weighted average of the ai.

X2
H is for testing homogeneity of association across strata (asym-

ptotically χ2
k−1). X2

A tests whether there is association on the

average (approximately χ2
1).

Contingency tables

Alternatively, use Mantel-Haenszel test.

Estimate the odds ratio by

ω̂ =

∑k
i=1 n11(i)n22(i)/n··(i)∑k
i=1 n12(i)n21(i)/n··(i)

where the nkl(i) are the nkl for the i-table. They also derived a

test for conditional independence of two binary traits in several

strata (Mantel-Haenszel test). In R,

mantelhaen.test(x, y = NULL, z = NULL, correct = TRUE)

Contingency tables

Matched or paired data: If the proportions to be compared

come from the same sample the preceeding methods are not

applicable. For example every patient receives two treatments A

& B, thus we observe data of the form: (response to A, response

to B), e.g., (0,1), (1,1), (0,0), (1,1), . . .

It is tempting to do a Fisher test in the table

response
treatment yes no

A 11 37
B 20 28

but that is invalid.

Contingency tables

Better summarize as

B
A yes no

yes 8 3
no 12 25

A suitable test for treatment differences is then a test for sym-

metry, i.e.

H0 : πij = πji

in a 2-way contingency table. This is called McNemar’s test.



Contingency tables

Given data of the form

Control has risk factor?
Case has risk factor? yes no

yes a b
no c d

If there is no association between the disease and the risk factor,
b has a binomial distribution Bin(0.5, b + c). Hence,

X2 =
(b− c)2

b + c

is approximately χ2
1. In R

mcnemar.test(x, y = NULL, correct = TRUE)

The odds ratio is estimated by ω̂ = b/c.

Contingency tables

Now consider contingency tables more generally. The cross-

classification of two categorical variables A and B with r and

c levels respectively, which can be build in R by table(a,b), is

called two-way table.

B
1 2 · · · c

1 y11 y12 · · · y1c
2 y21 y22 · · · y2cA ... ... ... . . . ...
r yr1 yr2 · · · yrc

As in regression modelling some variables are dependant others

explanatory. Some variables are controlled others may be free,

i.e. responses. The margins of controlled variables are fixed.

Contingency tables

There are two sampling possibilities for yij.

1. A and B are responses: 1 sample of size n = y·· with a biva-

riate response.

2. A is controlled, B is response: r samples of size n1, . . . , nr

(ni = yi·) and a univariate response in each sample.

In case 1 the question is: “Are the factors independent?” Given

{yij} ∼ MN(n, {πij})

independence becomes

πij = πi·π·j

Contingency tables

In case 2 the question is: “Is the distribution of B homogeneous

over A?” Now

(yi1, . . . , yic) ∼ MN (ni, (πi1, . . . , πic))

independent for i = 1, . . . , r and the hypothesis is

πij = π̄·j

In both cases the hypothesis can be tested using

X2 =
∑
ij

(yij − µ̂ij)
2

µ̂ij
.

with µ̂ij = (yi· · y·j)/y·· and X2 is χ2
(r−1)(c−1).



Contingency tables

In case 1:

µ̂ij = n π̂ij = n π̂i·π̂·j = n
yi·
n

y·j
n

.

In case 2:

µ̂ij = ni π̂ij = ni ˆ̄π·j = ni
y·j
n

=
yi·y·j

n
.

Contingency tables

Poisson log-linear model: It can be shown that if

Xi ∼ Poi(µi) ⇒ P[{Xi}|
∑
j

Xj = n] ∼ MN(n, {πi}),

where πi = µi/
∑

j µj.

Based on this the contingency table data can be regarded as

yij ∼ Poi(µij)—in case 1 given y·· = n and in case 2 conditional

on yi· = ni.

Maximum Likelihood based on a Poisson model gives the same

estimates etc. as the multinomial model.

Contingency tables

The hypotheses of independence and homogeneity that are mul-

tiplicative in terms of µij become additive in log-linear models.

In case 1:

logµij = log(nπi·π·j)

= logn + logπi· + logπ·j
= µ + αi + βj,

thus, yielding a 2-way ANOVA without interaction. The residual

degrees of freedom are

rc − (1 + (r − 1) + (c− 1)) = (r − 1) (c− 1).

Similarly in case 2.

Contingency tables

In R these models can be fitted like

glm(Freq ~ a + b, data = as.data.frame(tab), family = poisson)

or

loglin(tab, list("a", "b"))

or

loglm(Freq ~ a + b, data = as.data.frame(tab))

If either r or c is 2 a binomial model might also be appropriate.



Contingency tables

3-way table: use the same ideas as in the two way case. If there

are factors A, B, C, some margins can be fixed and others free.

If there are no fixed margins a natural model would be again:

πijk = πi··π·j·π··k

i.e. a Poisson model a + b + c.

Other models could be: a + b * c, i.e., homogeneity of A over

(B, C) or independence of A and (B, C) respectivley etc.

Important: Always include all fixed margins (and their interacti-

ons) in every model as there is no point modelling non-random

aspects.

Contingency tables

It is also convenient to classify the factors as response or stimulus

variables.

For stimulus variables the margins are fixed, i.e., all interactions

are included. Interactions between response and stimulus factors

indicate structure.

Suppose we have two response variables a, b and two stimulus

variables c, d, where we find that a depends on c and b on d.

Minimal model ~ a + b + c * d

Saturated model ~ a * b * c * d

True model ~ a * c + b * d + c * d

~ a + b + c * d + a:c + b:d

Contingency tables

If there is only a single response a with two levels, a binomial

model can also be used:

glm(a ~ 1, weights = Freq, family = binomial)

glm(a ~ b + c, weights = Freq, family = binomial)

If a has more levels, then a multinomial model can be fitted using

multinom(a ~ 1, weights = Freq)

multinom(a ~ b + c, weights = Freq)

from the package nnet.

Contingency tables

If the response is ordinal, another natural model would be a

proportional-odds model. Under such a model the odds ratio for

the cumulative probabilities of the levels of a does not depend

on the cell to which the probabilities belong.

It can be fitted using the polr() function from MASS:

polr(a ~ 1, weights = Freq)

polr(a ~ b + c, weights = Freq)



Summary: Contingency tables

Numerical description: The joint distribution of several cate-

gorical variables is typically summarized by contingency tables.

In R:

table(a, b)

xtabs(~ a + b)

For display, ftable is also useful.

Summary: Contingency tables

Visualization: Mosaic plots can be used for visualizing contin-

gency tables. As this is a display for conditional frequencies, it

is particularly useful for visualizing conditional independence mo-

dels. For this, the ordering of the margins is important!

The display can also be enhanced by visualizing the residuals of

a log-linear model.

In R:

mosaicplot(~ a + b)

Summary: Contingency tables

In the previous chapter, (generalized) linear regression models

were discussed:

dependent var. explanatory var. fitting function

1 numerical ≥ 1 num. & cat. lm (OLS)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 normal
1 poisson ≥ 1 num. & cat. glm (ML via IWLS)
1 binomial

These are closely related to models used for contingency tables.

Summary: Contingency tables

Models for contingency tables include the following models which

all compute ML estimates:

dependent var. explanatory var. fitting function

— > 1 cat. loglm, loglin (IPF)
≥ 1 cat. ≥ 1 cat. glm + poisson (IWLS)

1 binomial ≥ 1 cat. (& num.) glm + binomial (IWLS)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 ordinal ≥ 1 cat. (& num.) polr (BFGS)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 multinomial ≥ 1 cat. (& num.) multinom (Neural Network)



Summary: Contingency tables

Goodness-of-fit:

Generalizations of the residual sum-of-squares are the deviance

(= deviance residuals sum-of-squares) and generalized χ2 sta-

tistic (= Pearson residuals sum-of-squares). The former corre-

sponds to a likelihood ratio test statistic, the latter to a χ2 test

statistic which both have an asymptotic χ2 distribution.

Model selection:

• Analysis of deviance

• stepwise AIC/BIC

Survival Analysis

Survival Analysis is the analysis of lifetime data, especially in

medical statistics, but also in studies of reliability.

Lifetime might refer to

• survival time (i.e. time to death of a patient),

• time to recovery or remission,

• time to failure (e.g. of an electronic component).

Survival Analysis

A distinctive feature of survival data is that observations may be

censored: often the event of interest (death, failure, recovery)

has not occured by the end of the study. Hence all is known for

these subjects is that the lifetime is at least some value.

These observations can not be ignored as they carry important

information. And indeed one hopes that many patients are alive

at the end of a medical study!

This most common type of censoring is called right censoring.

Observations can also be left or interval censored.

Survival Analysis

Example for left censoring: lifetime =̂ time to recurrence of a

tumor. This is only observable during surgery.

Two types of censoring can be distinguished:

• type I censoring: n subjects are observed for a fixed time c.

The number of censorings is then random.

• type II censoring: observe n subjects until r events occured.

The typical situation in medical studies is type I right censoring.



Survival Analysis

Basic Concepts: The random variable T measures survival time.

• T > 0,

• T has the d.f. F (t) = P[T ≤ t],

• T has p.d.f f(t) = F ′(t).

The survivor function S(t) measures the probability to survive
longer than t:

S(t) = P[T ≥ t] = 1 − F (t).

The hazard function h(t) measures the risk or proneness to
death at time t given survival up to time t.

Survival Analysis

The hazard function represents the instantaneous death rate for

an individual surviving to time t:

h(t) = lim
δ→0

P[t ≤ T < t + δ |T ≥ t]

δ
.

This is also known as the hazard or failure rate.

The cumulative hazard function H(t) is defined as

H(t) =
∫ t

0
h(u) du.

f(t), S(t), h(t), H(t) are equivalent ways of defining or characte-

rizing a specific survival pattern uniquely.

Survival Analysis

The following equations hold:

h(t) =
f(t)

S(t)
,

f(t) = F ′(t) = −S′(t),

h(t) = −
S′(t)

S(t)
= −

∂ logS(t)

∂t
,

H(t) = − logS(t),

S(t) = exp(−H(t)).

Survival Analysis

Kaplan-Meier estimator
This is also called product limit estimate of S(t). Assume there
are n observations of survival times without censorings occuring
p distinct times

t(1) < . . . < t(p)

and let di the number of deaths at t(i). Then estimate S(t) as

Ŝ(t) = 1− F̂ (t)

=
n−

∑s
j=1 dj

n
(t(s) ≤ t < t(s+1))

=
n− d1

n
·
n− d1 − d2

n− d1
. . .

n− d1 − . . .− ds

n− d1 − . . .− ds−1

=

(
1−

d1

r1

)
. . .

(
1−

ds

rs

)

=
s∏

j=1

(
1−

dj

rj

)



Survival Analysis

where ri is the number at risk (i.e. alive) just before t(i). Then

ri+1 = ri − di. If there are censorings calculate the number at

risk correctly, i.e., ri+1 = ri − di − ci+1 if ci is the number of

censorings in the interval (t(i−1), t(i)).

If there are censorings after the last event Ŝ(t) > 0 ∀ t.

Another approach is to use the Nelson estimator of the cumula-

tive hazard

Ĥ(t) =
s∑

j=1

dj

rj

and then use the Fleming-Harrington estimator

ŜFH(t) = exp(−Ĥ(t)).

Survival Analysis

Ties can bias the Nelson estimator: assume 3 nearby times

t1, t2, t3 with 7 other subjects at risk. The total increment is

1/10 + 1/9 + 1/8. If the data were tied the increment would be

the lesser 3/10. This is not a problem with ŜKM which has in

both cases a multiplicative step of 7/10.

Different estimates of the variance of Ĥ(t) are possible:

dj

rj(rj−dj)
Greenwood

dj

r2j
Aalen

dj(rj−dj)

r3j
Klein

Survival Analysis

To compute the variance of Ŝ(t) use a simple Taylor series ap-

proximation

VAR[log f ] ≈ VAR[f ]/f2

giving

VAR[Ŝ(t)] = Ŝ2(t) VAR[Ĥ(t)].

To compute the variance of Ĥ(t) the Aalen formula and for Ŝ(t)

the Greenwood formula is preferred.

Survival Analysis

Confidence intervals for Ŝ(t) can be computed on the plain scale

Ŝ ± z1−α/2 sd(Ŝ),

which might give values greater than 1 or less than 0; or on the

cumulative hazard or log survival scale

exp[log(Ŝ) ± z1−α/2 sd(Ĥ)],

which still might be greater than 1; or on a log hazard scale

exp(− exp[log(− log(Ŝ) ± z1−α/2 sd(log Ĥ))]),

which are always between 0 and 1.

Confidence intervals based on the logit of S are another alterna-

tive. However, those based on the cumulative hazard scale have

the best performance.



Survival Analysis

All methods presented are available in the package survival.

Surv(time, time2, event, type, origin = 0)

is a packaging function and typically used as the LHS of a formu-
la. event is a status indicator (normally 0 corresponds to “alive”,
and 1 to “dead”), and type describes the type of censoring.

survfit(object, data, weights, subset, na.action, . . . )

Computes an estimate of a survival curve for censored data or
computes the predicted survivor function for a Cox proportional
hazards model. E.g.,

survfit(Surv(time, status) ~ sex)

estimates the survivor functions for males and females.

Survival Analysis

k-sample comparisons
To compare the survival probabilities in k groups graphically the
Kaplan-Meier curves can be plotted. To test if there is a dif-
ference the Fleming-Harrington Gρ family of tests can be used.
The idea is to compute the (weighted) observed and expected
number of events in each group i = 1, . . . , k are computed and
compared with a χ2 statistic.

The expected number of events is given by

Ei =
p∑

j=1

Ŝ
ρ
j

rij

r·j
d·j,

and the observed number of events is computed as

Oi =
p∑

j=1

Ŝ
ρ
j dij.

Survival Analysis

Ŝj is the estimated survivor function (from the pooled sample)

evaluated just prior to time t(j).

In the case of ρ = 0 this yields the log rank test and 0i is just

the number of events in group i.

For ρ = 1 it is equivalent to the Peto & Peto modification of

the Gehan-Wilcoxon test.

In R:

survdiff(formula, data, rho = 0, subset)

Survival Analysis

The tests are designed for the alternative of proportional hazards

h2(t) = c · h1(t),

which is equivalent to S2(t) = S1(t)
c. This implies that the

survivor curves do not cross.
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Survival Analysis

Parametric models: Exponential distribution:

f(t) = λ exp(−λt), S(t) = exp(−λt), h(t) = λ.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

density

t

f(
t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

survival

t

S
(t

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

hazard

t

h(
t)

Survival Analysis

Weibull distribution:

f(t) = λγ tγ−1 exp(−λtγ),

S(t) = exp(−λtγ),

h(t) = λγ tγ−1.

The hazard function is

• γ > 1: increasing,

• γ = 1: constant (exponential),

• γ < 1: decreasing.

Survival Analysis

With λ = 1:
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Survival Analysis

Regression models: Assume a proportional hazards model for
n observations

hi(t) = λi · h0(t) (i = 1, . . . , n),

where h0(t) is called baseline hazard. The factor λi is allowed to
depend on a set of covariates xi, usually using a log link

λi = exp(x>i β).

Thus, the baseline hazard corresponds to an observation with
x = 0.

To estimate the parameters β there are mainly two approaches:

(i) parametric: parametrize h0(t),

(ii) semi-parametric: leave h0(t) unspecified.



Survival Analysis

(i) Parametric regression models:

The two most common parametric models are

distribution baseline hazard
Exponential h0(t) = 1
Weibull h0(t) = γtγ−1

Estimate β by maximum likelihood: e.g. for exponential case

L(β) =
n∏

i=1

[λi · exp(−λiti)]
δi exp(−λiti)

1−δi

=
n∏

i=1

λ
δi
i exp(−λiti)

logL(β) =
n∑

i=1

δi · x>i β −
n∑

i=1

exp(x>i β) · ti,

Survival Analysis

where δi indicates an event or censoring respectively. For the

Weibull distribution an additional scale parameter γ is estimated.

In R:

survreg(formula, data, subset, na.action, link, dist, . . . )

where link can be "log" or "identity" and the distribution

can be one of "weibull", "exponential", "logistic", "gaussian",

"lognormal" or "loglogistic". The function returns an object of

class survreg which inherits from class glm.

Survival Analysis

(ii) Cox proportional hazards model:

Maximum likelihood requires specification of the hazard, hence

construct the conditional likelihood. Instead of P[Ti = ti] use

P[Ti = ti |one individual dies at ti].

This leads to

h0(ti) exp(x>i β)∑
j:tj≥ti h0(ti) exp(x>j β)

=
exp(x>i β)∑

j:tj≥ti exp(x>j β)

and thus, the conditional likelihood is

L(β) =
n∏

i=1

 exp(x>i β)∑
j:tj≥ti exp(x>j β)

δi

.

If there are censorings this is called partial likelihood.

Survival Analysis

In R:

coxph(formula, data, weights, subset, na.action, . . . )

For both parametric and semi-parametric models asymptotic nor-

mality can be shown. Hence, confidence intervals can be con-

structed and inference about the paramater estimates can be

done in the usual way (LR, Wald, Score test).

The estimates can be interpreted as follows: for observations

with covariates x1 and x2 respectively

h1(t)

h2(t)
= exp((x1 − x2)

>β),

independent of t.


