Applied Econometrics with

Chapter 6

Time Series

Time Series

Overview

Overview

Time series data: typical in macroeconomics and finance

Notation: y_t , t = 1, ..., n.

Contents:

- Infrastructure and "naive" methods
- ARMA modeling
- Stationarity, unit roots, and cointegration
- Time series regression and structural change
- Extensions (GARCH, structural time series models)

Focus is on time domain methodology.

Overview

Background reading:

- Brockwell and Davis (2002): Introduction to Time Series and Forecasting, 2nd edition.
- Brockwell and Davis (1991): Time Series Theory and Methods,
 2nd edition.
- Franses (1998): Time Series Models for Business and Economic Forecasting
- Hamilton (1994): Time Series Analysis
- ...

Time Series

Infrastructure and "Naive" Methods

Standard time series class in R is "ts":

- Aimed at regular series (annual, quarterly, monthly).
- A "ts" object is either a numeric vector (univariate series) or a numeric matrix (multivariate series).
- "tsp" attribute reflects time series properties:
 a vector of length 3 with start, end and frequency.
- Create via ts(): supply data (numeric vector or matrix) plus arguments start, end, and frequency.
- Methods for standard generic functions: plot(), lines(), str(), summary(),...
- Additional time-series-specific methods: lag(), diff(),

Example: Quarterly consumption of non-durables in the United Kingdom (from Franses 1998)

```
Plot:
R> data("UKNonDurables")
R> plot(UKNonDurables)
```

Time series properties:

```
R> tsp(UKNonDurables)
[1] 1955 1989 4
```

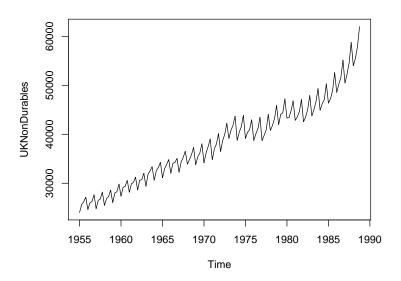
Subsets via window():

```
R> window(UKNonDurables, end = c(1956, 4))

Qtr1 Qtr2 Qtr3 Qtr4

1955 24030 25620 26209 27167

1956 24620 25972 26285 27659
```



Drawbacks of "ts":

- Only numeric time stamps (more general date/time classes?)
- Missing values cannot be omitted (start/end/frequency no longer sufficient for reconstructing all time stamps!) – a problem with irregular series, e.g., with many financial time series.

R packages for irregular series: several, we use zoo

- Generalization of "ts": time stamps of arbitrary type.
- Numeric vectors or matrices, "index" attribute contains vector of time stamps (not just "tsp" attribute!).
- Regular series can be coerced back and forth between "ts" and "zoo" via as.zoo() and as.ts().
- "zoo" more convenient for daily data (e.g., "Date" time stamps) or intraday data (e.g., "POSIXct" or "chron" time stamps).
- More details: Zeileis and Grothendieck (JSS 2005).

Linear filter: important class are finite moving averages

$$\hat{y}_t = \sum_{j=-r}^{s} a_j y_{t+j}, \quad t = r+1, \ldots, n-s.$$

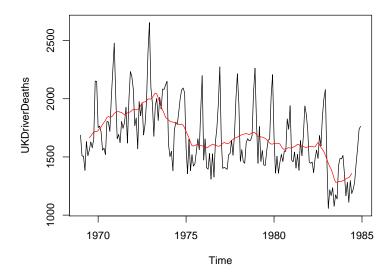
If r = s, filter is called symmetric.

In R: function filter()

- Main argument filter takes vector containing *a_i*s.
- Can also apply recursive linear filters.

Example: (UKDriverDeaths, Harvey and Durbin, *JRSS A* 1986)

```
R> data("UKDriverDeaths")
R> plot(UKDriverDeaths)
R> lines(filter(UKDriverDeaths, c(1/2, rep(1, 11), 1/2)/12),
+ col = 2)
```



Further examples:

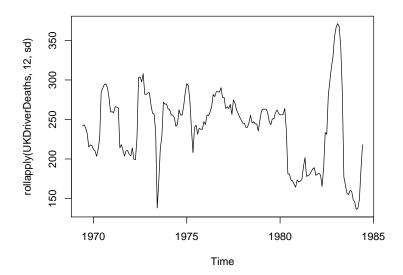
```
rollapply() computes functions on moving data windows:
```

```
R> plot(rollapply(UKDriverDeaths, 12, sd))
```

filter() also provides autoregressive (recursive) filtering.

Generate 100 observations from AR(1) process:

```
R> set.seed(1234)
R> x <- filter(rnorm(100), 0.9, method = "recursive")</pre>
```



Can use filters for additive or multiplicative decomposition into seasonal, trend, and irregular components.

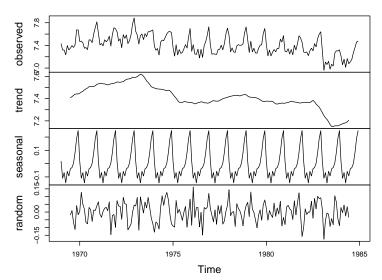
In R:

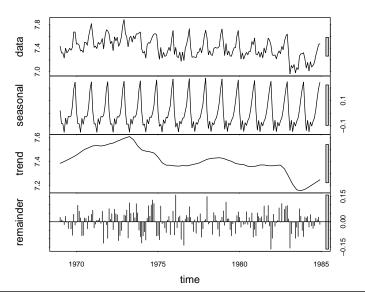
- decompose() takes simple symmetric filter for extracting trend, derives seasonal component by averaging trend-adjusted observations from corresponding periods.
- st1() iteratively finds seasonal and trend components by loess smoothing in moving data windows.

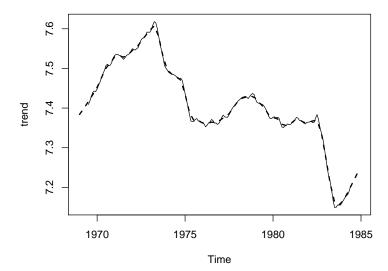
Examples:

```
R> dd_dec <- decompose(log(UKDriverDeaths))
R> dd_stl <- stl(log(UKDriverDeaths), s.window = 13)
R> plot(dd_dec$trend, ylab = "trend")
R> lines(dd_stl$time.series[,"trend"], lty = 2, lwd = 2)
```

Decomposition of additive time series







Exponential smoothing

HoltWinters() handles exponential smoothing and generalizations:

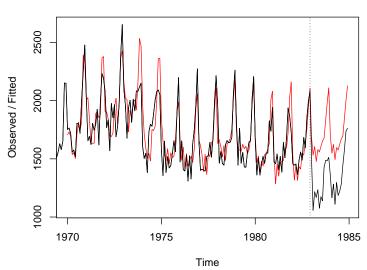
- Recursively reweighted lagged observations for predictions.
- Smoothing parameters determined by minimizing squared prediction error on observed data.
- Default: Holt-Winters filter with additive seasonal component.

Example: UKDriverDeaths

- Historical sample up to 1982(12) (before change in legislation).
- Use Holt-Winters to predict observations for 1983 and 1984.

```
R> dd_past <- window(UKDriverDeaths, end = c(1982, 12))
R> dd_hw <- HoltWinters(dd_past)
R> dd_pred <- predict(dd_hw, n.ahead = 24)
R> plot(dd_hw, dd_pred, ylim = range(UKDriverDeaths))
R> lines(UKDriverDeaths)
```

Exponential smoothing



Time Series

Classical Model-Based Analysis

ARIMA(p, d, q) model is

$$\phi(L)(1-L)^{d}y_{t}=\theta(L)\varepsilon_{t},$$

with

- $\phi(L) = 1 \phi_1 L ... \phi_p L^p$, and
- $\theta(L) = 1 + \theta_1 L + \ldots + \theta_q L^q$ (note sign convention!),
- $\varepsilon_t \sim WN(0, \sigma^2)$.

Generalization for seasonal data: multiplicative seasonal ARIMA

$$\Phi(L^s)\phi(L)(1-L^s)^D(1-L)^dy_t=\theta(L)\Theta(L^s)\varepsilon_t$$

Notation: SARIMA(p, d, q)(P, D, Q)_s

Time series fitting functions in R:

- ar() (from stats) fits AR models
 - univariate via Yule-Walker, OLS, ML, or Burg, and
 - multivariate (unrestricted VARs) by Yule-Walker, OLS, or Burg.

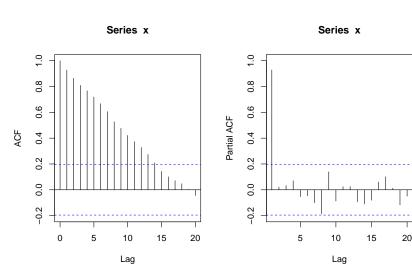
Order selection by AIC possible.

- arima() (from stats) fits univariate ARIMA models, including SARIMA models, ARIMAX, and subset ARIMA models.
 Methods: unconditional ML or CSS.
- arma() (from tseries) fits ARMA models by CSS.
 Starting values via Hannan-Rissanen.
 Note: Parameterization of intercept different from arima().
- auto.arima() (from **forecast**): Order selection via AIC, BIC, or AICC within user-defined set of models, fitting via arima().
- StructTS() (from stats) fits structural time series models: local level, local trend, and basic structural model.

Box-Jenkins approach: use ACF and PACF for preliminary analysis.

```
In R: acf() and pacf().
Example: simulated AR(1)
R> set.seed(1234)
R> x <- filter(rnorm(100), 0.9, method = "recursive")
R > acf(x)
R> pacf(x)
Fit autoregression to x via ar():
R > ar(x)
Call.
ar(x = x)
Coefficients:
0.928
```

Order selected 1 sigma^2 estimated as 1.29



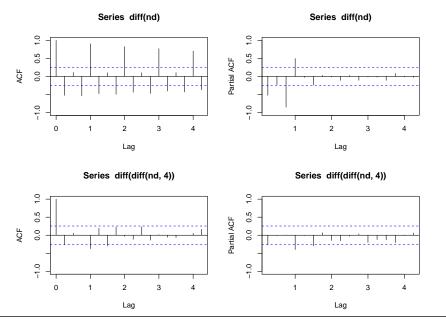
Example: UKNonDurables

```
R> nd <- window(log(UKNonDurables), end = c(1970, 4))
```

Empirical ACFs and PACFs for

- nonseasonal differences
- seasonal and nonseasonal differences

```
R> acf(diff(nd), ylim = c(-1, 1))
R> pacf(diff(nd), ylim = c(-1, 1))
R> acf(diff(diff(nd, 4)), ylim = c(-1, 1))
R> pacf(diff(diff(nd, 4)), ylim = c(-1, 1))
```



Preliminary analysis suggests

- double differencing (d = 1, D = 1),
- some AR and MA effects we use p = 0, 1, 2 and q = 0, 1, 2,
- low-order seasonal AR and MA parts we use P = 0, 1 and Q = 0, 1.

This gives 36 parameter combinations in total. Manual solution:

- Set up all parameter combinations via expand.grid().
- Fit each SARIMA model using arima() in for() loop.
- Store resulting BIC extracted from the model.
 For BIC, use AIC() with k = log(length(nd)).

Result is SARIMA $(0, 1, 1)(0, 1, 1)_4$ – the airline model.

Refit to nd via

```
R> nd_arima <- arima(nd, order = c(0,1,1), seasonal = c(0,1,1))
```

R> tsdiag(nd_arima)

Forecast remaining 18 years:

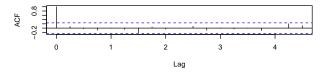
```
R> nd_pred <- predict(nd_arima, n.ahead = 18 * 4)
```

Graphical comparison with observed series:

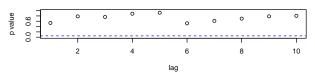
```
R> plot(log(UKNonDurables))
R> lines(nd_pred$pred, col = 2)
```

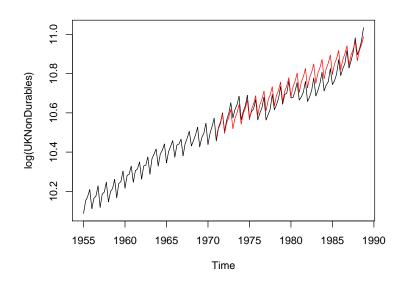



ACF of Residuals



p values for Ljung-Box statistic





Useful convenience functions for exploring ARMA models (all in **stats**):

- acf2AR() computes AR process exactly fitting given autocorrelation function.
- arima.sim() simulation of ARIMA models.
- ARMAacf() theoretical (P)ACF for a given ARMA model.
- ARMAtoMA() MA(∞) representation for a given ARMA model.

Time Series

Stationarity, Unit Roots, and Cointegration

Stationarity, unit roots, and cointegration

Many time series in macroeconomics and finance are nonstationary.

Need tests for

- unit roots,
- stationarity,
- cointegration.

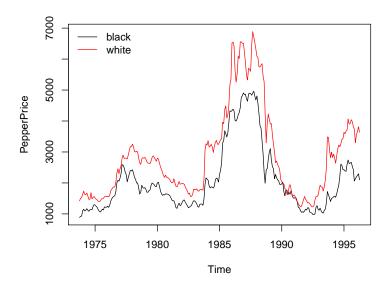
We use same data set for all these topics.

Example: from Franses 1998

Bivariate time series of average monthly European spot prices for black and white pepper (in US dollars per ton).

```
R> data("PepperPrice")
R> plot(PepperPrice, plot.type = "single", col = 1:2)
R> legend("topleft", c("black", "white"), bty = "n",
+ col = 1:2, lty = rep(1,2))
```

Stationarity, unit roots, and cointegration



Unit-root tests

Available tests:

• Augmented Dickey-Fuller (ADF) test: t test of $H_0: \varrho = 0$ in

$$\Delta y_t = \alpha + \delta t + \varrho y_{t-1} + \sum_{j=1}^k \phi_j \Delta y_{t-j} + \varepsilon_t.$$

In R: adf.test() from tseries.

- Phillips-Perron (PP) test:
 Same idea as ADF, but nonparametric (HAC) correction for autocorrelation.
 - In R: pp.test() from tseries.
- Elliott-Rothenberg-Stock (ERS):
 Same idea as ADF, but GLS detrending.
 In R: ur.ers() from urca.

Unit-root tests

```
ADF in levels:
R> library("tseries")
R> adf.test(log(PepperPrice[, "white"]))
        Augmented Dickey-Fuller Test
data: log(PepperPrice[, "white"])
Dickey-Fuller = -1.7, Lag order = 6, p-value = 0.7
alternative hypothesis: stationary
ADF in first differences:
R> adf.test(diff(log(PepperPrice[, "white"])))
        Augmented Dickey-Fuller Test
data: diff(log(PepperPrice[, "white"]))
Dickey-Fuller = -5.3, Lag order = 6, p-value = 0.01
alternative hypothesis: stationary
Warning message:
In adf.test(diff(log(PepperPrice[, "white"]))) :
  p-value smaller than printed p-value
```

Unit-root tests

Stationarity tests

Kwiatkowski, Phillips, Schmidt and Shin (*J. Econometrics* 1992):

Test H_0 : $r_t \equiv 0$ in

$$y_t = d_t + r_t + \varepsilon_t,$$

where

- d_t deterministic trend,
- r_t random walk,
- ε_t stationary (I(0)) error process.

Two variants:

- $d_t = \alpha$, level stationarity (under H_0).
- $d_t = \alpha + \beta t$, trend stationarity (under H_0).

Stationarity tests

KPSS without time trend:

Pepper series exhibit common nonstationary features.

Cointegration tests in R:

- Engle-Granger two-step method
 Available in po.test() from tseries (named after Phillips and Ouliaris, Econometrica 1990).
- Johansen test
 Full-information maximum likelihood approach in pth-order cointegrated VAR. Error correction form (ECM) is (without deterministic components)

$$\Delta y_t = \Pi y_{t-1} + \sum_{j=1}^{p-1} \Gamma_j \Delta y_{t-j} + \varepsilon_t.$$

Trace and lambda-max tests available in ca.jo() from **urca**.

Engle-Granger two-step with black pepper regressed on white pepper:

Suggests both series are cointegrated.

Remarks:

- Test with reverse regression is po.test(log(PepperPrice[,2:1]))
- Problem: treatment asymmetric, but concept cointegration demands symmetric treatment!

Johansen test with constant term

```
Values of teststatistic and critical values of test:
         test 10pct 5pct 1pct
r <= 1 | 3.66 7.52 9.24 12.97
r = 0 | 17.26 | 17.85 | 19.96 | 24.60
Eigenvectors, normalised to first column:
(These are the cointegration relations)
        black.12 white.12 constant
black.12 1.0000 1.000 1.000
white.12 -0.8892 -5.099 2.281
constant -0.5570 33.027 -20.032
Weights W:
(This is the loading matrix)
       black.12 white.12 constant
```

black.d -0.07472 0.002453 -4.958e-18 white.d 0.02016 0.003537 8.850e-18

Time Series

Time Series Regression and Structural Change

More on fitting dynamic regression models

Example: SARIMA $(1,0,0)(1,0,0)_{12}$ for UKDriverDeaths

$$y_t = \beta_1 + \beta_2 y_{t-1} + \beta_3 y_{t-12} + \varepsilon_t, \quad t = 13, \dots, 192.$$

Two approaches:

```
Approach 1: set up regressors "by hand" and call lm()
```

More on fitting dynamic regression models

Approach 2: use convenience interface dynlm() from dynlm

Features of UKDriverDeaths:

- Decrease in mean number of casualties after policy change.
- Parameters of time series model unlikely to be stable throughout sample period.

Package **strucchange** implements large collection of tests for <u>struc</u>tural <u>change</u> (parameter instability).

Two types of tests:

- Fluctuation tests.
- Tests based on F statistics.

Fluctuation tests:

- Assess structural stability by capturing fluctuation in CUSUMs or MOSUMs of
 - residuals (OLS or recursive),
 - model scores (empirical estimating functions), or
 - parameter estimates (recursive or rolling).
- Idea: under null hypothesis of parameter stability, resulting "fluctuation processes" exhibit limited fluctuation, under alternative of structural change, fluctuation is generally increased.
- ullet Evidence for structural change if empirical fluctuation process crosses boundary that corresponding limiting process crosses only with probability lpha.

Fluctuation tests in strucchange:

- empirical fluctuation processes via efp().
- Result is object of class "efp".
- plot() method for performing test graphically.
- sctest() method (for <u>structural change test</u>) for traditional significance test.

Example: OLS-CUSUM for UKDriverDeaths

OLS-CUSUM process: Scaled CUSUM of OLS residuals $\hat{\varepsilon}_t = y_t - x_t^{\top} \hat{\beta}$

$$efp(s) = rac{1}{\hat{\sigma}\sqrt{n}} \sum_{t=0}^{\lfloor ns \rfloor} \hat{arepsilon}_t, \quad 0 \leq s \leq 1.$$

In R:

```
R> library("strucchange")
R> dd_ocus <- efp(dd ~ dd1 + dd12, data = dd_dat,
+ type = "OLS-CUSUM")</pre>
```

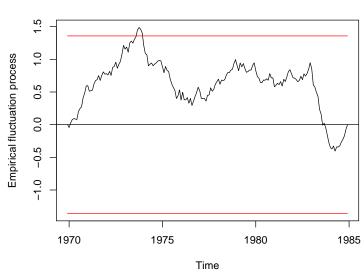
Test using maximum absolute deviation of efp (default functional)

```
R> sctest(dd_ocus)

OLS-based CUSUM test
```

```
data: dd_ocus
S0 = 1.5, p-value = 0.02
R> plot(dd_ocus)
```

OLS-based CUSUM test



Tests based on F statistics:

- Designed to have good power for single-shift alternatives (of unknown timing).
- Basic idea is to compute an F statistic (or Chow statistic) for each conceivable breakpoint in given interval (trimming parameter).
- Reject the null hypothesis of structural stability if
 - any of these statistics (sup F test)
 - some other functional (Andrews-Ploberger, Econometrica 1994: mean-F, exp-F)

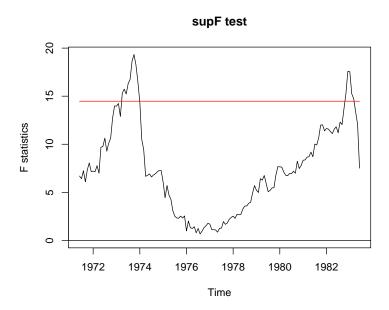
exceeds critical value.

In R: function Fstats(), with interface similar to efp()

supF test with 10% trimming via

Visualization:

```
R> plot(dd_fs, main = "supF test")
```



Further Example: German M1 money demand

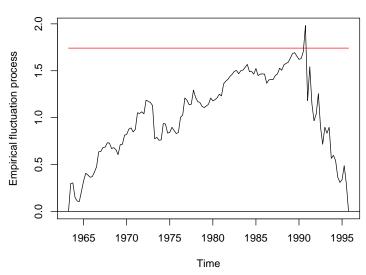
- Lütkepohl, Teräsvirta and Wolters (JAE 1999) use error correction model (ECM) for German M1.
- GermanM1 contains data from 1961(1) to 1995(4) on per capita
 M1, price index, per capita GNP (all in logs) and an interest rate.

Load and set up model

Recursive estimates (RE) test (Ploberger, Krämer and Kontrus, *J. Econometrics* 1989)

```
R> m1_re <- efp(LTW, data = GermanM1, type = "RE")
R> plot(m1_re)
```

RE test (recursive estimates test)



Setup is linear regression model

$$y_t = x_t^{\top} \beta^{(j)} + \varepsilon_t, \qquad t = n_{j-1} + 1, \dots, n_j, \quad j = 1, \dots, m+1,$$

where

- j = 1, ..., m segment index,
- $\beta^{(j)}$ segment-specific set of regression coefficients,
- $\{n_1, \ldots, n_m\}$ set of unknown breakpoints (convention: $n_0 = 0$ and $n_{m+1} = n$).

In R: function breakpoints()

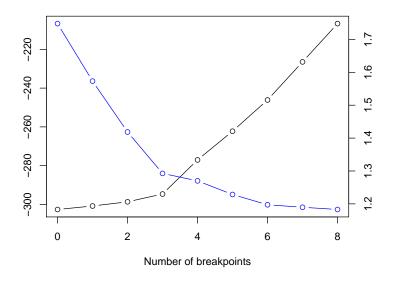
- Uses dynamic programming algorithm based on Bellman principle.
- Finds those m breakpoints that minimize RSS of model with m+1 segments.
- Bandwidth parameter h determines minimal segment size of $h \cdot n$ observations.

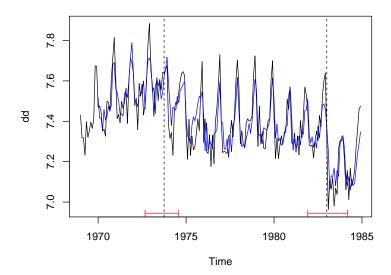
Example: UKDriverDeaths

Breakpoints for SARIMA model with minimal segment size of 10%

Visualization

```
R> plot(dd_bp, legend = FALSE, main = "")
R> plot(dd)
R> lines(fitted(dd_bp, breaks = 2), col = 4)
R> lines(confint(dd_bp, breaks = 2))
```





Time Series

Extensions

Extensions

Further packages for time series analysis

- dse Multivariate time series modeling with state-space and vector ARMA (VARMA) models.
- **FinTS** R companion to Tsay (2005).
- forecast Univariate time series forecasting, including exponential smoothing, state space, and ARIMA models.
- fracdiff ML estimation of ARFIMA models and semiparametric estimation of the fractional differencing parameter.
- **longmemo** Convenience functions for long-memory models.
- mFilter Time series filters, including Baxter-King, Butterworth, and Hodrick-Prescott.
- Rmetrics Some 20 packages for financial engineering and computational finance, including GARCH modeling in fGarch.
- tsDyn Nonlinear time series models: STAR, ESTAR, LSTAR.
- vars (Structural) vector autoregressive (VAR) models

Structural time series models

Basic structural model has measurement equation

$$y_t = \mu_t + \gamma_t + \varepsilon_t$$
, $\varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$ i.i.d.

Seasonal component γ_t (with frequency s) is

$$\gamma_{t+1} = -\sum_{j=1}^{s-1} \gamma_{t+1-j} + \omega_t, \quad \omega_t \sim \mathcal{N}(0, \sigma_\omega^2) \text{ i.i.d.}$$

Local level and trend components are

$$\mu_{t+1} = \mu_t + \eta_t + \xi_t, \quad \xi_t \sim \mathcal{N}(0, \sigma_{\xi}^2) \text{ i.i.d.},$$

$$\eta_{t+1} = \eta_t + \zeta_t, \quad \zeta_t \sim \mathcal{N}(0, \sigma_{\zeta}^2) \text{ i.i.d.}$$

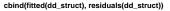
All error terms mutually independent.

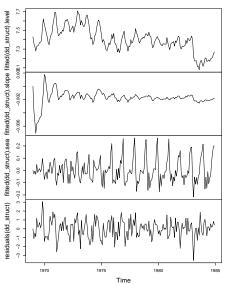
In R:

R> dd_struct <- StructTS(log(UKDriverDeaths))</pre>

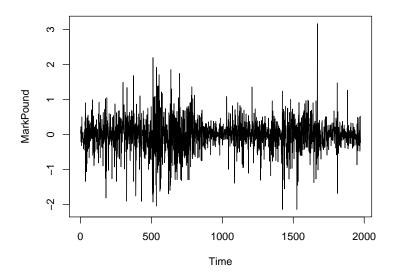
R> plot(cbind(fitted(dd_struct), residuals(dd_struct)))

Structural time series models





GARCH models



GARCH models

tseries function garch() fits GARCH(p, q) with Gaussian innovations. Default is GARCH(1, 1):

$$y_t = \sigma_t \nu_t, \quad \nu_t \sim \mathcal{N}(0, 1) \text{ i.i.d.},$$

 $\sigma_t^2 = \omega + \alpha y_{t-1}^2 + \beta \sigma_{t-1}^2, \quad \omega > 0, \alpha > 0, \beta \ge 0.$

Example: DEM/GBP FX returns for 1984-01-03 through 1991-12-31

```
R> mp <- garch(MarkPound, grad = "numerical", trace = FALSE)
R> summary(mp)
```

Call:

garch(x = MarkPound, grad = "numerical", trace = FALSE)

Model:

GARCH(1.1)

Residuals:

Min 1Q Median 3Q Max -6.79739 -0.53703 -0.00264 0.55233 5.24867

GARCH models

```
Coefficient(s):
   Estimate Std. Error t value Pr(>|t|)
a0 0.0109 0.0013 8.38 <2e-16
a1 0.1546 0.0139 11.14 <2e-16
b1 0.8044 0.0160 50.13 <2e-16
Diagnostic Tests:
      Jarque Bera Test
data: Residuals
X-squared = 1100, df = 2, p-value <2e-16
      Box-Ljung test
```

```
Box-Ljung test
```

```
data: Squared.Residuals
X-squared = 2.5, df = 1, p-value = 0.1
```

Remarks:

- Warning: OPG standard errors assuming Gaussian innovations.
- More flexible GARCH modeling via garchFit() in fGarch.