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Linear Regression

Overview
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Linear regression model

Workhorse of applied econometrics: linear regression model, typically
estimated by ordinary least squares (OLS).

yi = x>i β + εi , i = 1, . . . , n.

In matrix form:
y = Xβ + ε.

y : dependent variable, n × 1 vector.

xi : regressors (or covariates) for observation i , k × 1 vector.

X = (x1, . . . , xn)
>: regressor (or model) matrix, n × k matrix.

β: regression coefficients, k × 1 vector.

ε: disturbances (or error terms), n × 1 vector.
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Assumptions

Assumptions on the error terms depend on the context. Typical sets of
assumptions are:

For cross sections:

E(ε|X) = 0 (exogeneity)

Var(ε|X) = σ2I (conditional homoskedasticity and lack of
correlation)

For time series: Exogeneity too strong, commonly replaced by

E(εj |xi) = 0, i ≤ j (predeterminedness).

Methods for checking these assumptions are discussed in Chapter 4:
“Diagnostics and Alternative Methods of Regression”.
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Notation

OLS estimator of β:

β̂ = (X>X)−1X>y .

Fitted values:
ŷ = X β̂.

Residuals:
ε̂ = y − ŷ .

Residual sum of squares (RSS):

n∑

i=1

ε̂2
i = ε̂>ε̂.

Background: Baltagi (2002) or Greene (2003).
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R tools

In R, models are typically fitted by calls of type

fm <- lm(formula, data, ...)

lm(): model-fitting function for linear models.

formula: symbolic description of the model.

data: data set containing the variables from the formula.

...: further arguments, e.g., control parameters for the fitting
algorithm, further model details, etc.

fm: fitted-model object of class “lm”.

Many other modeling functions in R have analogous interfaces (e.g.,
glm(), rq()). The fitted-model objects can typically be queried using
methods to generic functions such as summary(), residuals(), or
predict(), etc.
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Linear Regression

Simple Linear Regression
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Demand for economics journals

Data set from Stock & Watson (2007), originally collected by
T. Bergstrom, on subscriptions to 180 economics journals at US
libraries, for the year 2000.

Bergstrom (2001) argues that commercial publishers are charging
excessive prices for academic journals and also suggests ways that
economists can deal with this problem. See
http://www.econ.ucsb.edu/~tedb/Journals/jpricing.html

10 variables are provided including:

subs – number of library subscriptions,

price – library subscription price,

citations – total number of citations,

and other information such as number of pages, founding year,
characters per page, etc.
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Demand for economics journals

For compactness: Preprocessing yielding smaller data frame with
transformed variables.

R> data("Journals", package = "AER")
R> journals <- Journals[, c("subs", "price")]
R> journals$citeprice <- Journals$price/Journals$citations
R> summary(journals)

subs price citeprice
Min. : 2 Min. : 20 Min. : 0.005
1st Qu.: 52 1st Qu.: 134 1st Qu.: 0.464
Median : 122 Median : 282 Median : 1.321
Mean : 197 Mean : 418 Mean : 2.548
3rd Qu.: 268 3rd Qu.: 541 3rd Qu.: 3.440
Max. :1098 Max. :2120 Max. :24.459
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Demand for economics journals

Goal: Estimate the effect of the price per citation on the number of
library subscriptions.

Regression equation:

log(subs)i = β1 + β2 log(citeprice)i + εi .

R formula: log(subs) ~ log(citeprice)

i.e., log(subs) explained by log(citeprice). This can be used
both for plotting and for model fitting:

R> plot(log(subs) ~ log(citeprice), data = journals)
R> jour_lm <- lm(log(subs) ~ log(citeprice), data = journals)
R> abline(jour_lm)
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Demand for economics journals
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Fitted-model objects

Inspect fitted-model object:
R> class(jour_lm)

[1] "lm"

R> names(jour_lm)

[1] "coefficients" "residuals" "effects"
[4] "rank" "fitted.values" "assign"
[7] "qr" "df.residual" "xlevels"
[10] "call" "terms" "model"

R> jour_lm$rank

[1] 2

More details: str(jour_lm)

For most tasks, do not compute on internal structure. Use methods for
generic extractor functions instead.
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Generic functions

print() simple printed display

summary() standard regression output

coef() (or coefficients()) extract regression coefficients

residuals() (or resid()) extract residuals

fitted() (or fitted.values()) extract fitted values

anova() comparison of nested models

predict() predictions for new data

plot() diagnostic plots

confint() confidence intervals for the regression coefficients

deviance() residual sum of squares

vcov() (estimated) variance-covariance matrix

logLik() log-likelihood (assuming normally distributed errors)

AIC() information criteria including AIC, BIC/SBC

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 3 – Linear Regression – 12 / 97

Summary of fitted-model objects

R> summary(jour_lm)

Call:
lm(formula = log(subs) ~ log(citeprice), data = journals)

Residuals:
Min 1Q Median 3Q Max

-2.7248 -0.5361 0.0372 0.4662 1.8481

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.7662 0.0559 85.2 <2e-16
log(citeprice) -0.5331 0.0356 -15.0 <2e-16

Residual standard error: 0.75 on 178 degrees of freedom
Multiple R-squared: 0.557, Adjusted R-squared: 0.555
F-statistic: 224 on 1 and 178 DF, p-value: <2e-16
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Summary of fitted-model objects

R> jour_slm <- summary(jour_lm)
R> class(jour_slm)

[1] "summary.lm"

R> names(jour_slm)

[1] "call" "terms" "residuals"
[4] "coefficients" "aliased" "sigma"
[7] "df" "r.squared" "adj.r.squared"
[10] "fstatistic" "cov.unscaled"

R> jour_slm$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7662 0.05591 85.25 2.954e-146
log(citeprice) -0.5331 0.03561 -14.97 2.564e-33
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Analysis of variance

R> anova(jour_lm)

Analysis of Variance Table

Response: log(subs)
Df Sum Sq Mean Sq F value Pr(>F)

log(citeprice) 1 126 125.9 224 <2e-16
Residuals 178 100 0.6

ANOVA breaks the sum of squares about the mean of log(subs) into
two parts:

part accounted for by linear function of log(citeprice),

part attributed to residual variation.

anova() produces

ANOVA table for a single “lm” object, and also

comparisons of several nested “lm” models using F tests.
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Point and interval estimates

Extract the estimated regression coefficients β̂:

R> coef(jour_lm)

(Intercept) log(citeprice)
4.7662 -0.5331

Confidence intervals:

R> confint(jour_lm, level = 0.95)

2.5 % 97.5 %
(Intercept) 4.6559 4.8765
log(citeprice) -0.6033 -0.4628

Here based on the t distribution with 178 degrees of freedom (residual
df), exact under the assumption of (conditionally) Gaussian
disturbances.
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Prediction

Two types of predictions:

points on the regression line,

new data values (two sources of errors: uncertainty in regression
line, and variation of individual points about line).

Expected subscriptions for citeprice = 2.11 (≈ Journal of Applied
Econometrics, fairly expensive, owned by commercial publisher):

R> predict(jour_lm, newdata = data.frame(citeprice = 2.11),
+ interval = "confidence")

fit lwr upr
1 4.368 4.247 4.489

R> predict(jour_lm, newdata = data.frame(citeprice = 2.11),
+ interval = "prediction")

fit lwr upr
1 4.368 2.884 5.853
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Prediction

By default: no intervals, and newdata the same as observed data
(used for fitting), i.e., predict(jour_lm) computes ŷ just as
fitted(jour_lm).

Visualization: data, fitted regression line, and prediction interval
confidence bands.

R> lciteprice <- seq(from = -6, to = 4, by = 0.25)
R> jour_pred <- predict(jour_lm, interval = "prediction",
+ newdata = data.frame(citeprice = exp(lciteprice)))
R> plot(log(subs) ~ log(citeprice), data = journals)
R> lines(jour_pred[, 1] ~ lciteprice, col = 1)
R> lines(jour_pred[, 2] ~ lciteprice, col = 1, lty = 2)
R> lines(jour_pred[, 3] ~ lciteprice, col = 1, lty = 2)
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Prediction
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Diagnostic plots

The plot() method for class lm() provides six types of diagnostic
plots, four of which are shown by default.

R> plot(jour_lm)

produces

residuals versus fitted values,

QQ plot for normality,

scale-location plot,

standardized residuals versus leverages.

Plots are also accessible individually, e.g.,
R> plot(jour_lm, which = 2)

for QQ plot.
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Diagnostic plots
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Diagnostic plots

Interpretation: singled-out observations

“MEPiTE” (MOCT-MOST: Economic Policy in Transitional
Economics),

“RoRPE” (Review of Radical Political Economics),

“IO” (International Organization),

“BoIES” (Bulletin of Indonesian Economic Studies),

“Ecnmt” (Econometrica).

All these journals are not overly expensive: either heavily cited
(Econometrica), resulting in a low price per citation, or with few
citations, resulting in a rather high price per citation.
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Testing a linear hypothesis

Standard summary() only indicates individual significance of each
regressor and joint significance of all regressors (t and F statistics,
respectively).

Often it is necessary to test more general hypotheses of type

Rβ = r ,

where R is a q × k matrix of restrictions, and r is a q × 1 vector.

In R: linearHypothesis() from car package, automatically loaded
with AER.
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Testing a linear hypothesis

Example: Test linear hypothesis H0 : β2 = −0.5 (price elasticity of
library subscriptions equals −0.5).

R> linearHypothesis(jour_lm, "log(citeprice) = -0.5")

Linear hypothesis test

Hypothesis:
log(citeprice) = - 0.5

Model 1: restricted model
Model 2: log(subs) ~ log(citeprice)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 179 100
2 178 100 1 0.484 0.86 0.35

Equivalently, specify hypothesis.matrix R and rhs vector r :
R> linearHypothesis(jour_lm, hypothesis.matrix = c(0, 1), rhs = -0.5)
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Linear Regression

Multiple Linear Regression
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Wage equation

Example: estimation of wage equation in semilogarithmic form.

Use CPS1988 data

March 1988 Current Population Survey (CPS) collected by the US
Census Bureau,

analyzed by Bierens and Ginther (Empirical Economics 2001),

“industry-strength” example with 28,155 observations,

cross-section data on males aged 18 to 70 with positive annual
income greater than US$ 50 in 1992 who are not self-employed or
working without pay,

wages are deflated by the deflator of personal consumption
expenditures for 1992.
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Wage equation

R> data("CPS1988", package = "AER")
R> dim(CPS1988)

[1] 28155 7

R> summary(CPS1988)

wage education experience ethnicity
Min. : 50 Min. : 0.0 Min. :-4.0 cauc:25923
1st Qu.: 309 1st Qu.:12.0 1st Qu.: 8.0 afam: 2232
Median : 522 Median :12.0 Median :16.0
Mean : 604 Mean :13.1 Mean :18.2
3rd Qu.: 783 3rd Qu.:15.0 3rd Qu.:27.0
Max. :18777 Max. :18.0 Max. :63.0
smsa region parttime
no : 7223 northeast:6441 no :25631
yes:20932 midwest :6863 yes: 2524

south :8760
west :6091
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Wage equation

wage – wage in dollars per week.

education and experience – measured in years.

ethnicity – factor with levels Caucasian ("cauc") and
African-American ("afam").

smsa – factor indicating residence in standard metropolitan
statistical area (SMSA).

region – factor indicating region within USA.

parttime – factor indicating whether individual works part-time.

CPS does not provide actual work experience.
Standard solution: compute “potential” experience

age - education - 6

. . . which may become negative.
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Wage equation

Model:

log(wage) = β1 + β2 experience+ β3 experience
2

+β4 education+ β5 ethnicity+ ε

In R:

R> cps_lm <- lm(log(wage) ~ experience + I(experience^2) +
+ education + ethnicity, data = CPS1988)

where log-wage and squared experience can be computed on the fly
(the latter using I() to ensure the arithmetic meaning (rather than the
formula meaning) of the ^ operator.

For the factor ethnicity an indicator variable (or dummy variable) is
automatically created.
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Wage equation

R> summary(cps_lm)

Call:
lm(formula = log(wage) ~ experience + I(experience^2) +
education + ethnicity, data = CPS1988)

Residuals:
Min 1Q Median 3Q Max

-2.943 -0.316 0.058 0.376 4.383

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.321395 0.019174 225.4 <2e-16
experience 0.077473 0.000880 88.0 <2e-16
I(experience^2) -0.001316 0.000019 -69.3 <2e-16
education 0.085673 0.001272 67.3 <2e-16
ethnicityafam -0.243364 0.012918 -18.8 <2e-16

Residual standard error: 0.584 on 28150 degrees of freedom
Multiple R-squared: 0.335, Adjusted R-squared: 0.335
F-statistic: 3.54e+03 on 4 and 28150 DF, p-value: <2e-16
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Dummy variables and contrast codings

Factor ethnicity:

Only a single coefficient for level "afam".

No coefficient for level "cauc" which is the “reference category”.

"afam" coefficient codes the difference in intercepts between the
"afam" and the "cauc" groups.

In statistical terminology: “treatment contrast”.

In econometric jargon: “dummy variable”.
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Dummy variables and contrast codings

Internally:

R produces a dummy variable for each level.

Resulting overspecifications are resolved by applying “contrasts”,
i.e., a constraint on the underlying parameter vector.

Contrasts can be attributed to factors (or queried and changed) by
contrasts().

Default for unordered factors: use all dummy variables except for
reference category.

This is typically what is required for fitting econometric regression
models.
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The function I()

Wilkinson-Rogers type formulas:

The arithmetic operator + has a different meaning: it is employed
to add regressors (main effects).

Operators :, *, /, ^ also have special meanings, all related to the
specification of interaction effects.

To ensure arithmetic meaning, protect by insulation in a function,
e.g., log(x1 * x2).

If no other transformation is required: I() can be used, it returns
its argument “as is”.
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Comparison of models

Question: Is there a difference in the average log-wage (controlling for
experience and education) between Caucasian and African-American
men?

Answer: Test for the relevance of the variable ethnicity.

As treatment contrasts are used: significance is already indicated by
t test in the model summary.

More generally: Test for the relevance of subsets of regressors by
applying anova() to the corresponding nested models.

For a single coefficient, both lead to equivalent results, i.e., identical
p values.
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Comparison of models

R> cps_noeth <- lm(log(wage) ~ experience + I(experience^2) +
+ education, data = CPS1988)
R> anova(cps_noeth, cps_lm)

Analysis of Variance Table

Model 1: log(wage) ~ experience + I(experience^2) + education
Model 2: log(wage) ~ experience + I(experience^2) +
education + ethnicity
Res.Df RSS Df Sum of Sq F Pr(>F)

1 28151 9720
2 28150 9599 1 121 355 <2e-16

Thus, if several fitted models are supplied to anova(), the associated
RSS are compared (in the order in which the models are entered)
based on the usual F statistic

F =
(RSS0 − RSS1)/q

RSS1/(n − k)
.
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Comparison of models

If only a single model is passed to anova(): terms are added
sequentially in the order specified by the formula .

R> anova(cps_lm)

Analysis of Variance Table

Response: log(wage)
Df Sum Sq Mean Sq F value Pr(>F)

experience 1 840 840 2462 <2e-16
I(experience^2) 1 2249 2249 6597 <2e-16
education 1 1620 1620 4750 <2e-16
ethnicity 1 121 121 355 <2e-16
Residuals 28150 9599 0

The next to last line in ANOVA table is equivalent to direct comparison
of cps_lm and cps_noeth.
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Comparison of models

More elegantly: Use update() specifying the model only relative to
the original.

R> cps_noeth <- update(cps_lm, formula = . ~ . - ethnicity)

yielding the same fitted-model object as before.

The expression . ~ . - ethnicity specifies to take the LHS and
RHS in the formula (signaled by the “.”), only removing ethnicity on
the RHS.

Alternative interface: waldtest() from package lmtest, loaded
automatically by AER.

waldtest() by default computes the same F tests, but can also
perform quasi-F tests in situations where errors are potentially
heteroskedastic. See Chapter 4.
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Comparison of models

Equivalent outputs can be obtained via

R> waldtest(cps_lm, cps_noeth)

or by using the update formula directly

R> waldtest(cps_lm, . ~ . - ethnicity)

Wald test

Model 1: log(wage) ~ experience + I(experience^2) +
education + ethnicity

Model 2: log(wage) ~ experience + I(experience^2) + education
Res.Df Df F Pr(>F)

1 28150
2 28151 -1 355 <2e-16
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Linear Regression

Partially Linear Models
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Partially linear models

Motivation: More flexible specification of influence of experience in
wage equation (instead of the usual quadratic specification).

Idea: Semiparametric model using regression splines for (unknown)
function g:

log(wage) = β1+g(experience)+β2 education+β3 ethnicity+ε

In R: available in the package splines (part of base R and
automatically loaded with AER).

Many types of splines available. B splines are computationally
convenient and provided by bs(). It can directly be used in lm():

R> library("splines")
R> cps_plm <- lm(log(wage) ~ bs(experience, df = 5) +
+ education + ethnicity, data = CPS1988)
R> summary(cps_plm)
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Partially linear models

Call:
lm(formula = log(wage) ~ bs(experience, df = 5) +
education + ethnicity, data = CPS1988)

Residuals:
Min 1Q Median 3Q Max

-2.931 -0.308 0.057 0.367 3.994

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.77558 0.05608 49.5 <2e-16
bs(experience, df = 5)1 1.89167 0.07581 24.9 <2e-16
bs(experience, df = 5)2 2.25947 0.04647 48.6 <2e-16
bs(experience, df = 5)3 2.82458 0.07077 39.9 <2e-16
bs(experience, df = 5)4 2.37308 0.06520 36.4 <2e-16
bs(experience, df = 5)5 1.73934 0.11969 14.5 <2e-16
education 0.08818 0.00126 70.1 <2e-16
ethnicityafam -0.24820 0.01273 -19.5 <2e-16

Residual standard error: 0.575 on 28147 degrees of freedom
Multiple R-squared: 0.356, Adjusted R-squared: 0.356
F-statistic: 2.22e+03 on 7 and 28147 DF, p-value: <2e-16
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Partially linear models

Specification of bs(): Either supply

degree of piecewise polynomial (defaulting to 3) and knots by
hand,

parameter df, which selects the remaining ones.

The expression bs(experience, df = 5) internally generates
piecewise cubic polynomials evaluated at the observations pertaining to
experience: 5− 3 = 2 interior knots, evenly spaced (i.e., located at
the 33.33% and 66.67% quantiles of experience).
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Partially linear models

Model selection: df is chosen based on Schwarz criterion (BIC).

R> cps_bs <- lapply(3:10, function(i) lm(log(wage) ~
+ bs(experience, df = i) + education + ethnicity,
+ data = CPS1988))
R> structure(sapply(cps_bs, AIC, k = log(nrow(CPS1988))),
+ .Names = 3:10)

3 4 5 6 7 8 9 10
49205 48836 48794 48795 48801 48797 48799 48802

Details:

Construct a list cps_bs of fitted linear models via lapply().

Apply extractor functions, e.g., sapply(cps_bs, AIC).

The call above additionally sets the penalty term to log(n) (yielding
BIC instead of the default AIC), and assigns names via
structure().
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Partially linear models

Comparison: Cubic spline and classical fit are best compared
graphically, e.g., regression function for log-wage by experience (for
Caucasian workers with average years of education).

R> cps <- data.frame(experience = -2:60, education =
+ with(CPS1988, mean(education[ethnicity == "cauc"])),
+ ethnicity = "cauc")
R> cps$yhat1 <- predict(cps_lm, newdata = cps)
R> cps$yhat2 <- predict(cps_plm, newdata = cps)
R> plot(log(wage) ~ jitter(experience, factor = 3), pch = 19,
+ cex = 1.5, col = rgb(0.5, 0.5, 0.5, alpha = 0.02),
+ data = CPS1988)
R> lines(yhat1 ~ experience, data = cps, lty = 2)
R> lines(yhat2 ~ experience, data = cps)
R> legend("topleft", c("quadratic", "spline"),
+ lty = c(2, 1), bty = "n")
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Partially linear models
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Partially linear models

Challenge: large number of observations and numerous ties in
experience.

Solution:

Add some amount of “jitter” to experience.

Set the color to “semi-transparent” gray yielding darker shades of
gray for areas with more data points and conveying a sense of
density (“alpha blending”).

In R:

Set alpha for color (0: fully transparent, 1: opaque).

Argument alpha available in various color functions, e.g., rgb().

rgb() implements RGB (red, green, blue) color model.

Selecting equal RGB intensities yields a shade of gray.
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Partially linear models

Alpha transparency is only available for selected plotting devices in R
including

windows() (typically used on Microsoft Windows),

quartz() (typically used on Mac OS X),

pdf() (on all platforms for version = "1.4" or greater).

See ?rgb for further details.

Alternatives:

Visualization: Employ tiny plotting character such as pch = ".".

Model specification: Use penalized splines with package mgcv –
or kernels instead of splines with package np.
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Linear Regression

Factors, Interactions, and Weights
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Factors and Interactions

Motivation: Investigate discrimination (e.g., by gender or ethnicity) in
labor economics.

Illustration: Interactions of ethnicity with other variables in wage
equation for CPS1988.

R formula operators:

: specifies an interaction effect (i.e., in the default contrast coding,
the product of a dummy variable and another variable, possibly
also a dummy).

* does the same but also includes the corresponding main effects.

/ does the same but uses a nested coding (instead of the
interaction coding).

^ can be used to include all interactions up to a certain order.
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Interactions

Formula Description

y ~ a + x Model without interaction: identical slopes
with respect to x but different intercepts with
respect to a.

y ~ a * x Model with interaction: the term a:x gives

y ~ a + x + a:x the difference in slopes compared with the
reference category.

y ~ a / x Model with interaction: produces the same

y ~ a + x %in% a fitted values as the model above but using a
nested coefficient coding. An explicit slope
estimate is computed for each category in a.

y ~ (a + b + c)^2 Model with all two-way interactions

y ~ a*b*c - a:b:c (excluding the three-way interaction).
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Interactions

Consider an interaction between ethnicity and education:

R> cps_int <- lm(log(wage) ~ experience + I(experience^2) +
+ education * ethnicity, data = CPS1988)
R> coeftest(cps_int)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.313059 0.019590 220.17 <2e-16
experience 0.077520 0.000880 88.06 <2e-16
I(experience^2) -0.001318 0.000019 -69.34 <2e-16
education 0.086312 0.001309 65.94 <2e-16
ethnicityafam -0.123887 0.059026 -2.10 0.036
education:ethnicityafam -0.009648 0.004651 -2.07 0.038
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Interactions

Interpretation: Coefficients correspond to

intercept for Caucasians,

quadratic polynomial in experience for all men,

the slope for education for Caucasians,

the difference in intercepts,

the difference in slopes.

Equivalently:

R> cps_int <- lm(log(wage) ~ experience + I(experience^2) +
+ education + ethnicity + education:ethnicity,
+ data = CPS1988)

coeftest() (instead of summary()) can be used for a more compact
display of the coefficient table, see Chapter 4 for further details.
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Separate regressions for each level

Task: Fit separate regressions for African-Americans and Caucasians.

First solution: Compute two separate “lm” objects using the subset

argument to lm() (e.g., lm(formula, data, subset =

ethnicity=="afam", ...).

More convenient: Nested coding

R> cps_sep <- lm(log(wage) ~ ethnicity /
+ (experience + I(experience^2) + education) - 1,
+ data = CPS1988)

All terms within parentheses are nested within ethnicity. Single
intercept is replaced by two separate intercepts for the two levels of
ethnicity.
Note that in this case the R2 is computed differently in the summary();
see ?summary.lm for details.
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Separate regressions for each level

Comparison:

R> cps_sep_cf <- matrix(coef(cps_sep), nrow = 2)
R> rownames(cps_sep_cf) <- levels(CPS1988$ethnicity)
R> colnames(cps_sep_cf) <- names(coef(cps_lm))[1:4]
R> cps_sep_cf

(Intercept) experience I(experience^2) education
cauc 4.310 0.07923 -0.0013597 0.08575
afam 4.159 0.06190 -0.0009415 0.08654

R> anova(cps_sep, cps_lm)

Analysis of Variance Table

Model 1: log(wage) ~ ethnicity/(experience +
I(experience^2) + education) - 1

Model 2: log(wage) ~ experience + I(experience^2) +
education + ethnicity
Res.Df RSS Df Sum of Sq F Pr(>F)

1 28147 9582
2 28150 9599 -3 -16.8 16.5 1.1e-10
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Change of the reference category

In R: For unordered factors, the first level is used by default as the
reference category (whose coefficient is fixed at zero).

For CPS1988: "cauc" for ethnicity and "northeast" for region.

Bierens and Ginther (2001) employ "south" as the reference category
for region. One way of achieving this in R is to use relevel().

R> CPS1988$region <- relevel(CPS1988$region, ref = "south")
R> cps_region <- lm(log(wage) ~ ethnicity + education +
+ experience + I(experience^2) + region, data = CPS1988)
R> coef(cps_region)

(Intercept) ethnicityafam education experience
4.283606 -0.225679 0.084672 0.077656

I(experience^2) regionnortheast regionmidwest regionwest
-0.001323 0.131920 0.043789 0.040327
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Weighted least squares

Problem: Heteroskedasticity in many cross-section regressions.
(Diagnostic tests in Chapter 4.)

Illustration: Journals data.

One remedy: Weighted least squares (WLS).

Model: Conditional heteroskedasticity with nonlinear skedastic function.

E(ε2
i |xi , zi) = g(z>i γ),

zi is `-vector of observations on exogenous or predetermined variables,
and γ is `-vector of parameters.
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Weighted least squares

Background: For E(ε2
i |xi , zi) = σ2z2

i

have regression of yi/zi on 1/zi and xi/zi .
fitting criterion changes to

n∑

i=1

z−2
i (yi − β1 − β2xi)

2,

thus each term is now weighted by z−2
i .

Solutions β̂1, β̂2 of new minimization problem are called WLS
estimates, a special case of generalized least squares (GLS).

In R: Weights are entered as in fitting criterion.
R> jour_wls1 <- lm(log(subs) ~ log(citeprice), data = journals,
+ weights = 1/citeprice^2)
R> jour_wls2 <- lm(log(subs) ~ log(citeprice), data = journals,
+ weights = 1/citeprice)
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Weighted least squares
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Feasible generalized least squares

Problem: Skedastic function often unknown and must be estimated.

Solution: Feasible generalized least squares (FGLS). Starting point is

E(ε2
i |xi) = σ2xγ2

i = exp(γ1 + γ2 log xi),

which can be estimated by an auxiliary regression for the logarithm of
the squared OLS residuals on the logarithm of citeprice and a
constant.

R> auxreg <- lm(log(residuals(jour_lm)^2) ~ log(citeprice),
+ data = journals)
R> jour_fgls1 <- lm(log(subs) ~ log(citeprice),
+ weights = 1/exp(fitted(auxreg)), data = journals)
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Feasible generalized least squares

Iterate further:

R> gamma2i <- coef(auxreg)[2]
R> gamma2 <- 0
R> while(abs((gamma2i - gamma2)/gamma2) > 1e-7) {
+ gamma2 <- gamma2i
+ fglsi <- lm(log(subs) ~ log(citeprice), data = journals,
+ weights = 1/citeprice^gamma2)
+ gamma2i <- coef(lm(log(residuals(fglsi)^2) ~
+ log(citeprice), data = journals))[2]
+ }
R> gamma2

log(citeprice)
0.2538

R> jour_fgls2 <- lm(log(subs) ~ log(citeprice), data = journals,
+ weights = 1/citeprice^gamma2)
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Feasible generalized least squares
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Linear Regression

Linear Regression with Time
Series Data
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Linear regression with time series data

In econometrics, time series regressions are often fitted by OLS:

lm() can be used for fitting if data held in “data.frame”.

Time series data more conveniently stored in one of R’s time
series classes.

Basic time series class is “ts”: a data matrix (or vector) plus time
series attributes (start, end, frequency).

Problem: “ts” objects can be passed to lm(), but:

Time series properties are by default not preserved for fitted
values or residuals.

Lags or differences cannot directly be specified in the model
formula.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 3 – Linear Regression – 63 / 97



Linear regression with time series data

Two solutions:

Data preprocessing (e.g., lags and differences) “by hand” before
calling lm(). (See also Chapter 6.)

Use dynlm() from package dynlm.

Example: Autoregressive distributed lag (ADL) model.

First differences of a variable y are regressed its first difference
lagged by one period and on the fourth lag of a variable x.

Equation: yi − yi−1 = β1 + β2 (yi−1 − yi−2) + β3 xi−4 + εi .

Formula for dynlm(): d(y) ~ L(d(y)) + L(x, 4).
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Linear regression with time series data

Illustration: Different specifications of consumption function taken from
Greene (2003).

Data: Quarterly US macroeconomic data from 1950(1) – 2000(4)
provided by USMacroG, a “ts” time series. Contains disposable income
dpi and consumption (in billion USD).

Visualization: Employ corresponding plot() method.

R> data("USMacroG", package = "AER")
R> plot(USMacroG[, c("dpi", "consumption")], lty = c(3, 1),
+ lwd = 2, plot.type = "single", ylab = "")
R> legend("topleft", legend = c("income", "consumption"),
+ lwd = 2, lty = c(3, 1), bty = "n")
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Linear regression with time series data
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Linear regression with time series data

Models: Greene (2003) considers

consumptioni = β1 + β2 dpii + β3 dpii−1 + εi

consumptioni = β1 + β2 dpii + β3 consumptioni−1 + εi .

Interpretation:

Distributed lag model: consumption responds to changes in
income only over two periods.

Autoregressive distributed lag: effects of income changes persist.

In R:

R> library("dynlm")
R> cons_lm1 <- dynlm(consumption ~ dpi + L(dpi), data = USMacroG)
R> cons_lm2 <- dynlm(consumption ~ dpi + L(consumption),
+ data = USMacroG)
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Linear regression with time series data

R> summary(cons_lm1)

Time series regression with "ts" data:
Start = 1950(2), End = 2000(4)

Call:
dynlm(formula = consumption ~ dpi + L(dpi),
data = USMacroG)

Residuals:
Min 1Q Median 3Q Max

-190.0 -56.7 1.6 49.9 323.9

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -81.0796 14.5081 -5.59 7.4e-08
dpi 0.8912 0.2063 4.32 2.4e-05
L(dpi) 0.0309 0.2075 0.15 0.88

Residual standard error: 87.6 on 200 degrees of freedom
Multiple R-squared: 0.996, Adjusted R-squared: 0.996
F-statistic: 2.79e+04 on 2 and 200 DF, p-value: <2e-16
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Linear regression with time series data

R> summary(cons_lm2)

Time series regression with "ts" data:
Start = 1950(2), End = 2000(4)

Call:
dynlm(formula = consumption ~ dpi + L(consumption),
data = USMacroG)

Residuals:
Min 1Q Median 3Q Max

-101.30 -9.67 1.14 12.69 45.32

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.53522 3.84517 0.14 0.89
dpi -0.00406 0.01663 -0.24 0.81
L(consumption) 1.01311 0.01816 55.79 <2e-16

Residual standard error: 21.5 on 200 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 4.63e+05 on 2 and 200 DF, p-value: <2e-16
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Linear regression with time series data

Model comparison: In terms of RSS

R> deviance(cons_lm1)

[1] 1534001

R> deviance(cons_lm2)

[1] 92644

Graphically:

R> plot(merge(as.zoo(USMacroG[,"consumption"]), fitted(cons_lm1),
+ fitted(cons_lm2), 0, residuals(cons_lm1),
+ residuals(cons_lm2)), screens = rep(1:2, c(3, 3)),
+ col = rep(c(1, 2, 4), 2), xlab = "Time",
+ ylab = c("Fitted values", "Residuals"), main = "")
R> legend(0.05, 0.95, c("observed", "cons_lm1", "cons_lm2"),
+ col = c(1, 2, 4), lty = 1, bty = "n")
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Linear regression with time series data
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Linear regression with time series data

Details:

merge() original series with fitted values from both models, a zero
line and residuals of both models.

merged series is plotted on two screens with different colors and
some more annotation.

Before merging, original “ts” series is coerced to class “zoo” (from
package zoo) via as.zoo().

“zoo” generalizes “ts” with slightly more flexible plot() method.

More details on “ts” and “zoo” classes in Chapter 6.
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Encompassing test

Task: Discriminate between competing models of consumption.

Problem: Models are not nested.

Solutions:

encomptest() (encompassing test).

jtest() (J test).

coxtest() (Cox test).

Illustration: Use encompassing test.
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Encompassing test

Idea:

Transform nonnested model comparison into nested model
comparison.

Fit the encompassing model comprising all regressors from both
competing models.

Compare each of the two nonnested models with the
encompassing model.

If one model is not significantly worse than the encompassing
model while the other is, this test would favor the former model
over the latter.
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Encompassing test

By hand: Fit encompassing model

R> cons_lmE <- dynlm(consumption ~ dpi + L(dpi) +
+ L(consumption), data = USMacroG)

and compute anova().

R> anova(cons_lm1, cons_lmE, cons_lm2)

Analysis of Variance Table

Model 1: consumption ~ dpi + L(dpi)
Model 2: consumption ~ dpi + L(dpi) + L(consumption)
Model 3: consumption ~ dpi + L(consumption)
Res.Df RSS Df Sum of Sq F Pr(>F)

1 200 1534001
2 199 73550 1 1460451 3951.4 < 2e-16
3 200 92644 -1 -19094 51.7 1.3e-11

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 3 – Linear Regression – 75 / 97



Encompassing test

More conveniently: encomptest() from lmtest.

R> encomptest(cons_lm1, cons_lm2)

Encompassing test

Model 1: consumption ~ dpi + L(dpi)
Model 2: consumption ~ dpi + L(consumption)
Model E: consumption ~ dpi + L(dpi) + L(consumption)

Res.Df Df F Pr(>F)
M1 vs. ME 199 -1 3951.4 < 2e-16
M2 vs. ME 199 -1 51.7 1.3e-11

Interpretation: Both models perform significantly worse compared with
the encompassing model, although F statistic is much smaller for
cons_lm2.
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Linear Regression

Linear Regression with Panel Data
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Static linear models

Example: Data from Grunfeld (1958).

20 annual observations (1935–1954).

11 large US firms.

3 variables: real gross investment (invest), real value of the firm
(value), and real value of the capital stock (capital).

Popular textbook example.

Various published versions (some including errors, see
?Grunfeld).

Data structure:

Two-dimensional index.

Cross-sectional objects are called “individuals”.

Time identifier is called “time”.
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Static linear models

Data handling: Select subset of three firms for illustration and declare
individuals ("firm") and time identifier ("year").

R> data("Grunfeld", package = "AER")
R> library("plm")
R> gr <- subset(Grunfeld, firm %in% c("General Electric",
+ "General Motors", "IBM"))
R> pgr <- plm.data(gr, index = c("firm", "year"))

Alternatively: Instead of computing pgr in advance, specify
index = c("firm", "year") in each plm() call.

For later use: Fit plain OLS on pooled data.

R> gr_pool <- plm(invest ~ value + capital, data = pgr,
+ model = "pooling")

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 3 – Linear Regression – 79 / 97



Static linear models

Basic model:

investit = β1valueit + β2capitalit + αi + νit ,

i.e., one-way panel regression with indexes i = 1, . . . , n, t = 1, . . . ,T
and individual-specific effects αi .

Fixed effects: Run OLS on within-transformed model.

R> gr_fe <- plm(invest ~ value + capital, data = pgr,
+ model = "within")

Remarks:

two-way model upon setting effect = "twoways",

fixed effects via fixef() method and associated summary()

method.
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Static linear models

R> summary(gr_fe)

Oneway (individual) effect Within Model

Call:
plm(formula = invest ~ value + capital, data = pgr,
model = "within")

Balanced Panel: n=3, T=20, N=60

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-167.00 -26.10 2.09 26.80 202.00

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

value 0.1049 0.0163 6.42 3.3e-08
capital 0.3453 0.0244 14.16 < 2e-16

Total Sum of Squares: 1890000
Residual Sum of Squares: 244000
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Static linear models

R-Squared: 0.871
Adj. R-Squared: 0.861
F-statistic: 185.407 on 2 and 55 DF, p-value: <2e-16

Question: Are the fixed effects really needed?

Answer: Compare fixed effects and pooled OLS fits via pFtest().

R> pFtest(gr_fe, gr_pool)

F test for individual effects

data: invest ~ value + capital
F = 57, df1 = 2, df2 = 55, p-value = 4e-14
alternative hypothesis: significant effects

This indicates substantial inter-firm variation.

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 3 – Linear Regression – 82 / 97

Static linear models

Random effects:

Specify model = "random" in plm() call.

Select method for estimating the variance components.

Recall: Random-effects estimator is essentially FGLS estimator,
utilizing OLS after “quasi-demeaning” all variables.

Precise form of quasi-demeaning depends on random.method

selected.

Four methods available: Swamy-Arora (default), Amemiya,
Wallace-Hussain, and Nerlove.

In plm: Using Wallace-Hussain for Grunfeld data.

R> gr_re <- plm(invest ~ value + capital, data = pgr,
+ model = "random", random.method = "walhus")

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 3 – Linear Regression – 83 / 97



Static linear models

R> summary(gr_re)

Oneway (individual) effect Random Effect Model
(Wallace-Hussain's transformation)

Call:
plm(formula = invest ~ value + capital, data = pgr,
model = "random", random.method = "walhus")

Balanced Panel: n=3, T=20, N=60

Effects:
var std.dev share

idiosyncratic 4389.3 66.3 0.35
individual 8079.7 89.9 0.65
theta: 0.837

Residuals :
Min. 1st Qu. Median 3rd Qu. Max.

-187.00 -32.90 6.96 31.40 210.00
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Static linear models

Coefficients :
Estimate Std. Error t-value Pr(>|t|)

(Intercept) -109.9766 61.7014 -1.78 0.08
value 0.1043 0.0150 6.95 3.8e-09
capital 0.3448 0.0245 14.06 < 2e-16

Total Sum of Squares: 1990000
Residual Sum of Squares: 258000
R-Squared: 0.87
Adj. R-Squared: 0.866
F-statistic: 191.545 on 2 and 57 DF, p-value: <2e-16

Comparison of regression coefficients shows that fixed- and
random-effects methods yield rather similar results for these data.
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Static linear models

Question: Are the random effects really needed?

Answer: Use Lagrange multiplier test. Several versions available in
plmtest().

R> plmtest(gr_pool)

Lagrange Multiplier Test - (Honda) for balanced panels

data: invest ~ value + capital
normal = 15, p-value <2e-16
alternative hypothesis: significant effects

Test also suggests that some form of parameter heterogeneity must be
taken into account.
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Static linear models

Random-effects methods more efficient than fixed-effects estimator
under more restrictive assumptions, namely exogeneity of the individual
effects.

Use Hausman test to test for endogeneity:

R> phtest(gr_re, gr_fe)

Hausman Test

data: invest ~ value + capital
chisq = 0.04, df = 2, p-value = 1
alternative hypothesis: one model is inconsistent

In line with estimates presented above, endogeneity does not appear to
be a problem here.
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Dynamic linear models

Dynamic panel data model:

yit =

p∑

j=1

%jyi,t−j + x>it β + uit , uit = αi + βt + νit ,

Estimator: Generalized method of moments (GMM) estimator
suggested by Arellano and Bond (1991), utilizing lagged endogenous
regressors after a first-differences transformation.

Illustration: Determinants of employment in UK (EmplUK).
Unbalanced panel: 7–9 annual observations (1976–1984) for 140
UK firms.
4 variables: employment (emp), average annual wage per
employee (wage), book value of gross fixed assets (capital),
index of value-added output at constant factor cost (output).
Original example from Arellano and Bond (1991).
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Dynamic linear models

Data and basic static formula:
R> data("EmplUK", package = "plm")
R> form <- log(emp) ~ log(wage) + log(capital) + log(output)

Arellano-Bond estimator is provided by pgmm(). Dynamic formula
derived from static formula via list of lags.
R> empl_ab <- pgmm(dynformula(form, list(2, 1, 0, 1)),
+ data = EmplUK, index = c("firm", "year"),
+ effect = "twoways", model = "twosteps",
+ gmm.inst = ~ log(emp), lag.gmm = list(c(2, 99)))

Details: Dynamic model with
p = 2 lagged endogenous terms,
log(wage) and log(output) occur up to lag 1,
log(capital) contemporaneous term only,
time- and firm-specific effects,
instruments are lagged terms of the dependent variable (all lags
beyond lag 1 are to be used).
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Dynamic linear models

R> summary(empl_ab)

Twoways effects Two steps model

Call:
pgmm(formula = dynformula(form, list(2, 1, 0, 1)),
data = EmplUK, effect = "twoways", model = "twosteps",
index = c("firm", "year"), gmm.inst = ~log(emp),
lag.gmm = list(c(2, 99)))

Unbalanced Panel: n=140, T=7-9, N=1031

Number of Observations Used: 611

Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.6190 -0.0256 0.0000 -0.0001 0.0332 0.6410

Coefficients

Christian Kleiber, Achim Zeileis © 2008–2017 Applied Econometrics with R – 3 – Linear Regression – 90 / 97

Dynamic linear models

Estimate Std. Error z-value Pr(>|z|)
lag(log(emp), c(1, 2))1 0.4742 0.1854 2.56 0.01054
lag(log(emp), c(1, 2))2 -0.0530 0.0517 -1.02 0.30605
log(wage) -0.5132 0.1456 -3.53 0.00042
lag(log(wage), 1) 0.2246 0.1419 1.58 0.11353
log(capital) 0.2927 0.0626 4.67 3.0e-06
log(output) 0.6098 0.1563 3.90 9.5e-05
lag(log(output), 1) -0.4464 0.2173 -2.05 0.03996

Sargan Test: chisq(25) = 30.11 (p.value=0.22)
Autocorrelation test (1): normal = -1.538 (p.value=0.124)
Autocorrelation test (2): normal = -0.2797 (p.value=0.78)
Wald test for coefficients: chisq(7) = 142 (p.value=<2e-16)
Wald test for time dummies: chisq(6) = 16.97 (p.value=0.00939)
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Dynamic linear models

Interpretation: Autoregressive dynamics important for these data.

Diagnostics: Tests at the bottom of summary indicate that model could
be improved. Arellano and Bond (1991) address this by additionally
treating wages and capital as endogenous.

Note: Due to constructing lags and taking first differences, three cross
sections are lost. Hence, estimation period is 1979–1984 and only 611
observations effectively available for estimation.
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Linear Regression

Systems of Linear Equations
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Systems of linear equations

Systems of regression equations have been a hallmark of econometrics
for several decades.

Examples: Seemingly unrelated regressions (SUR) and various
macroeconomic simultaneous equation models.

In R: Package systemfit provides various multiple-equation models.

Illustration: SUR model for Grunfeld data. Unlike panel data models
considered above, SUR model allows for individual-specific slopes (in
addition to individual-specific intercepts).

Terminology: “Individuals” now referred to as “equations”.

Assumption: Contemporaneous correlation across equations. Thus
joint estimation of all parameters more efficient than OLS on each
equation.
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Systems of linear equations

SUR model in systemfit:

Fitting function is systemfit().

Data should be supplied in a “plm.data” object.

Use only two firms (to save space):

R> gr2 <- subset(Grunfeld, firm %in% c("Chrysler", "IBM"))
R> pgr2 <- plm.data(gr2, c("firm", "year"))

Fit model:

R> library("systemfit")
R> gr_sur <- systemfit(invest ~ value + capital,
+ method = "SUR", data = pgr2)
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Systems of linear equations

R> summary(gr_sur, residCov = FALSE, equations = FALSE)

systemfit results
method: SUR

N DF SSR detRCov OLS-R2 McElroy-R2
system 40 34 4114 11022 0.929 0.927

N DF SSR MSE RMSE R2 Adj R2
Chrysler 20 17 3002 176.6 13.29 0.913 0.903
IBM 20 17 1112 65.4 8.09 0.952 0.946

Coefficients:
Estimate Std. Error t value Pr(>|t|)

Chrysler_(Intercept) -5.7031 13.2774 -0.43 0.67293
Chrysler_value 0.0780 0.0196 3.98 0.00096
Chrysler_capital 0.3115 0.0287 10.85 4.6e-09
IBM_(Intercept) -8.0908 4.5216 -1.79 0.09139
IBM_value 0.1272 0.0306 4.16 0.00066
IBM_capital 0.0966 0.0983 0.98 0.33951
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Systems of linear equations

Details:

summary() provides standard regression results for each
equation in compact layout plus some measures of overall fit.

More detailed output (between-equation correlations, etc.)
available, but was suppressed here.

Output indicates again that there is substantial variation among
firms.

Further features: systemfit can estimate linear
simultaneous-equations models by several methods (two-stage least
squares, three-stage least squares, and variants thereof), as well as
certain nonlinear specifications.
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