

Financial Econometrics

Extension 1

Financial Econometrics

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 0/21 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 1 / 21

Overview

Further packages for time series analysis

- **dse** Multivariate time series modeling with state-space and vector ARMA (VARMA) models.
- FinTS R companion to Tsay (2005).
- forecast Univariate time series forecasting, including exponential smoothing, state space, and ARIMA models.
- fracdiff ML estimation of ARFIMA models and semiparametric estimation of the fractional differencing parameter.
- **longmemo** Convenience functions for long-memory models.
- **mFilter** Time series filters, including Baxter-King, Butterworth, and Hodrick-Prescott.
- **Rmetrics** Some 20 packages for financial engineering and computational finance, including GARCH modeling in **fGarch**.
- tsDyn Nonlinear time series models: STAR, ESTAR, LSTAR.
- vars (Structural) vector autoregressive (VAR) models

Financial Econometrics

GARCH Modelling via tseries

GARCH models

GARCH models

tseries function garch() fits GARCH(p, q) with Gaussian innovations. Default is GARCH(1, 1):

$$y_t = \sigma_t \nu_t, \quad \nu_t \sim \mathcal{N}(0, 1) \text{ i.i.d.},$$

$$\sigma_t^2 = \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2, \quad \omega > 0, \alpha > 0, \beta \ge 0.$$

Example: DEM/GBP FX returns for 1984-01-03 through 1991-12-31

R> library("tseries")
R> mp <- garch(MarkPound, grad = "numerical", trace = FALSE)
R> summary(mp)

Call: garch(x = MarkPound, grad = "numerical", trace = FALSE)

Model: GARCH(1,1)

```
Residuals:

Min 1Q Median 3Q Max

-6.79739 -0.53703 -0.00264 0.55233 5.24867
```

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 4/21 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 5 / 21

GARCH models

Coeffi	icient	(s):
--------	--------	------

	Estimate	Std. Error	t value	Pr(> t)
a0	0.0109	0.0013	8.38	<2e-16
a1	0.1546	0.0139	11.14	<2e-16
b1	0.8044	0.0160	50.13	<2e-16

Diagnostic Tests: Jarque Bera Test

data: Residuals
X-squared = 1100, df = 2, p-value <2e-16</pre>

Box-Ljung test

data: Squared.Residuals
X-squared = 2.5, df = 1, p-value = 0.1

Remarks:

- Warning: OPG standard errors assuming Gaussian innovations.
- More flexible GARCH modeling via garchFit() in **fGarch**.

Financial Econometrics

GARCH Modelling via Rmetrics

Rmetrics

Rmetrics

- Initiated and mainly developed by D. Würtz (ETH, Dept. of Theoretical Physics).
- Environment for financial engineering and computational finance.
- Currently comprises some 20 packages: fArma, fAsianOptions, fAssets, fBasics, fBonds, fCalendar, fCopulae, fEcofin, fExoticOptions, fExtremes, fGarch, fImport, fMultivar, fNonlinear, fOptions, fPortfolio, fRegression, fSeries, fTrading, fUnitRoots, fUtilities.
- Unified framework, initially designed for teaching purposes.
- Unified naming conventions via standardized wrappers. For example, arima() from **stats** appears as armaFit().
- We consider GARCH modelling via garchFit() from fGarch.

GARCH modeling via garchFit()

	Example: DEM/GBP FX return R> library("fGarch")	ns for 1984-0 ⁻)1-03 through 1991-12-31	
	<pre>R> mp_gf <- garchFit(~garch(1 R> summary(mp_gf)</pre>	.,1), data =	MarkPound, trace = FALSE)	
	Title: GARCH Modelling			
	Call: garchFit(formula = ~garch(1, trace = FALSE)	1), data =	MarkPound,	
	<pre>Mean and Variance Equation: data ~ garch(1, 1) <environment: 0x564331d96378=""> [data = MarkPound]</environment:></pre>			
	Conditional Distribution: norm			
	Coefficient(s): mu omega a	lpha1	beta1	
ist	istian Kleiber, Achim Zeileis © 2008–2017	Applied Econome	netrics with R - Ext. 1 - Financial Econometrics - 9/	21

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 8/21 Christian Kleiber, Achim Zeileis © 2008-2017

GARCH modeling via garchFit()

-0.0061903	0.0107614	0.1531341	0.8059737		
Std. Errors: based on Hes	ssian				
Error Analys Estin	is: nate Std. E	rror t valu	ue Pr(> t)		
mu -0.006	6190 0.00	8462 -0.73	32 0.464447		
omega 0.010	0.00	2838 3.79	3 0.000149		
alpha1 0.153	3134 0.02	6422 5.79	06 6.8e-09		
beta1 0.80	5974 0.03	3381 24.14	4 < 2e-16		
Log Likelihood: -1107 normalized: -0.5606					
Description: Thu Mar 16 09:50:07 2017 by user: zeileis					
Standardised	Residuals T	ests:	istic p-Volue		
Jarque-Bera	Tost B	Chi^2 1060	TECTC h-Marne		
Jarque-Dera	iest h				
stian Kleiber, Achim Zeileis	© 2008–2017	Applied E	Econometrics with R - Ext. 1 - Finar		

GARCH modeling via garchFit()

Shapiro-Wilk Test	R	W	0.9623	0
Ljung-Box Test	R	Q(10)	10.12	0.4299
Ljung-Box Test	R	Q(15)	17.04	0.3163
Ljung-Box Test	R	Q(20)	19.3	0.5026
Ljung-Box Test	R^2	Q(10)	9.063	0.5262
Ljung-Box Test	R^2	Q(15)	16.08	0.3769
Ljung-Box Test	R^2	Q(20)	17.51	0.6198
LM Arch Test	R	TR^2	9.771	0.636

Information Criterion Statistics: AIC BIC SIC HOIC 1.125 1.137 1.125 1.129

Remarks:

- Benchmark data set for GARCH(1, 1), see McCullough and Renfro (J. Economic and Social Measurement 1998). garchFit() hits the benchmark.
- Note that constant included by default (not possible with tseries).
- Standard errors are from the Hessian.

More on garchFit()

ARMA models with GARCH components

garchFit() provides

- ARMA models with GARCH-type innovations
- Various innovation distributions: Gaussian, *t*, GED, including skewed generalizations.
- Several algorithms for maximizing log-likelihood, default is nlminb.
- Two methods for initializing recursions.

Mean equation is ARMA

$$y_t = \mu + \sum_{t-i}^m \phi_i y_{t-i} + \sum_{t-j}^n \theta_j \varepsilon_{t-j} + \varepsilon_t$$

Variance equation for GARCH(p, q) is

$$\varepsilon_t = \sigma_t \nu_t,$$

$$\nu_t \sim \mathcal{D}_{\vartheta}(0, 1) \text{ i.i.d.},$$

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{t-j}^q \beta_j \sigma_{t-j}^2.$$

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 12/21 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 13/21

ARMA models with APARCH components

Mean equation is ARMA

$$y_{t} = \mu + \sum_{t-i}^{m} \phi_{i} y_{t-i} + \sum_{t-j}^{n} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

Variance equation for APARCH(p, q) is

$$\begin{aligned} \varepsilon_t &= \sigma_t \nu_t, \\ \nu_t &\sim \mathcal{D}_{\vartheta}(0, 1) \text{ i.i.d.}, \\ \sigma_t^{\delta} &= \omega + \sum_{i=1}^{p} \alpha_i (|\varepsilon_{t-i}| - \gamma_i \varepsilon_{t-i})^{\delta} + \sum_{t-j}^{q} \beta_j \sigma_{t-j}^{\delta}. \end{aligned}$$

where $\delta > 0$ and the leverage parameters $-1 < \gamma_i < 1$. APARCH comprises various GARCH-type models, including ARCH, GARCH, Taylor/Schwert-GARCH, GJR-GARCH, TARCH, NARCH, log-ARCH, ...

ARMA models with APARCH components

More complex example: Ding, Granger, Engle (*J. Emp. Fin.* 1993) MA(1)-APARCH(1,1) model for S&P 500 returns (17055 observations)

R> sp_ap <- garchFit(~ arma(0,1) + aparch(1,1), + data = ts(100 * sp500dge), trace = FALSE)

Excerpt from summary(sp_ap):

Std. Errors:
 based on Hessian

Error Analysis:

	Estimate	Std. Error	t value	Pr(> t)
mu	0.020595	0.006342	3.247	0.00116
ma1	0.144709	0.008346	17.338	< 2e-16
omega	0.009991	0.001066	9.373	< 2e-16
alpha1	0.083792	0.004343	19.293	< 2e-16
gamma1	0.374182	0.028027	13.351	< 2e-16

Results broadly agree with original paper (p. 99, eq. (19)), where algorithm was BHHH. (Note: percentage returns!)

ARMA models with APARCH components

Further ARCH-type models:

```
cond.dist - specification of conditional distributions allowing for
    Taylor-Schwert ARCH (compare Ding, Granger, Engle, eq. (16))
                                                                                        "dnorm", "dged", "dstd", "dsnorm", "dsged", "dsstd". Three of
    R> sp_tsarch <- garchFit(~ arma(0,1) + garch(1,1), delta = 1,</pre>
                                                                                       these ("dsnorm", "dsged", "dsstd") are skewed. - Thus
    + data = ts(100 * sp500dge), trace = FALSE)
                                                                                       GARCH(1,1) with Student-t (shape parameter estimated)
                                                                                        R> sp_garch_std <- garchFit(~ garch(1,1), cond.dist = "dstd",</pre>
    Threshold ARCH (TARCH)
                                                                                        + data = ts(100 * sp500dge), trace = FALSE)
    R > sp_tarch <- garchFit(~ arma(0,1) + garch(1,1), delta = 1,
    + leverage = TRUE, data = ts(100 * sp500dge), trace = FALSE)
                                                                                       GARCH(1,1) with Student-t_3 (shape parameter fixed at 3)
                                                                                        R> sp_garch_std3 <- garchFit(~ garch(1,1),</pre>
                                                                                        + cond.dist = "dstd", shape = 3, include.shape = FALSE,
    GJR-GARCH
                                                                                        + data = ts(100 * sp500dge), trace = FALSE)
    R > sp_tarch <- garchFit(~ arma(0,1) + garch(1,1), delta = 2,
    + leverage = TRUE, data = ts(100 * sp500dge), trace = FALSE)
                                                                                        GARCH(1,1) with Laplace (a GED with shape fixed at 1)
                                                                                        R> sp_garch_ged <- garchFit(~ garch(1,1),</pre>
                                                                                        + cond.dist = "dged", shape = 1, include.shape = FALSE,
                                                                                        + data = ts(100 * sp500dge), trace = FALSE)
Christian Kleiber, Achim Zeileis © 2008-2017
                                      Applied Econometrics with R - Ext. 1 - Financial Econometrics - 16 / 21
                                                                                    Christian Kleiber, Achim Zeileis © 2008-2017
                                                                                                                          Applied Econometrics with R - Ext. 1 - Financial Econometrics - 17 / 21
```

ARMA models with APARCH components

Further remarks:

- More details regarding fitting process, defaults, etc. upon setting trace = TRUE
- plot() method offers 12 types of plots: time series, conditional std. dev., ACF of obs. and squared obs., residuals, ACF of residuals and squared residuals, etc.

Example: (ARMA-APARCH cont'd) Series with superimposed conditional std. dev. is R> plot(sp_ap, which = 3)

Series with 2 Conditional SD Superimposed

ARMA models with APARCH components

ARMA models with **APARCH** components

Specifying innovation distributions:

Christian Kleiber, Achim Zeileis © 2008–2017

Additional tools for financial engineering

- Portfolio management: fPortfolio, portfolio offer portfolio selection and optimization.
- Risk management:
 - Classical Value-at-Risk: VaR.
 - Extreme Value Theory models: evd, evdbayes, evir, extRremes, ismec, POT.
 - Multivariate modeling: fCopulae, copula, fgac
- High-frequency data: realized.

More complete overview in CRAN Task View Empirical Finance at

http://CRAN.R-project.org/view=Finance

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 20 / 21 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - Ext. 1 - Financial Econometrics - 21 / 21

Financial Econometrics

Extensions