Applied Econometrics with R

Chapter 2

Basics

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 2 - Basics - 0 / 101

Overview

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 2 - Basics - 1 / 101

Basics

R at various levels:

- Standard arithmetic: R can be used as a (sophisticated) calculator.
- Graphical system: R can create graphics on many devices.
- Full-featured programming language.
- R connects to other languages, programs, and data bases, and also to the operating system.

In this chapter:

- Illustration of a few typical uses of R.
- Sophisticated shortcuts are avoided here.
- Often solutions are not unique.
 - \rightarrow Explore alternative solutions by reusing ideas.

Basics

R as a Calculator

R as a calculator

Standard arithmetic operators: +, -, *, /, and ^ are available, where x^{y} yields x^{y} .

R> 1 + 1
[1] 2
R> 2^3
[1] 8

Details: In the output, [1] indicates the position of the first element of the vector returned by R. (Not surprising here, where all vectors are of length 1, but will be useful later.)

Mathematical functions: R has log(), exp(), sin(), asin(), cos(), acos(), tan(), atan(), sign(), sqrt(), abs(), min(), max(),

R as a calculator

```
R> log(exp(sin(pi/4)^2) * exp(cos(pi/4)^2))
[1] 1
```

Details:

- log(x, base = a) returns the logarithm of x to base a.
- a defaults to exp(1).
- Convenience functions: log10() and log2().
- See ?log for a full list of all options and related functions.

Further functions: gamma(), beta(), and their logarithms and derivatives, are often useful in statistics and econometrics. See ?gamma for further information.

Vector arithmetic

Basic unit: Vector. All functions above operate directly on vectors.

Generation of vectors: e.g., via c(), where c stands for "combine" or "concatenate".

```
R> x <- c(1.8, 3.14, 4, 88.169, 13)
R> length(x)
[1] 5
```

Case-sensitivity: x and X are distinct.

Assignment operators:

- <- (mimicking a single arrow symbol).
- = may also be used at the user level, but <- is preferred for programming.

Vector arithmetic

Use x in subsequent calculations:

R> 2 * x + 3

[1] 6.60 9.28 11.00 179.34 29.00

R> 5:1 * x + 1:5

[1] 10.00 14.56 15.00 180.34 18.00

R > log(x)

[1] 0.5878 1.1442 1.3863 4.4793 2.5649

Details:

- First statement: scalars 2 and 3 are recycled to the length of x.
- Second statement: x is multiplied element-wise by the vector 1:5 (the integers from 1 through 5; see below) and then the vector 5:1 is added element-wise.
- Third statement: Application of mathematical functions.

Subsetting vectors

Subsets of vectors: Operator [can be used in several ways.

R> x[c(1, 4)]
[1] 1.80 88.17
R> x[-c(2, 3, 5)]
[1] 1.80 88.17

Details:

- Extract elements by their index.
- Exclude elements with negative index.
- Further specifications are explained later in this chapter.

Patterned vectors

Vectors with special patterns are needed in statistics and econometrics. R provides several useful functions for this, including

```
R> ones <- rep(1, 10)
R> ones
 [1] 1 1 1 1 1 1 1 1 1 1
R> even <- seq(from = 2, to = 20, by = 2)
R> even
 [1] 2 4 6 8 10 12 14 16 18 20
R> c(ones, even)
 [1] 1 1 1 1 1 1 1 1 1 2 4 6 8 10 12 14 16 18 20
R> trend <- 1981:2005
R> trend
 [1] 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
[13] 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
[25] 2005
```


Matrix Operations

Matrix operations

Creation: A 2 \times 3 matrix containing the elements 1:6, by column, is generated via

R> A <- matrix(1:6, nrow = 2) R> A [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6

Alternatively: Use nrow instead of ncol.

```
R> matrix(1:6, ncol = 3)
      [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

Transpose A^{\top} of A via R> t(A) [,1] [,2] [1,] 1 2 [2,] 3 4 [3,] 5 6

Dimensions: Access via dim(), nrow(), and ncol().

R> dim(A)
[1] 2 3
R> nrow(A)
[1] 2
R> ncol(A)
[1] 3

Internally: Matrices are vectors with an additional dimension attribute enabling row/column-type indexing.

Indexing:

- A[i,j] extracts element a_{ij} of matrix A.
- A[i,] extracts *i*th row.
- A[,j] extracts *j*th column.
- Results of these operations are vectors, i.e., dimension attribute is dropped (by default).
- A[i, j, drop = FALSE] avoids dropping and returns a matrix.

Illustration:

R> A1 <- A[1:2, c(1, 3)] R> A1 [,1] [,2] [1,] 1 5 [2,] 2 6

Equivalently:

R> A[, -2] [,1] [,2] [1,] 1 5 [2,] 2 6

Nonsingularity: Check determinant or eigenvalues.

```
R> det(A1)
[1] -4
R> eigen(A1)
eigen() decomposition
$values
[1] 7.5311 -0.5311
$vectors
        [,1] [,2]
[1,] -0.6079 -0.9562
[2,] -0.7940 0.2928
```

Inverse: solve() (if direct computation cannot be avoided).

R> solve(A1)

[,1] [,2] [1,] -1.5 1.25 [2,] 0.5 -0.25

Check: Using operator for matrix multiplication %*%.

```
R> A1 %*% solve(A1)
    [,1] [,2]
[1,] 1 0
[2,] 0 1
```

Further functionality:

- Adding and subtracting for conformable matrices via + and -.
- Recycling for non-conformable matrices proceeds along columns.
- Operator * returns the element-wise product.
- kronecker(): Kronecker product.
- crossprod(): Cross product $A^{\top}B$.
- svd(): Singular-value decomposition.
- qr(): QR decomposition.
- chol(): Cholesky decomposition.

Patterned matrices

Useful functions:

- diag(): Create diagonal matrix, or extract diagonal from matrix.
- upper.tri() and lower.tri(): query the positions of upper or lower triangular elements. Result is matrix of logicals.

```
R> diag(4)
    [,1] [,2] [,3] [,4]
[1,] 1 0 0
                    0
[2,] 0 1 0
[3,] 0 0 1
                    0
                    0
[4,] 0
           0
               0
                    1
R> diag(1:3)
    [,1] [,2] [,3]
[1,] 1
           0
               0
[2,] 0 2
               0
[3,] 0 0
               3
R > diag(A1)
[1] 1 6
```

Combining matrices

Combination: cbind() and rbind() combine matrices by columns or rows. If necessary, arguments are suitably recycled.

```
R> cbind(1, A1)
    [,1] [,2] [,3]
[1,] 1 1 5
[2,] 1 2 6
R> rbind(A1, diag(4, 2))
    [,1] [,2]
[1,] 1 5
[2,] 2 6
[3,] 4 0
[4,] 0 4
```

Basics

R as a Programming Language

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 2 - Basics - 19 / 101

R as a programming language

R:

- Full-featured, interpreted, object-oriented programming language.
- Designed for "programming with data" (Chambers 1998).
- In-depth treatment of programming in S/R: Venables and Ripley (2000).
- German introduction to programming with R: Ligges (2007).
- More technical: "Writing R Extensions" and "R Language Definition" manuals.

The mode of a vector

Basic data structure: Vector.

Mode: All elements of a vector must be of the same type; technically, they must be of the same "mode".

Examples: "numeric", "logical", and "character" (there are others).

```
R> x <- c(1.8, 3.14, 4, 88.169, 13)
R> mode(x)
```

[1] "numeric"

Logical vectors

Logical vectors: Contain the logical constants TRUE and FALSE.

Aliases: In a fresh session, the aliases T and F are available for compatibility with S (which uses these as the logical constants).

Recommendation: Always use TRUE and FALSE (because T and F can be changed and might have other values - e.g., sample size or *F* statistic).

Example: Result of comparisons.

R> x
[1] 1.80 3.14 4.00 88.17 13.00
R> x > 3.5
[1] FALSE FALSE TRUE TRUE TRUE

Character vectors

Character vectors: For storing strings.

Typical basic usage: Assign labels or names to vectors, matrices, etc.

Advanced character processing: Not much used here, but R has powerful character-manipulation facilities, e.g., for computations on text documents or command strings.

More on subsetting

Up to now: Only numeric indices have been introduced.

Character subsetting: Can be used if there is a names attribute.

Logical subsetting: Selects elements corresponding to TRUE.

Subsetting of matrices and data frames etc. works similarly.

Lists

So far: We have only used plain vectors. Lists are related but more flexible data structures.

Lists: *Generic vectors.* Each element can be virtually any type of object.

- Vector (of arbitrary mode).
- Matrix.
- Full data frame.
- Function.
- List (again).
- ...

Due to this flexibility, lists are the basis for most complex objects in R; e.g., for data frames or fitted regression models (both described later).

Lists

Illustration: Using list(), create description of a sample from a standard normal distribution (generated with rnorm(); see below).

```
R> mylist <- list(sample = rnorm(5),
     family = "normal distribution",
+
     parameters = list(mean = 0, sd = 1))
+
R> mylist
$sample
[1] 0.3771 -0.9346 2.4302 1.3195 0.4503
$family
[1] "normal distribution"
$parameters
$parameters$mean
[1] 0
$parameters$sd
[1] 1
```

Lists

Select elements: Operators \$ or [[can be used. [[is similar to [, but can only select a single element.

```
R> mylist[[1]]
[1] 0.3771 -0.9346 2.4302 1.3195 0.4503
R> mylist[["sample"]]
[1] 0.3771 -0.9346 2.4302 1.3195 0.4503
R> mylist$sample
[1] 0.3771 -0.9346 2.4302 1.3195 0.4503
```

Combination of element selection:

```
R> mylist[[3]]$sd
```

[1] 1

Logical comparisons

Logical operators: <, <=, >, >=, == (for exact equality) and != (for "not equal").

If expr1 and expr2 are logical expressions,

- expr1 & expr2 is their intersection (logical "and"),
- expr1 | expr2 is their union (logical "or"), and
- !expr1 is the negation of expr1.

```
R> x <- c(1.8, 3.14, 4, 88.169, 13)
R> x > 3 & x <= 4
[1] FALSE TRUE TRUE FALSE FALSE</pre>
```

Assess which elements are TRUE:

```
R > which(x > 3 \& x <= 4)
```

[1] 2 3

Specialized functions which.min() and which.max() for computing the position of the minimum and the maximum.

Logical comparisons

In addition to & and |: all() and any() check whether all or at least some entries of a vector are TRUE:

R> all(x > 3)
[1] FALSE
R> any(x > 3)

[1] TRUE

Due to coercion (more later!), it is also possible to compute directly on logical vectors using ordinary arithmetic. When coerced to numeric, FALSE becomes 0 and TRUE becomes 1, as in

R> 7 + TRUE

[1] 8

Logical comparisons

Caution: Floating-point arithmetic has to be used when assessing exact equality of numerical arguments with ==.

```
R> (1.5 - 0.5) == 1
[1] TRUE
R> (1.9 - 0.9) == 1
[1] FALSE
Use all.equal() instead:
R> all.equal(1.9 - 0.9, 1)
[1] =====
```

[1] TRUE

Furthermore, the function identical() checks whether two (possibly complex) R objects are exactly identical.

Coercion

Coercion functions: Can convert an object from one type or class to a different one.

Convention: If *foo* is the type/class of interest, as.*foo()* coerces to *foo* and is.*foo()* checks if an object is *foo*, e.g., numeric, character, matrix, data.frame, ...

```
R> is.numeric(x)
```

[1] TRUE

```
R> is.character(x)
```

[1] FALSE

```
R> as.character(x)
```

[1] "1.8" "3.14" "4" "88.169" "13"

Coercion is enforced automatically in certain situations, e.g.,

R> c(1, "a") [1] "1" "a"

Random number generation

Random number generators (RNGs): Vital for statistical/econometric programming environments for performing Monte Carlo studies.

In R: Several algorithms available, see ?RNG.

Random seed: set.seed(). Basis for the generation of pseudo-random numbers and making simulations exactly reproducible.

```
R> set.seed(123)
R> rnorm(2)
[1] -0.5605 -0.2302
R> rnorm(2)
[1] 1.55871 0.07051
R> set.seed(123)
R> rnorm(2)
[1] -0.5605 -0.2302
```

Random number generation

Drawing samples: Sampling with or without replacement from a finite set of values, is available in sample().

Default: Draw, without replacement, a vector of the same size as its input argument (i.e., to compute a permutation).

```
R> sample(1:5)
[1] 5 1 2 3 4
R> sample(c("male", "female"), size = 5, replace = TRUE,
+     prob = c(0.2, 0.8))
[1] "female" "male" "female" "female" "female"
```

The second command draws a sample of size 5, with replacement, from the values "male" and "female", which are drawn with probabilities 0.2 and 0.8, respectively.

Random number generation

Distributions:

- Random numbers from specific distributions are typically available in functions of type *rdist()*.
- Examples for *dist* include norm, unif, binom, pois, t, f, chisq.
- Functions take sample size n as their first argument. Further arguments control parameters of the respective distribution.

Example: rnorm() takes mean and sd as further arguments, defaulting to 0 and 1.

• Further functions for distributions: d*dist()*, p*dist()*, and q*dist()* implementing density, cumulative probability distribution function, and quantile function (inverse distribution function).

Flow control

Standard control structures: Control when a certain expression expr is evaluated. (See ?Control for details.)

- if/else statements.
- for loops.
- while loops.

An if/else statement is of the form

```
if(cond) {
    expr1
} else {
```

```
expr2
```

```
}
```

where expr1 is evaluated if cond is TRUE and expr2 otherwise. The else branch may be omitted if empty.

Flow control

```
Illustration: Toy example.
```

```
R> x <- c(1.8, 3.14, 4, 88.169, 13)
R> if(rnorm(1) > 0) sum(x) else mean(x)
[1] 22.02
```

The condition cond can only be of length 1. For vectorized evaluation, use ifelse().

```
R> ifelse(x > 4, sqrt(x), x^2)
```

[1] 3.240 9.860 16.000 9.390 3.606

This computes the square root for those values in x that are greater than 4 and the square for the remaining ones.

Flow control

for **loop:** Similar, but the main argument to for() is of type variable in sequence.

Illustration: Recursively compute first differences in the vector x.

```
R> for(i in 2:5) {
+ x[i] <- x[i] - x[i-1]
+ }
R> x[-1]
[1] 1.34 2.66 85.51 -72.51
```

while **loop:** Similar, but the argument to while() is a condition that may change in every run of the loop so that it finally can become FALSE.

```
R> while(sum(x) < 100) {
+     x <- 2 * x
+ }
R> x
[1] 14.40 10.72 21.28 684.07 -580.07
```

Writing functions

Feature of S/R: Users naturally become developers. Repeated commands can easily be wrapped into functions.

Simple example: Deliberately awkward function computing column means in a matrix X using nested for loops.

```
R> cmeans <- function(X) {
     rval <- rep(0, ncol(X))</pre>
+
     for(j in 1:ncol(X)) {
+
       mysum <- 0
+
        for(i in 1:nrow(X)) mysum <- mysum + X[i,j]</pre>
+
+
        rval[j] <- mysum/nrow(X)</pre>
     }
+
     return(rval)
+
+
   }
R > X <- matrix(1:20, ncol = 2)
R > cmeans(X)
[1] 5.5 15.5
```

Writing functions

Built-in function colMeans()

R> colMeans(X)

[1] 5.5 15.5

is clearly preferable.

```
R> X <- matrix(rnorm(2*10^6), ncol = 2)
R> system.time(colMeans(X))
    user system elapsed
    0.002    0.000    0.002
R> system.time(cmeans(X))
    user system elapsed
    0.112    0.000    0.112
```

cmeans() takes only a single argument X wiht no default. If defaults should be defined, use name = expr pairs.

Vectorized calculations

Vectorized arithmetic: Can be used to avoid loops.

Example: Avoid one for loop by using the vectorized function mean().

```
R> cmeans2 <- function(X) {
+    rval <- rep(0, ncol(X))
+    for(j in 1:ncol(X)) rval[j] <- mean(X[,j])
+    return(rval)
+ }
R> system.time(cmeans2(X))
    user system elapsed
    0.021    0.004    0.025
```

More compactly: apply(X, 2, mean). Looks less cumbersome than for loop (but often performs similarly). apply() applies functions along margins (here, columns, the second margin) of an array.

```
R> system.time(apply(X, 2, mean))
```

user system elapsed 0.106 0.004 0.109

Vectorized calculations

Summary:

- Element-wise computations should be avoided if vectorized computations are available.
- Optimized solutions (if available) typically perform better than generic for or apply() solutions.
- Loops can be written more compactly using apply().

Several variants:

- lapply(): returns a list.
- tapply(): returns a table.
- sapply(): tries to simplify the result to a vector or matrix where possible.

Reserved words

Reserved words: Basic grammatical constructs of the language that cannot be used in other meanings.

In R: if, else, for, in, while, repeat, break, next, function, TRUE, FALSE, NA, NULL, Inf, NaN, ...).

See ?Reserved for a complete list.

Symbolic descriptions: Relationships among variables can be specified. The ~ operator is basic to formulas in R.

```
R> f <- y ~ x
R> class(f)
[1] "formula"
```

Meaning: Depends on the context, i.e., the function that evaluates the formula.

Most commonly: $y \sim x$ means "y is explained by x".

Usage: Specification of plots, models, etc.

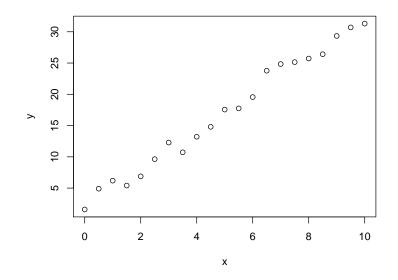
Illustration: Artificial data.

R> x <- seq(from = 0, to = 10, by = 0.5) R> y <- 2 + 3 * x + rnorm(21)

Use the same formula for plotting and linear regression.

```
R> plot(y ~ x)
R> lm(y ~ x)
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
2.00 3.01
```

R formula language is much more powerful, especially for specifying (generalized) linear models (see Chapter 3).



Data Management in R

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 2 - Basics - 47 / 101

Creation from scratch

Data frames: Basic data structure in R. (In other programs such structures are often called data matrix or data set.)

Typically: An array consisting of a list of vectors and/or factors of identical length, i.e., a rectangular format where columns correspond to variables and rows to observations.

Example: Artificial data with variables named "one", "two", "three".

```
R> mydata <- data.frame(one = 1:10, two = 11:20, three = 21:30)
```

Alternatively:

```
R> mydata <- as.data.frame(matrix(1:30, ncol = 3))
R> names(mydata) <- c("one", "two", "three")</pre>
```

Technically: This data frame is internally represented as a list of vectors (not a matrix).

Subset selection

Select columns: Subsets of variables can be selected via [or \$ (for a single variable).

R> mydata\$two
[1] 11 12 13 14 15 16 17 18 19 20
R> mydata[, "two"]
[1] 11 12 13 14 15 16 17 18 19 20
R> mydata[, 2]
[1] 11 12 13 14 15 16 17 18 19 20

In all cases: The data frame attributes are dropped (by default).

Subset selection

Accessing variables: Variables can be attach()ed. (Technically, this means that the attached data set is added to the search() path.)

```
R> mean(two)
Error in mean(two) : Object "two" not found
R> attach(mydata)
R> mean(two)
[1] 15.5
```

```
R> detach(mydata)
```

Note: Attaching data frames can lead to confusion when there are variables with the same name in several data frames or the global environment.

For a single command:

```
R> with(mydata, mean(two))
```

[1] 15.5

Subset selection

Select rows: Subsets of observations (and variables) can be selected again via [or (more conveniently) via subset().

R> subset(mydata, two <= 16, select = -two)

	one	three
1	1	21
2	2	22
3	3	23
4	4	24
5	5	25
6	6	26

Export as plain text: write.table().

R> write.table(mydata, file = "mydata.txt", col.names = TRUE)

This creates a text file mydata.txt in the current working directory. To read again, use:

R> newdata <- read.table("mydata.txt", header = TRUE)</pre>

Details:

- read.table() returns a "data.frame" object
- By setting col.names = TRUE, mydata.txt contains variable names in the first row. Hence, it should be read with header = TRUE.
- write.table() allows specification of: separation symbol, decimal separator, quotes, and many more. Thus, it can create tab- or comma-separated values etc.

CSV: Comma-separated values.

- Convenience interfaces read.csv() and write.csv() are available.
- CSV is useful format for exchanging data between R and Microsoft Excel.
- On systems with comma (and not the period) as the decimal separator, Excel uses semicolon-separated values (but still calls them CSV).
- These can be read/written with read.csv2() and write.csv2().
- More elementary: scan() is useful for reading more complex structures.
- See the manual pages and the "R Data Import/Export" manual for further details.

Binary format: To write/read R's internal binary format (by convention with extension .RData or .rda) the commands load() and save() are available.

```
R> save(mydata, file = "mydata.rda")
R> load("mydata.rda")
```

Details:

- Binary files can contain multiple arbitrary objects (not just a single data frame or matrix).
- Upon load() all objects are made available in the current environment (by default).

Data in packages:

- All data sets in the package **AER** are supplied in this binary format.
- Go to the folder ~/AER/data in your R library to check.
- As they are part of a package, they are made accessible more easily using data() (which in this case sets up the appropriate call for load()).
- Hence,

```
data("Journals", package = "AER")
loads the Journals data frame from the AER package, stored in
the file ~/AER/data/Journals.rda.
```

• If the package argument is omitted, all packages currently in the search path are checked whether they provide a file Journals.

Reading and writing foreign binary formats

Package foreign: R can also read and write a number of proprietary binary formats, including S-PLUS, SPSS, SAS, Stata, Minitab, Systat, and dBase files.

Example: Stata files.

Export:

```
R> library("foreign")
R> write.dta(mydata, file = "mydata.dta")
```

Import:

R> mydata <- read.dta("mydata.dta")

Reading and writing Excel spreadsheets

Excel spreadsheets: .xls and .xlsx files.

- $\bullet~$ No direct support by base R \rightarrow exchange via CSV recommended.
- Several CRAN packages also offer support for reading/writing Excel spreadsheets directly.
- gdata: read.xls() for simple (and quick) reading. Requires Perl (https://www.perl.org/get.html).
- **xlsx**: read.xlsx() and write.xlsx() for simple (but not quite as quick) reading and writing. Requires Java.
- **openxlsx**: read.xlsx() and write.xlsx() with somewhat less intuitive arguments/default. Requires C++ but binaries on CRAN.
- **readxl**: read_excel() with somewhat different arguments. Requires C++ but binaries on CRAN.
- **XLConnect**: Functionality for querying and manipulating (including reading/writing) spreadsheets. Requires Java.

Interaction with the file system and string manipulations

Rich functionality: Interaction with external files and communication with the operating system.

A few pointers:

- Query files available in a directory or folder: dir().
- Copying and deleting files: file.copy()) and file.remove().
- These commands are independent of the operating system.
- Potentially system-dependent commands can be issued as strings using system().

Illustration: Delete the Stata file created before.

```
R> file.remove("mydata.dta")
```

Interaction with the file system and string manipulations

Save commands or their output to text files:

- One possibility: sink() can direct output to a file() connection.
- Strings can be written with cat() to a connection.
- In some situations writeLines() is more convenient for this.
- Furthermore: dump() can create text representations of R objects and write them to a file() connection.

Manipulate strings before creating output:

- strsplit(): splitting strings.
- paste(): paste strings together.
- grep() and gsub(): pattern matching and replacing.
- sprintf(): combining text and variable values.

Factors

Categorical information: Stored in *factors*, an extension of vectors.

Typical econometric examples: gender, union membership, or ethnicity.

In many software packages: Stored using a numerical encoding (e.g., 0 for males and 1 for females). Especially in regression settings, a single categorical variable with more than two categories is often stored in several such dummy variables.

In R:

```
R> g <- rep(0:1, c(2, 4))
R> g <- factor(g, levels = 0:1, labels = c("male", "female"))
R> g
[1] male male female female female female
Levels: male female
```

Factors

Details:

- Here, a factor() is created from a dummy-coded vector.
- Internally: stored as the integers 1 to k (= number of levels) plus a character vector of labels, here "male" and "female".
- factor() can create the same information from numerical, character or logical vectors.
- For ordinal information, set the argument ordered = TRUE.

Advantage: R knows that a certain variable is categorical and can choose appropriate methods automatically.

- Labels can be used in printed output.
- Different summary and plotting methods can be chosen.
- Contrast codings (e.g., dummy variables) can be computed in linear regressions.

Missing values

In R: Missing values are coded as NA (for "<u>n</u>ot <u>a</u>vailable"). All standard computations on NA become NA.

Caution: Data sets may have missing values with a different encoding.

Example: Sometimes –99 or –999 is used in flat text files. These can be converted appropriately via:

R> newdata <- read.table("mydata.txt", na.strings = "-999")</pre>

```
Query NAs: is.na().
```


Object-oriented programming (OOP): Paradigm of programming where users/developers can create objects of a certain "class" (that are required to have a certain structure) and then apply "methods" for certain "generic functions" to these objects.

Simple example: summary() is a generic function choosing different methods based on the class of its argument

```
R> x <- c(1.8, 3.14, 4, 88.169, 13)
R> g <- factor(rep(c(0, 1), c(2, 4)), levels = c(0, 1),
+ labels = c("male", "female"))
R> summary(x)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.80 3.14 4.00 22.02 13.00 88.17
R> summary(g)
male female
2 4
```

Several paradigms: In fact, R has several OOP systems. The base installation already has two, usually called S3 and S4.

S3: Much simpler, using a dispatch mechanism based on a naming convention for methods.

S4: More sophisticated and closer to other OOP concepts used in computer science.

For most tasks: S3 is sufficient and hence briefly discussed here.

S3 generics: Functions with a certain list of arguments and then a UseMethod() call with the name of the generic function.

R> summary

```
function (object, ...)
UseMethod("summary")
<bytecode: 0x560c101d8b48>
<environment: namespace:base>
```

Details:

- Arguments: object (required) plus an arbitrary number of optional arguments passed through ... to its methods.
- When applied to an object of class "foo": R tries to apply the function summary.foo() if it exists. If not, it will call summary.default() if such a default method exists (which it does for summary()).
- R objects can also have a vector of classes, e.g., c("foo", "bar") meaning that the object is of class "foo" inheriting from "bar").
- In this case, R first tries to apply summary.foo(), then (if this does not exist) summary.bar(), and then (if both do not exist) summary.default().

Using methods:

- Methods defined for a certain generic can be queried using methods().
- methods(summary) returns a (long) list of methods including summary.factor() and summary.default() (but not summary.numeric()).
- As it is not recommended to call methods directly, some methods are marked as being non-visible to the user and these cannot (easily) be called directly.
- Even if visible, it is preferred to call the generic, i.e., summary(g) instead of summary.factor(g).

Illustration: Definition of a class and methods.

- Create an object of class "normsample" that contains a sample from a normal distribution.
- Define a summary() method that reports the empirical mean and standard deviation.

First, we write a simple class creator. In principle, it could have any name, but it is often called like the class itself:

```
R> normsample <- function(n, ...) {
+ rval <- rnorm(n, ...)
+ class(rval) <- "normsample"
+ return(rval)
+ }</pre>
```

Details:

- It takes a required argument n (the sample size) and further arguments ..., which are passed on to rnorm() for generating normal random numbers.
- rnorm() takes further arguments like the mean and the standard deviation.
- After generation of the vector of normal random numbers, it is assigned the class "normsample" and then returned.

```
R> set.seed(123)
R> x <- normsample(10, mean = 5)
R> class(x)
[1] "normsample"
```

New summary() **method:** summary.normsample(). It conforms with the argument list of the generic (although ... is not used) and computes sample size, empirical mean, and standard deviation.

```
R> summary.normsample <- function(object, ...) {
+ rval <- c(length(object), mean(object), sd(object))
+ names(rval) <- c("sample size","mean","standard deviation")
+ return(rval)
+ }</pre>
```

This method is found when calling:

R> summary(x)
sample size mean standard deviation
10.0000 5.0746 0.9538

Typical generics: print(), plot(), and str(), which print, plot, and summarize the structure are available for most basic classes.

R Graphics

R graphics

Early publications on S and R already emphasized the powerful graphics:

- Beckers and Chambers (1984): "S: An Interactive Environment for Data Analysis and Graphics".
- Ihaka and Gentleman (1996): "R: A Language for Data Analysis and Graphics".

Here: Brief introduction to "conventional" graphics as implemented in base R.

Even more flexible: grid graphics (Murrell 2005), enabling "trellis"-type graphics (Cleveland 1993) in package **lattice**. Not discussed here.

The function plot()

Generic function: plot(). Methods for many objects, including data frames, time series, and fitted linear models.

Basic: Default plot() method, creates various types of scatterplots. Many of the explanations below extend to other methods and high-level plotting functions.

Scatterplot: plot(x, y) produces a scatterplot of y vs. x.

The function plot()

Illustration: Relationship between the number of subscriptions and the price per citation for economics journals.

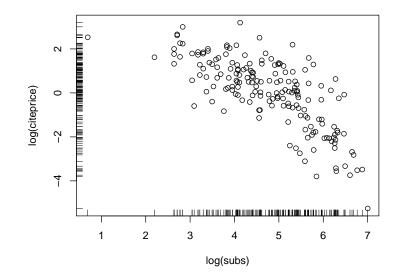
```
R> data("Journals")
R> Journals$citeprice <- Journals$price/Journals$citations
R> attach(Journals)
R> plot(log(subs), log(citeprice))
R> rug(log(subs))
R> rug(log(citeprice), side = 2)
R> detach(Journals)
```

Rug: rug() adds ticks, thus visualizing the marginal distributions of the variables.

Alternatively: Instead of attaching/detaching the data, one can use

```
R> plot(log(subs) ~ log(citeprice), data = Journals)
```

The function plot()



Graphical parameters

Modifications: plot() has many arguments, including

- type: modify plot type, e.g., points (type = "p", default), lines (type = "l"), both (type = "b"), stair steps (type = "s").
- main, xlab, ylab: modify title and axis labels.
- Further graphical parameters (see ?par) can be passed to plot() or set separately via par().
- col: set <u>col</u>or(s).
- xlim, ylim: adjust plotting ranges.
- pch: modify the plotting <u>ch</u>aracter for points.
- cex: corresponding character extension.
- lty, lwd: line type and width.
- cex.lab, cex.axis, cex.foo: size of labels, axis ticks, etc.

Graphical parameters

Argument	Description			
axes	should axes be drawn?			
bg	background color			
cex	size of a point or symbol			
col	color			
las	orientation of axis labels			
lty, lwd	line type and line width			
main, sub	title and subtitle			
mar	size of margins			
mfcol, mfrow	array defining layout for several graphs on a plot			
pch	plotting symbol			
type	types (see text)			
xlab, ylab	axis labels			
xlim, ylim	axis ranges			
xlog, ylog, log	logarithmic scales			

Graphical parameters

Example:

```
R> plot(log(subs) ~ log(citeprice), data = Journals, pch = 20,
+ col = "blue", ylim = c(0, 8), xlim = c(-7, 4),
+ main = "Library subscriptions")
```

Add further layers: lines(), points(), text(), legend().

```
R> text(-3.798, 5.846, "Econometrica", pos = 2)
```

Straight line: abline(a, b) with intercept a and slope b.

Further plotting functions: barplot(), pie() (pie charts), boxplot(), qqplot() (QQ plots), hist() (histograms).

```
Instructive overview: demo("graphics").
```

Exporting graphics

Storing graphical results: e.g., for publication in a report, journal article, or thesis.

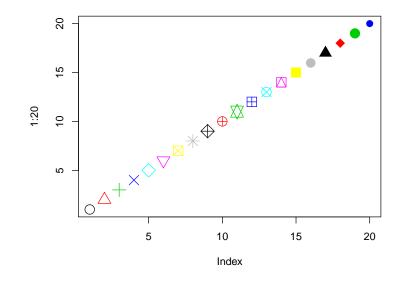
For Microsoft Windows and Microsoft Word: A simple option is to "copy and paste".

More generally: Create external files using a suitable graphics device. Devices available on all platforms include the vector formats PostScript and PDF. The bitmap formats PNG and JPEG and the vector format WMF are system-dependent. See ?Devices for details.

Usage: First the device is opened, then the plot commands are executed, and finally the device is closed by dev.off().

```
R> pdf("myfile.pdf", height = 5, width = 6)
R> plot(1:20, pch = 1:20, col = 1:20, cex = 2)
R> dev.off()
```

Exporting graphics



Exporting graphics

Details:

- Creates the PDF file myfile.pdf in the current working directory.
- Contains the graphic generated by the plot() call.
- The plot illustrates a few graphical parameters: 20 plotting symbols in double size and different colors (a basic set of colors is numbered).

Alternatively: Instead of opening, printing and closing a device, it is possible to print an existing plot in the graphics window to a device using dev.copy() and dev.print().

Mathematical annotation of plots

Overview: ?plotmath and demo("plotmath").

Syntax: Somewhat similar to LATEX.

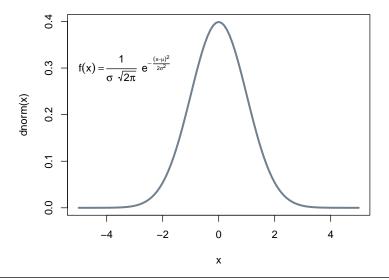
Illustration: Density of the standard normal distribution along with its mathematical definition.

$$f(x)=\frac{1}{\sigma\sqrt{2\pi}}\ e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

In R:

```
R> curve(dnorm, from = -5, to = 5, col = "slategray", lwd = 3,
+ main = "Density of the standard normal distribution")
R> text(-5, 0.3, expression(f(x) == frac(1, sigma ~~
+ sqrt(2*pi)) ~~ e^{- frac((x - mu)^2, 2*sigma^2)}), adj = 0)
```

Mathematical annotation of plots



Christian Kleiber, Achim Zeileis © 2008–2017

Basics

Exploratory Data Analysis with R

Christian Kleiber, Achim Zeileis © 2008-2017

Applied Econometrics with R - 2 - Basics - 84 / 101

Here: Brief introduction. More details in Dalgaard (2008).

Data: CPS1985 from Berndt (1991).

```
R> data("CPS1985")
R> str(CPS1985)
```

```
'data.frame': 534 obs. of 11 variables:

$ wage : num 5.1 4.95 6.67 4 7.5 ...

$ education : num 8 9 12 12 12 13 10 12 16 12 ...

$ experience: num 21 42 1 4 17 9 27 9 11 9 ...

$ age : num 35 57 19 22 35 28 43 27 33 27 ...

$ ethnicity : Factor w/ 3 levels "cauc", "hispanic",..: 2 1 1 1 1...

$ region : Factor w/ 2 levels "south", "other": 2 2 2 2 2 2 1 ...

$ gender : Factor w/ 2 levels "male", "female": 2 2 1 1 1 1 1 ...

$ occupation: Factor w/ 6 levels "worker", "technical",..: 1 1 1 1...

$ sector : Factor w/ 3 levels "manufacturing",..: 1 1 1 3 3 3...

$ union : Factor w/ 2 levels "no", "yes": 1 1 1 1 1 2 1 1 1...

$ married : Factor w/ 2 levels "no", "yes": 2 2 1 1 2 1 1 2 1...
```

Inspect top or bottom: head() or tail(), returning (by default) the first or last 6 rows.

R> head(CPS1985)

	wage	education	experience	ce	age	ethnicity	region	gender
1	5.10	8	2	21	35	hispanic	other	female
1100	4.95	9	4	12	57	cauc	other	female
2	6.67	12	!	1	19	cauc	other	male
3	4.00	12	1	4	22	cauc	other	male
4	7.50	12	: 1	17	35	cauc	other	male
5	13.07	13		9	28	cauc	other	male
	occupa	tion	sector	ur	nion	married		
1	WO	rker manu	facturing		no	yes		
1100	WO	rker manu	facturing		no	yes		
2	WO	rker manu	facturing		no	no		
3	WO	rker	other		no	no		
4	WO	rker	other		no	yes		
5	WO	rker	other		yes	no		

Overview: Summary by variable.

R> summary(CPS1985)

wage	educatio	n experienc	e age
Min. : 1.00	Min. : 2	Min. : 0.	0 Min. :18.0
1st Qu.: 5.25	1st Qu.:12	1st Qu.: 8.	0 1st Qu.:28.0
Median : 7.78	Median :12	Median :15.	0 Median :35.0
Mean : 9.02	Mean :13	Mean :17.	8 Mean :36.8
3rd Qu.:11.25	3rd Qu.:15	3rd Qu.:26.	0 3rd Qu.:44.0
Max. :44.50	Max. :18	Max. :55.	0 Max. :64.0
ethnicity	region	gender	occupation
cauc :440	south:156	male :289	worker :156
hispanic: 27	other:378	female:245	technical :105
other : 67			services : 83
			office : 97
			sales : 38
		1	management: 55
sect	or union	married	
manufacturing:	99 no :43	8 no :184	
construction :	5	6 yes:350	
other :	411		

Christian Kleiber, Achim Zeileis © 2008–2017

For compactifying input and output:

```
R> levels(CPS1985$occupation)[c(2, 6)] <- c("techn", "mgmt")
R> attach(CPS1985)
```

In the following:

- Exploratory analysis of a single numerical/categorical variable.
- Exploratory analysis of pairs of variables.

One numerical variable

Distribution of wages: Tukey's five-number summary and sample mean.

```
R> summary(wage)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. 1.00 5.25 7.78 9.02 11.25 44.50

Standalone functions: mean(), median(), min(), max(), fivenum().

```
R> mean(wage)
```

```
[1] 9.024
```

Arbitrary quantiles: quantile().

Measures of spread: variance and standard deviation.

```
R> var(wage)
[1] 26.41
R> sd(wage)
[1] 5.139
```

One numerical variable

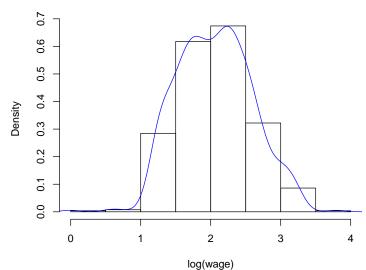
Graphical summary: Density visualizations (via histograms or kernel smoothing) and boxplots.

```
R> hist(log(wage), freq = FALSE)
R> lines(density(log(wage)), col = 4)
```

Details:

- Density of logarithm of wage (i.e., area under curve equals 1).
- Default: absolute frequencies, changed to density via freq = FALSE.
- Further fine tuning possible via selection of breaks.
- Added kernel density estimate.

One numerical variable



Histogram of log(wage)

One categorical variable

Appropriate summary chosen automatically for "factor" variables.

```
R> summary(occupation)
```

worker	techn	services	office	sales	mgmt
156	105	83	97	38	55

Alternatively: Use table() and also compute relative frequencies.

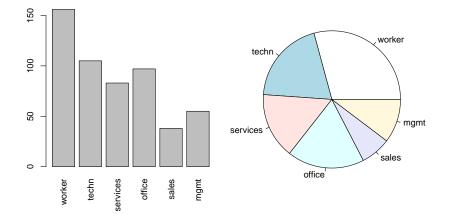
```
R> tab <- table(occupation)
R> prop.table(tab)
occupation
  worker techn services office sales mgmt
  0.29213 0.19663 0.15543 0.18165 0.07116 0.10300
```

Visualization: barplot(). If majorities are to be brought out, pie() charts might be useful. Both expect tabulated frequencies as input.

```
R> barplot(tab)
R> pie(tab)
```

plot(occupation) is equivalent to barplot(table(occupation)).

One categorical variable



Two categorical variables

Relationship between two categorical variables: Numerical summary: Contingency table(s) via xtabs() (with formula interface) or table(). Use table(gender, occupation) or

```
R> xtabs(~ gender + occupation, data = CPS1985)
```

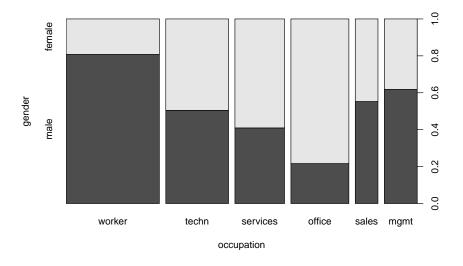
(occupati	ion				
gender	worker	techn	services	office	sales	mgmt
male	126	53	34	21	21	34
female	30	52	49	76	17	21

Graphical summary: Mosaic plot, a generalization of stacked barplots. The following variant is also called "spine plot":

```
R> plot(gender ~ occupation, data = CPS1985)
```

Bar heights correspond to the conditional distribution of gender given occupation. Bar widths visualize the marginal distribution of occupation.

Two categorical variables



Two numerical variables

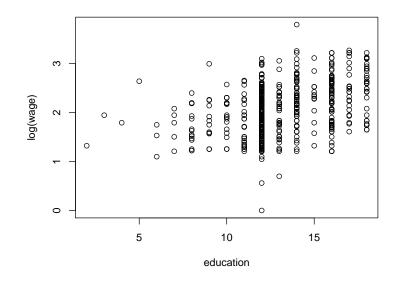
Numerical summary: Correlation coefficient(s) via cor(). Default is the standard Pearson correlation coefficient, alternatives include the nonparametric Spearman's ρ .

```
R> cor(log(wage), education)
[1] 0.3804
R> cor(log(wage), education, method = "spearman")
[1] 0.3813
```

Graphical summary: Scatterplot.

```
R> plot(log(wage) ~ education)
```

Two numerical variables



Numerical summary: Grouped numerical summaries (for the numerical variable given the categorical variable).

In R: tapply() applies functions grouped by a (list of) categorical variable(s). Mean wages conditional on gender are available using:

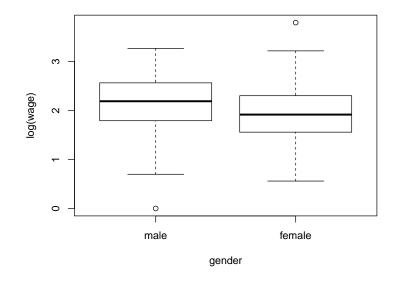
```
R> tapply(log(wage), gender, mean)
```

```
male female 2.165 1.934
```

Other measures: Replace mean by other function, e.g., summary.

Graphical summary: Parallel boxplos or quantile-quantile (QQ) plots. R> plot(log(wage) ~ gender)

The commands plot(y ~ x) and boxplot(y ~ x) both yield the same parallel boxplot if x is a "factor".



Boxplot:

- Coarse graphical summary of an empirical distribution.
- Box indicates "hinges" (approximately the lower and upper quartiles) and the median.
- "Whiskers" indicate the largest and smallest observations falling within a distance of 1.5 times the box size from the nearest hinge.
- Observations outside this range are outliers (in an approximately normal sample).

QQ plot indicates here that, for most quantiles, male wages are typically higher than female wages.

```
R> mwage <- subset(CPS1985, gender == "male")$wage
R> fwage <- subset(CPS1985, gender == "female")$wage
R> qqplot(mwage, fwage, xlim = range(wage), ylim = range(wage),
+ xaxs = "i", yaxs = "i", xlab = "male", ylab = "female")
R> abline(0, 1)
```

