

Microeconometrics

Overview

Chapter 5

Microeconometrics

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 0 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 1 / 72

Overview

• Many microeconometric models belong to the domain of generalized linear models (GLMs)

Examples: probit model, Poisson regression.

- Unifying framework can be exploited in software design.
- R has a single fitting function glm() closely resembling lm().
- Models extending GLMs are provided by R functions that analogously extend glm(): similar interfaces, return values, and associated methods.

Microeconometrics

Generalized Linear Models

Generalized linear models (GLMs)

Three aspects of linear regression model for conditionally normally distributed response *y*:

- Linear predictor $\eta_i = \mathbf{x}_i^{\top} \beta$ through which $\mu_i = \mathsf{E}(\mathbf{y}_i | \mathbf{x}_i)$ depends on $k \times 1$ vectors \mathbf{x}_i and β .
- 2 Distribution of dependent variable $y_i | x_i$ is $\mathcal{N}(\mu_i, \sigma^2)$.
- Solution Expected response is equal to linear predictor, $\mu_i = \eta_i$.

Generalized linear models (GLMs)

Generalized linear models are defined by three elements:

- Linear predictor $\eta_i = x_i^{\top}\beta$ through which $\mu_i = E(y_i|x_i)$ depends on $k \times 1$ vectors x_i and β .
- 2 Distribution of dependent variable $y_i | x_i$ is a linear exponential family,

$$f(y; heta, \phi) = \exp\left\{rac{y heta - b(heta)}{\phi} + c(y; \phi)
ight\}$$

Solution Expected response and linear predictor are related by a monotonic transformation, $g(\mu_i) = \eta_i$.

g is called the *link function* of the GLM.

Transformation *g* relating original parameter μ and canonical parameter θ from exponential family representation is called *canonical link*.

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 4 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 5 / 72

Generalized linear models (GLMs)

Example 1: Poisson distribution Probability mass function is

$$f(y; \mu) = rac{e^{-\mu}\mu^y}{\gamma!}, \qquad y = 0, 1, 2, \dots$$

• Rewrite as

$$f(y; \mu) = \exp(y \log \mu - \mu - \log y!)$$

- Linear exponential family with $\theta = \log \mu$, $b(\theta) = e^{\theta}$, $\phi = 1$, and $c(y; \phi) = -\log y!$.
- Canonical link is logarithmic link, $\log \mu = \eta$.

Generalized linear models (GLMs)

Example 2: Bernoulli distribution Probability mass function is

$$f(y; p) = p^{y}(1-p)^{1-y}, \qquad y \in \{0, 1\}.$$

• Rewrite as

$$f(y;p) = \left\{ y \log\left(\frac{p}{1-p}\right) + \log(1-p) \right\}, \quad y \in \{0,1\}.$$

- Linear exponential family with $\theta = \log\{p/(1-p)\}, b(\theta) = -\log(1+e^{\theta}), \phi = 1, \text{ and } c(y; \phi) = 1.$
- Canonical link: quantile function log{p/(1 p)} of logistic distribution (logit link).
 Popular pop-canonical link: quantile function Φ⁻¹ of standard

Popular non-canonical link: quantile function Φ^{-1} of standard normal distribution (probit link).

Generalized linear models (GLMs)

Selected GLM families and their canonical (default) links:

Family	Canonical link	Name
binomial	$\log\{\mu/(1-\mu)\}$	logit
gaussian	μ	identity
poisson	$\log \mu$	log

More complete list: McCullagh and Nelder (1989).

Generalized linear models (GLMs)

- Built-in distributional assumption, hence use method of maximum likelihood (ML).
- Standard algorithm is iterative weighted least squares (IWLS) Fisher scoring algorithm adapted for GLMs.
- Analogies with linear model suggest that fitting function could look almost like fitting function for linear models.
- In R, fitting function for GLMs is glm():
 - Syntax closely resembles syntax of lm().
 - Familiar arguments formula, data, weights, and subset.
 - Extra arguments for selecting response distribution and link function.
- Extractor functions known from linear models have methods for objects of class "glm".

Christian Kleiber, Achim Zeileis © 2008–2017	Applied Econometrics with R $-$ 5 $-$ Microeconometrics $-$ 8 / 72	Christian Kleiber, Achim Zeileis © 2008–2017	Applied Econometrics with R $-$ 5 $-$ Microeconometrics $-$ 9 / 72

Binary dependent variables

Model is

$$\mathsf{E}(y_i|x_i) = p_i = \mathsf{F}(x_i^{\top}\beta), \quad i = 1, \dots, n.$$

F equal to CDF of

- standard normal distribution yields probit model.
- logistic distribution yields logit model.

Fitting logit or probit models uses glm() with appropriate family argument (including specification of link).

For Bernoulli outcomes

- family is binomial,
- link is either link = "logit" (default) or link = "probit". Further link functions available, but not commonly used in econometrics.

Microeconometrics

Binary Dependent Variables

Binary dependent variables

Example: Female labor force participation for 872 women from Switzerland (Gerfin, *JAE* 1996).

Dependent variable is participation, regressors are

- income nonlabor income (in logs)
- education years of formal education
- age age in decades
- youngkids / oldkids numbers of younger / older children
- foreign factor indicating citizenship

Toy example of probit regression is

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 12 / 72 Christian K

Binary dependent variables

Gerfin's model is

```
R> swiss_probit <- glm(participation ~ . + I(age^2),
+ data = SwissLabor, family = binomial(link = "probit"))
R> coeftest(swiss_probit)
```

z test of coefficients:

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	3.7491	1.4069	2.66	0.0077
income	-0.6669	0.1320	-5.05	4.3e-07
age	2.0753	0.4054	5.12	3.1e-07
education	0.0192	0.0179	1.07	0.2843
youngkids	-0.7145	0.1004	-7.12	1.1e-12
oldkids	-0.1470	0.0509	-2.89	0.0039
foreignyes	0.7144	0.1213	5.89	3.9e-09
I(age^2)	-0.2943	0.0499	-5.89	3.8e-09

Binary dependent variables

R> summary(swiss_probit_ex)

```
Call:
glm(formula = participation ~ age,
 family = binomial(link = "probit"), data = SwissLabor)
Deviance Residuals:
   Min
           10 Median
                           30
                                  Max
-1.260 -1.116 -0.979 1.226
                                1.414
Coefficients:
            Estimate Std. Error z value Pr(|z|)
(Intercept) 0.3438
                        0.1672
                                  2.06
                                         0.0398
            -0.1116
                        0.0406
                                 -2.75
                                         0.0059
age
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1203.2 on 871 degrees of freedom
Residual deviance: 1195.7 on 870 degrees of freedom
AIC: 1200
Number of Fisher Scoring iterations: 4
```

2 Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 13 / 72

Visualization

Use spinogram:

- Groups regressor age into intervals (as in histogram).
- Produces spine plot for resulting proportions of participation within age groups.

In R:

R> plot(participation ~ age, data = SwissLabor, ylevels = 2:1)

Visualization

Effects

Effects in probit model vary with regressors:

$$\frac{\partial \mathsf{E}(y_i|x_i)}{\partial x_{ij}} = \frac{\partial \Phi(x_i^\top \beta)}{\partial x_{ij}} = \phi(x_i^\top \beta) \cdot \beta_j$$

Researchers often report average marginal effects.

Several versions of such averages:

• Average of the sample marginal effects

$$\frac{1}{n}\sum_{i=1}^{n}\phi(\mathbf{x}_{i}^{\top}\hat{\boldsymbol{\beta}})\cdot\hat{\beta}_{j}$$

• Effect evaluated at average regressor

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 16 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 17 / 72

Effects

Version 1: Average of sample marginal effects is

R>	fav	<- mean(dnorm(predict(swiss_probit,	type =	"link")))
R>	fav	<pre>* coef(swiss_probit)</pre>		

(Intercept)	income	age	education	youngkids
1.241930	-0.220932	0.687466	0.006359	-0.236682
oldkids	foreignyes	I(age^2)		
-0.048690	0.236644	-0.097505		

Effects

Version 2: Effect evaluated at average regressors is

```
R> av <- colMeans(SwissLabor[, -c(1, 7)])
R> av <- data.frame(rbind(swiss = av, foreign = av),
+ foreign = factor(c("no", "yes")))
R> av <- predict(swiss_probit, newdata = av, type = "link")
R> av <- dnorm(av)</pre>
```

giving

R> av["swiss"] * coef(swiss_probit)[-7]

(Intercept) income age education youngkids 1.495137 -0.265976 0.827628 0.007655 -0.284938 oldkids I(age²) -0.058617 -0.117384

R> av["foreign"] * coef(swiss_probit)[-7]

(Intercept)	income	age	education	youngkids
1.136517	-0.202180	0.629115	0.005819	-0.216593
oldkids	I(age^2)			
-0.044557	-0.089229			

Thus all effects are smaller in absolute size for foreigners.

Goodness of fit and prediction

McFadden's pseudo-R² is

$$R^2 = 1 - rac{\ell(\hat{eta})}{\ell(ar{y})},$$

with $\ell(\hat{\beta})$ log-likelihood for fitted model and $\ell(\bar{y})$ log-likelihood for model with only constant term.

In R:

- Compute null model.
- Extract logLik() values for the two models.

```
R> swiss_probit0 <- update(swiss_probit, formula = . ~ 1)
R> 1 - as.vector(logLik(swiss_probit)/logLik(swiss_probit0))
```

```
[1] 0.1546
```

Goodness of fit and prediction

Confusion matrix needs prediction for GLMs. Several types of predictions:

- "link" (default) on scale of linear predictors.
- "response" on scale of mean of response.

To obtain confusion matrix:

- Round predicted probabilities.
- Tabulate result against actual values of participation.

R> table(true = SwissLabor\$participation,

```
+ pred = round(fitted(swiss_probit)))
```

```
pred
true 0 1
no 337 134
yes 146 255
```

Thus 67.89% correctly classified and 32.11% misclassified observations.

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 20 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 21 / 72

Goodness of fit and prediction

Accuracy:

- Confusion matrix uses arbitrarily chosen cutoff 0.5 for predicted probabilities.
- To avoid choosing particular cutoff:

Evaluate performance for every conceivable cutoff; e.g., using *accuracy* of the model – proportion of correctly classified observations.

• Package ROCR provides necessary tools.

In R:

- R> library("ROCR")
- R> pred <- prediction(fitted(swiss_probit),</pre>
- + SwissLabor\$participation)
- R> plot(performance(pred, "acc"))

Goodness of fit and prediction

Goodness of fit and prediction

Goodness of fit and prediction

Receiver operating characteristic (ROC) curve. Plots, for every cutoff $c \in [0, 1]$,

• true positive rate TPR(c)

Number of women participating in labor force that are classified as participating compared with total number of women participating.

against

• false positive rate FPR(c)

Number of women not participating in labor force that are classified as participating compared with total number of women not participating.

In R:

```
R> plot(performance(pred, "tpr", "fpr"))
R> abline(0, 1, lty = 2)
```

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 24 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 25 / 72

Residuals and diagnostics

residuals() method for "glm" objects provides

- Deviance residuals (signed contributions to overall deviance).
- Pearson residuals (often called standardized residuals in econometrics).
- In addition, have working, raw (or response), and partial residuals.

Sums of squares:

```
R> deviance(swiss_probit)
```

```
[1] 1017
```

```
R> sum(residuals(swiss_probit, type = "deviance")^2)
```

```
[1] 1017
```

```
R> sum(residuals(swiss_probit, type = "pearson")^2)
```

```
[1] 866.5
```


False positive rate

Residuals and diagnostics

Further remarks:

- Analysis of deviance via anova() method for "glm" objects.
- Sandwich estimates of covariance matrix available via coeftest() in the usual manner.

Warning: Not recommended for binary regressions – variance and regression equation are either both correctly specified or not!

(Quasi-)complete separation

Example: from Maddala (2001), Introduction to Econometrics, 3e

Consider indicator of the incidence of executions in USA during 1946–1950. Observations are 44 US states. Regressors are

- rate Murder rate per 100,000 (FBI estimate, 1950).
- convictions Number of convictions divided by number of murders in 1950.
- time Median time served (in months) of convicted murderers released in 1951.
- income Median family income in 1949 (in 1,000 USD).
- lfp Labor force participation rate in 1950 (in percent).
- noncauc Proportion of non-Caucasian population in 1950.
- southern Factor indicating region.

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 28 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

(Quasi-)complete separation

```
R> murder_logit2 <- glm(I(executions > 0) ~ time + income +
```

- + noncauc + lfp + southern, data = MurderRates,
- + family = binomial, control = list(epsilon = 1e-15,
- + maxit = 50, trace = FALSE))

Warning message:

fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y, weights = weights, start = start,

R> coeftest(murder_logit2)

z test of coefficients:

	Estimate	Std. Error	z	value	Pr(z)
(Intercept)	1.10e+01	2.08e+01		0.53	0.597
time	1.94e-02	1.04e-02		1.87	0.062
income	1.06e+01	5.65e+00		1.88	0.061
noncauc	7.10e+01	3.64e+01		1.95	0.051
lfp	-6.68e-01	4.77e-01		-1.40	0.161
southernyes	3.33e+01	1.73e+07		0.00	1.000

(Quasi-)complete separation

R> data("MurderRates")

```
R> murder_logit <- glm(I(executions > 0) ~ time + income +
```

noncauc + lfp + southern, data = MurderRates,

family = binomial)

Warning message:

fitted probabilities numerically 0 or 1 occurred in: glm.fit(x = X, y = Y, weights = weights, start = start,

R> coeftest(murder_logit)

z test of coefficients:

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	10.9933	20.7734	0.53	0.597
time	0.0194	0.0104	1.87	0.062
income	10.6101	5.6541	1.88	0.061
noncauc	70.9879	36.4118	1.95	0.051
lfp	-0.6676	0.4767	-1.40	0.161
southernyes	17.3313	2872.1707	0.01	0.995

Applied Econometrics with R - 5 - Microeconometrics - 29 / 72

(Quasi-)complete separation

Phenomenon:

- Warning message: some fitted probabilities are numerically identical to zero or one, standard error of southern is large.
- After changing controls: warning does not go away, coefficient doubles, 6,000-fold increase of standard error.

Explanation:

- Data exhibit quasi-complete separation.
- MLE does not exist (likelihood bounded but no interior maximum).

R> table(I(MurderRates\$executions > 0), MurderRates\$southern)

	no	yes
FALSE	9	0
TRUE	20	15

What to do? Depends on context!

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 34 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 35 / 72

Example: RecreationDemand data

Regress trips – number of recreational boating trips to Lake Somerville, TX, in 1980 - on

- quality Facility's subjective quality ranking (scale of 1 to 5).
- ski Water-skiing at the lake? (Factor)

Regression Models for Count Data

- income Annual household income (in 1,000 USD).
- userfee Annual user fee paid at Lake Somerville? (Factor)
- costC Expenditure when visiting Lake Conroe.
- costS Expenditure when visiting Lake Somerville.
- costH Expenditure when visiting Lake Houston.

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 32 / 72 Christian Kleiber, Achim Zeileis © 2008-2017 Applied Econometrics with R - 5 - Microeconometrics - 33 / 72

Regression Models for Count Data

Standard model: Poisson regression with log link

$$\mathsf{E}(\mathbf{y}_i|\mathbf{x}_i) = \mu_i = \exp(\mathbf{x}_i^\top \beta)$$

Microeconometrics

Regression Models for Count Data

In R:

```
R> data("RecreationDemand")
R> rd_pois <- glm(trips ~ ., data = RecreationDemand,
    family = poisson)
```

R> coeftest(rd_pois)

```
z test of coefficients:
```

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	0.26499	0.09372	2.83	0.0047
quality	0.47173	0.01709	27.60	< 2e-16
skiyes	0.41821	0.05719	7.31	2.6e-13
income	-0.11132	0.01959	-5.68	1.3e-08
userfeeyes	0.89817	0.07899	11.37	< 2e-16
costC	-0.00343	0.00312	-1.10	0.2713
costS	-0.04254	0.00167	-25.47	< 2e-16
costH	0.03613	0.00271	13.34	< 2e-16

Dealing with overdispersion

Poisson distribution has E(y) = Var(y) - equidispersion. In economics typically E(y) < Var(y) – overdispersion (OD).

Test for OD: use alternative hypothesis (Cameron and Trivedi 1990)

$$\operatorname{Var}(y_i|x_i) = \mu_i + \alpha \cdot h(\mu_i), \qquad h(\mu) \ge 0$$

- $\alpha > 0$ overdispersion and $\alpha < 0$ underdispersion.
 - Estimate α by auxiliary OLS regression.
 - Test via corresponding t statistic.

Common specifications are

- $h(\mu) = \mu^2$ (NB2) "negative binomial model with quadratic variance function"
- $h(\mu) = \mu$ (NB1)

"negative binomial model with linear variance function"

Dealing with overdispersion

R> dispersiontest(rd_pois)

Overdispersion test

and

R> dispersiontest(rd_pois, trafo = 2)

Overdispersion test

```
data: rd_pois
z = 2.9, p-value = 0.002
alternative hypothesis: true alpha is greater than 0
sample estimates:
alpha
1.316
```

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 36 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

+

Applied Econometrics with R - 5 - Microeconometrics - 37 / 72

Dealing with overdispersion

More flexible distribution is *negative binomial* with probability density function

$$f(\boldsymbol{y};\boldsymbol{\mu},\boldsymbol{\theta}) = \frac{\Gamma(\boldsymbol{\theta}+\boldsymbol{y})}{\Gamma(\boldsymbol{\theta})\boldsymbol{y}!} \frac{\boldsymbol{\mu}^{\boldsymbol{y}}\boldsymbol{\theta}^{\boldsymbol{\theta}}}{(\boldsymbol{\mu}+\boldsymbol{\theta})^{\boldsymbol{y}+\boldsymbol{\theta}}}, \quad \boldsymbol{y} = \boldsymbol{0}, \boldsymbol{1}, \boldsymbol{2}, \dots, \boldsymbol{\mu} > \boldsymbol{0}, \boldsymbol{\theta} > \boldsymbol{0}$$

• Variance is

$$\operatorname{Var}(y;\mu,\theta) = \mu + \frac{1}{\theta}\mu^2$$

This is NB2 with $h(\mu) = \mu^2$ and $\alpha = 1/\theta$.

- For θ known, negative binomial is exponential family.
- Poisson distribution with parameter μ for $\theta \to \infty$.
- Geometric distribution for $\theta = 1$.

Dealing with overdispersion

Dealing with overdispersion

glm() also offers quasi-Poisson model:

family = quasipoisson)

In statistical literature, reparameterization of NB1 with

is called quasi-Poisson model with dispersion parameter.

R> rd_qpois <- glm(trips ~ ., data = RecreationDemand,

 $Var(y_i|x_i) = (1 + \alpha) \cdot \mu_i = dispersion \cdot \mu_i$

R> library("MASS")
R> rd_nb <- glm.nb(trips ~ ., data = RecreationDemand)
R> coeftest(rd_nb)

z test of coefficients:

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	-1.12194	0.21430	-5.24	1.6e-07
quality	0.72200	0.04012	18.00	< 2e-16
skiyes	0.61214	0.15030	4.07	4.6e-05
income	-0.02606	0.04245	-0.61	0.539
userfeeyes	0.66917	0.35302	1.90	0.058
costC	0.04801	0.00918	5.23	1.7e-07
costS	-0.09269	0.00665	-13.93	< 2e-16
costH	0.03884	0.00775	5.01	5.4e-07

R> logLik(rd_nb)

'log Lik.' -825.6 (df=9)

Shape parameter is $\hat{\theta} = 0.7293$.

Robust standard errors

Further way to deal with OD:

- Use Poisson estimates of the mean function.
- Adjust standard errors via sandwich formula ("Huber-White standard errors").

Compare Poisson with Huber-White standard errors:

- R> round(sqrt(rbind(diag(vcov(rd_pois)),
- + diag(sandwich(rd_pois)))), digits = 3)

(Intercept) quality skiyes income userfeeyes costC costS [1,] 0.094 0.017 0.057 0.02 0.079 0.003 0.002 [2,] 0.432 0.049 0.194 0.05 0.247 0.015 0.012 costH [1,] 0.003 [2,] 0.009

Robust standard errors

Regression output with robust standard errors via coeftest():

R> coeftest(rd_pois, vcov = sandwich)

z test of coefficients:

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	0.26499	0.43248	0.61	0.54006
quality	0.47173	0.04885	9.66	< 2e-16
skiyes	0.41821	0.19387	2.16	0.03099
income	-0.11132	0.05031	-2.21	0.02691
userfeeyes	0.89817	0.24691	3.64	0.00028
costC	-0.00343	0.01470	-0.23	0.81549
costS	-0.04254	0.01173	-3.62	0.00029
costH	0.03613	0.00939	3.85	0.00012

Can also have OPG standard errors using vcovOPG().

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 40 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 41 / 72

Zero-inflated Poisson and negative binomial models

Typical problem with count data : too many zeros

- RecreationDemand example has 63.28% zeros.
- Poisson regression provides only 41.96%.

Compare observed and expected counts:

```
R> rbind(obs = table(RecreationDemand$trips)[1:10], exp = round(
+ sapply(0:9, function(x) sum(dpois(x, fitted(rd_pois))))))
```

0 1 2 3 4 5 6 7 8 9 obs 417 68 38 34 17 13 11 2 8 1 exp 277 146 68 41 30 23 17 13 10 7

Plot marginal distribution of response:

R> plot(table(RecreationDemand\$trips), ylab = "")

Zero-inflated Poisson and negative binomial models

Zero-inflated Poisson and negative binomial models

Zero-inflated Poisson (ZIP) model (Mullahy 1986, Lambert 1992)

 $f_{\text{zeroinfl}}(y) = p_i \cdot I_{\{0\}}(y) + (1 - p_i) \cdot f_{\text{count}}(y; \mu_i)$

- Mixture with (Poisson) count component and additional point mass at zero.
- μ_i and p_i are modeled as functions of covariates.
- For count part, canonical link gives $\log(\mu_i) = \mathbf{x}_i^\top \beta$.
- For binary part, g(p_i) = z_i^T γ for some quantile function g.
 Canonical link (logit) uses logistic distribution, probit uses standard normal.
- Sets of regressors x_i and z_i need not be identical.

Zero-inflated Poisson and negative binomial models

In R: pscl provides zeroinfl() for fitting zero-inflation models.

- Count component: Poisson, geometric, and negative binomial distributions, with log link.
- Binary component: all standard links, default is logit.

Example: (Cameron and Trivedi 1998)

Zero-inflated negative binomial (ZINB) for recreational trips

```
R> library("pscl")
R> rd_zinb <- zeroinfl(trips ~ . | quality + income,
+     data = RecreationDemand, dist = "negbin")
R> summary(rd_zinb)
```

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 44 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 45 / 72

Zero-inflated Poisson and negative binomial models

<pre>Call: zeroinfl(formula = trips ~ . quality + income, data = RecreationDemand, dist = "negbin")</pre>						
Pearson res	iduals:					
Min	1Q Media	n 3Q	Max			
-1.0889 -0.2	2004 -0.057	0 -0.0451 4	10.0139			
Count model	coefficien	ts (negbin	with lo	g link):		
	Estimate S	td. Error z	z value	Pr(> z)		
(Intercept)	1.09663	0.25668	4.27	1.9e-05		
quality	0.16891	0.05303	3.19	0.0014		
skiyes	0.50069	0.13449	3.72	0.0002		
income	-0.06927	0.04380	-1.58	0.1138		
userfeeyes	0.54279	0.28280	1.92	0.0549		
costC	0.04044	0.01452	2.79	0.0053		
costS	-0.06621	0.00775	-8.55	< 2e-16		

Zero-inflated Poisson and negative binomial models

costH0.020600.010232.010.0441Log(theta)0.190170.112991.680.0924

Zero-inflation model coefficients (binomial with logit link): Estimate Std. Error z value Pr(>|z|)

(Intercept)	5.743	1.556	3.69	0.00022
quality	-8.307	3.682	-2.26	0.02404
income	-0.258	0.282	-0.92	0.35950

Theta = 1.209 Number of iterations in BFGS optimization: 26 Log-likelihood: -722 on 12 Df

Expected counts are

R> round(colSums(predict(rd_zinb, type = "prob")[,1:10]))

Note: predict() method for type = "prob" returns matrix with vectors of expected probabilities for each observation. Must take column sums for expected counts.

Zero-inflated Poisson and negative binomial models

Hurdle model: (Mullahy 1986)

A "two-part model" with

- binary part (given by a count distribution right-censored at y = 1):
 ls y_i equal to zero or positive? "Is the hurdle crossed?"
- count part (given by a count distribution left-truncated at y = 1): If $y_i > 0$, how large is y_i ?

Results in

$$\begin{split} f_{\text{hurdle}}(y; x, z, \beta, \gamma) &= \begin{cases} f_{\text{zero}}(0; z, \gamma), & \text{if } y = 0, \\ \{1 - f_{\text{zero}}(0; z, \gamma)\} \cdot f_{\text{count}}(y; x, \beta) / \{1 - f_{\text{count}}(0; x, \beta)\}, & \text{if } y > 0. \end{cases} \end{split}$$

Zero-inflated Poisson and negative binomial models

In R:

- Package **pscl** provides a function hurdle()
- *Warning:* there are several parameterizations for binary part! In hurdle(), can specify either
 - · count distribution right-censored at one, or
 - Bernoulli distribution distinguishing between zeros and non-zeros (equivalent to right-censored geometric distribution)

Example: (Cameron and Trivedi 1998)

Negative binomial hurdle model for recreational trips

```
R> rd_hurdle <- hurdle(trips ~ . | quality + income,
+ data = RecreationDemand, dist = "negbin")
R> summary(rd_hurdle)
```

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 48 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Zero-inflated Poisson and negative binomial models

Call: hurdle(formu data = Red	ıla = trips creationDem	~ . qual and, dist =	ity + in "negbin	<pre>icome, i")</pre>	
Pearson res	iduals:	20 M			
Min .	IQ Median	3Q Ma	x		
-1.610 -0.20	07 -0.185 -	0.164 12.11	1		
Count model	coefficien	ts (truncat	ed negbi	in with log	link):
	Estimate S	td. Error z	value H	Pr(> z)	
(Intercept)	0.8419	0.3828	2.20	0.0278	
quality	0.1717	0.0723	2.37	0.0176	
skiyes	0.6224	0.1901	3.27	0.0011	
income	-0.0571	0.0645	-0.88	0.3763	
userfeeyes	0.5763	0.3851	1.50	0.1345	
costC	0.0571	0.0217	2.63	0.0085	

Zero-inflated Poisson and negative binomial models

costS -0.07750.0115 -6.71 1.9e-11 0.0124 0.0149 0.83 0.4064 costH Log(theta) -0.5303 0.2611 -2.030.0423 Zero hurdle model coefficients (binomial with logit link): Estimate Std. Error z value Pr(|z|)(Intercept) -2.7663 0.3623 -7.64 2.3e-14 1.5029 14.98 < 2e-16 quality 0.1003 -0.04470.0785 -0.57income 0.57

```
Theta: count = 0.588
Number of iterations in BFGS optimization: 18
Log-likelihood: -765 on 12 Df
```

Expected counts are

R> round(colSums(predict(rd_hurdle, type = "prob")[,1:10]))

0 1 2 3 4 5 6 7 8 9 417 74 42 27 19 14 10 8 6 5

Considerable improvement over Poisson specification. **More details:** Zeileis, Kleiber and Jackman (*JSS* 2008).

Applied Econometrics with R - 5 - Microeconometrics - 49 / 72

Censored Dependent Variables

Tobit model (J. Tobin, Econometrica 1958)

Microeconometrics

Censored Dependent Variables

$$y_i^0 = x_i^\top \beta + \varepsilon_i, \qquad \varepsilon_i | x_i \sim \mathcal{N}(0, \sigma^2) \text{ i.i.d.},$$

$$y_i = \begin{cases} y_i^0, & y_i^0 > 0, \\ 0, & y_i^0 \le 0. \end{cases}$$

Log-likelihood is

$$\ell(\beta,\sigma^2) = \sum_{y_i>0} \left(\log \phi\{(y_i - x_i^\top \beta)/\sigma\} - \log \sigma \right) + \sum_{y_i=0} \log \Phi(-x_i^\top \beta/\sigma).$$

- Special case of a censored regression model.
- R package for fitting has long been available: **survival** (Therneau and Grambsch 2000).
- **AER** has convenience function tobit() interfacing survreg().

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 52 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 53 / 72

Censored Dependent Variables

Example: "Fair's affairs" (Fair, JPE 1978)

Survey on extramarital affairs conducted by *Psychology Today* (1969). Dependent variable is affairs (number of extramarital affairs during past year), regressors are

- gender Factor indicating gender.
- age Age in years.
- yearsmarried Number of years married.
- children Are there children in the marriage? (factor)
- religiousness Numeric variable coding religiousness (from 1 = anti to 5 = very).
- education Level of education (numeric variable).
- occupation Occupation (numeric variable).
- rating Self rating of marriage (numeric from 1 = very unhappy to 5 = very happy).

Censored Dependent Variables

In R:

Toy example:

```
R> data("Affairs")
R> aff_tob_ex <- tobit(affairs ~ yearsmarried, data = Affairs)</pre>
```

Fair's model:

R> aff_tob <- tobit(affairs ~ age + yearsmarried +</pre>

+ religiousness + occupation + rating, data = Affairs)

Censored Dependent Variables

Call: tobit(formula = affairs ~ yearsmarried, data = Affairs) Observations: Total Left-censored Uncensored Right-censored 601 451 150 0 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -9.2629 1.1723 -7.90 2.8e-15 yearsmarried 0.3758 0.0899 4.18 2.9e-05 Log(scale) 2.2092 0.0680 32.47 < 2e-16 Scale: 9.11 Gaussian distribution Number of Newton-Raphson Iterations: 3 Log-likelihood: -736 on 3 Df Wald-statistic: 17.5 on 1 Df, p-value: 2.9e-05

Censored Dependent Variables

Fair's model:

R> coeftest(aff_tob)

z test of coefficients:

	Estimate	Std. Error	z value	Pr(z)
(Intercept)	8.1742	2.7414	2.98	0.0029
age	-0.1793	0.0791	-2.27	0.0234
yearsmarried	0.5541	0.1345	4.12	3.8e-05
religiousness	-1.6862	0.4038	-4.18	3.0e-05
occupation	0.3261	0.2544	1.28	0.2000
rating	-2.2850	0.4078	-5.60	2.1e-08
Log(scale)	2.1099	0.0671	31.44	< 2e-16

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 56 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

+

Applied Econometrics with R - 5 - Microeconometrics - 57 / 72

Censored Dependent Variables

Refitting with additional censoring from the right:

R> aff_tob2 <- update(aff_tob, right = 4)</pre> R> coeftest(aff tob2)

z test of coefficients:

	Estimate	Std. Error	z	value	Pr(> z)
(Intercept)	7.9010	2.8039		2.82	0.00483
age	-0.1776	0.0799		-2.22	0.02624
yearsmarried	0.5323	0.1412		3.77	0.00016
religiousness	-1.6163	0.4244		-3.81	0.00014
occupation	0.3242	0.2539		1.28	0.20162
rating	-2.2070	0.4498		-4.91	9.3e-07
Log(scale)	2.0723	0.1104		18.77	< 2e-16

Standard errors now somewhat larger \rightarrow heavier censoring leads to loss of information.

Note: tobit() has argument dist for alternative distributions of latent variable (logistic, Weibull, ...).

Censored Dependent Variables

Wald-type test with sandwich standard errors: R> linearHypothesis(aff_tob, c("age = 0", "occupation = 0"), vcov = sandwich)Linear hypothesis test Hypothesis: age = 0occupation = 0Model 1: restricted model Model 2: affairs ~ age + yearsmarried + religiousness + occupation + rating Note: Coefficient covariance matrix supplied.

Res.Df Df Chisq Pr(>Chisq) 596 1 2 594 2 4.91 0.086

Thus regressors age and occupation jointly weakly significant.

Extensions

Further packages for microeconometrics:

- gam Generalized additive models.
- Ime4 Nonlinear random-effects models: counts, binary dependent variables, etc.
- mgcv Generalized additive (mixed) models.
- micEcon Demand systems, cost and production functions.
- mlogit Multinomial logit models with choice-specific variables.
- robustbase Robust/resistant regression for GLMs.
- sampleSelection Selection models: generalized tobit, heckit.

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 60 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 61 / 72

A semiparametric binary response model

Log-likelihood of binary response model is

$$\ell(\beta) = \sum_{i=1}^n \left\{ y_i \log F(x_i^\top \beta) + (1 - y_i) \log\{1 - F(x_i^\top \beta)\} \right\},$$

Microeconometrics

Extensions

with F CDF of logistic or Gaussian distribution.

Klein and Spady (*Econometrica* 1993) estimate *F* via kernel methods – a semiparametric MLE.

In R: Klein and Spady estimator available in **np**. Need some preprocessing:

R> SwissLabor\$partnum <- as.numeric(SwissLabor\$participation) - 1
First compute bandwidth object:</pre>

R> library("np")

```
R> swiss_bw <- npindexbw(partnum ~ income + age + education +</pre>
```

```
+ youngkids + oldkids + foreign + I(age^2), data = SwissLabor,
```

+ method = "kleinspady", nmulti = 5)

A semiparametric binary response model

Summary of the bandwidths is

```
R> summary(swiss_bw)
```

Single Index Model Regression data (872 observations, 7 variable(s)):

income age education youngkids oldkids foreign I(age²) Beta: 1 2.023 -0.1776 -3.945 0.5071 1.802 -0.4991 Bandwidth: 0.1838 Optimisation Method: Nelder-Mead Regression Type: Local-Constant Bandwidth Selection Method: Klein and Spady Formula: partnum ~ income + age + education + youngkids + oldkids + foreign + I(age²) Bandwidth Type: Fixed Objective Function Value: 0.6154 (achieved on multistart 2)

Continuous Kernel Type: Second-Order Gaussian No. Continuous Explanatory Vars.: 1 Estimation Time: 173.7 seconds

A semiparametric binary response model

```
Finally pass bandwidth object swiss_bw to npindex():
R> swiss_ks <- npindex(bws = swiss_bw, gradients = TRUE)
R> summary(swiss_ks)
                                                                             +
Single Index Model
Regression Data: 872 training points, in 7 variable(s)
      income age education youngkids oldkids foreign I(age<sup>2</sup>)
                     -0.1776
Beta:
           1 2.023
                               -3.945 0.5071 1.802 -0.4991
Bandwidth: 0.1838
Kernel Regression Estimator: Local-Constant
Confusion Matrix
      Predicted
Actual 0 1
    0 322 149
    1 130 271
Overall Correct Classification Ratio: 0.68
Correct Classification Ratio By Outcome:
    0
            1
. . .
```

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 64 / 72 Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 65 / 72

Multinomial responses

Describe $P(y_i = j) = p_{ij}$ via, e.g.,

$$\eta_{ij} = \log \frac{p_{ij}}{p_{i1}}, \quad j = 2, ..., m$$

Here category 1 is reference category (needed for identification).

Variants:

- Individual-specific covariates $(\eta_{ij} = \mathbf{x}_i^\top \beta_i)$
- Outcome-specific covariates ($\eta_{ij} = z_{ij}^{\top} \gamma$, "conditional logit")
- Individual- and outcome-specific covariates ("mixed logit")

In R:

- Function multinom() from **nnet** fits multinomial logits with individual-specific covariates.
- Function mlogit() from **mlogit** also fits mixed logits. Here we only use multinom().

A semiparametric binary response model

Compare confusion matrix with confusion matrix of original probit:

```
R> table(Actual = SwissLabor$participation, Predicted =
+ round(predict(swiss_probit, type = "response")))
            Predicted
Actual 0 1
            no 337 134
            yes 146 255
```

Thus semiparametric model has slightly better (in-sample) performance.

Warning: these methods are time-consuming!

Multinomial responses

Example: (from Heij, de Boer, Franses, Kloek, and van Dijk 2004) Regress job – ordered factor indicating job category, with levels "custodial", "admin" and "manage" – on regressors

- education Education in years.
- gender Factor indicating gender.
- minority Factor. Is the employee member of a minority?

Multinomial responses

Multinomial responses

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 68 / 72 Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 5 - Microeconometrics - 69 / 72

Multinomial responses

Multinomial logit model is fitted via

R> library("nnet")
R> bank_mnl <- multinom(job ~ education + minority,</pre>

- + data = BankWages, subset = gender == "male", trace = FALSE)
- Instead of summary() we just use

```
R> coeftest(bank_mnl)
```

```
z test of coefficients:
```

	Estimate	Std.	Error	z	value	Pr(z)	
admin:(Intercept)	-4.761		1.173		-4.06	4.9e-05	
admin:education	0.553		0.099		5.59	2.3e-08	
admin:minorityyes	-0.427		0.503		-0.85	0.3957	
manage:(Intercept)	-30.775		4.479		-6.87	6.4e-12	
manage:education	2.187		0.295		7.42	1.2e-13	
manage:minorityyes	-2.536		0.934		-2.71	0.0066	

Proportions of "admin" and "manage" categories (as compared with "custodial") increase with education and decrease for minority. Both effects stronger for the "manage" category.

Ordinal responses

- Dependent variable job in multinomial example can be considered an ordered response: "custodial" < "admin" < "manage".
- Suggests to try ordered logit or probit regression we use ordered logit.
- Ordered logit model just estimates different intercepts for different job categories but common set of regression coefficients.
- Ordered logit often called proportional odds logistic regression (POLR) in statistical literature.
- polr() from **MASS** fits POLR and also ordered probit (just set method="probit").

Ordinal responses

	Estimate	Std. Error	z valu	e Pr(> z)
education	0.8700	0.0931	9.3	5 < 2e-16
minorityyes	-1.0564	0.4120	-2.5	6 0.01
custodial admin	7.9514	1.0769	7.3	3 1.5e-13
admin manage	14.1721	1.4744	9.6	1 < 2e-16

Results similar to (unordered) multinomial case, but different

education and minority effects for different job categories are lost. Appears to deteriorate the model fit:

R> AIC(bank_mnl)

[1] 249.5

R> AIC(bank_polr)

[1] 268.6

Christian Kleiber, Achim Zeileis © 2008–2017

Applied Econometrics with R - 5 - Microeconometrics - 72 / 72