distributions3
From Basic Probability to Probabilistic Regression

Achim Zeileis, Moritz N. Lang, Alex Hayes

https://alexpghayes.github.io/distributions3/
Background

distributions3: Probability distributions as S3 objects.

- Started by Alex Hayes in 2019.
- Early contributions from Ralph Moller-Trane, Daniel Jordan, Paul Northrop, . . .
- Geared towards introductory statistics courses.
- Beginner-friendly, well-documented, and lightweight interface.

Recently:
- Contributions from Moritz N. Lang and Achim Zeileis.
- Extension to vectors of distributions (of the same class).
- Extract probability distributions from models: `lm()`, `glm()`, `arima()`, . . .
- Infrastructure for assessing goodness of fit in `topmodels` package.
Background

distributions3: Probability distributions as S3 objects.

• Started by Alex Hayes in 2019.
• Early contributions from Ralph Moller-Trane, Daniel Jordan, Paul Northrop, . . .
• Geared towards introductory statistics courses.
• Beginner-friendly, well-documented, and lightweight interface.

Recently:

• Contributions from Moritz N. Lang and Achim Zeileis.
• Extension to vectors of distributions (of the same class).
• Extract probability distributions from models: \texttt{lm()}, \texttt{glm()}, \texttt{arima()}, . . .
• Infrastructure for assessing goodness of fit in \texttt{topmodels} package.
Design

Class constructors: For many distributions, e.g., `Normal()`, `Poisson()`, ...

S3 objects: Distributions are essentially data frames of parameters.

Methods: For standard tasks, e.g., `mean()`, `quantile()`, `cdf()`, `random()`, ...

Under the hood: Rely on the usual `d/p/q/r` distribution functions.
The Poisson distribution

Illustration: Poisson as classic distribution for count data.
The Poisson distribution

Illustration: Poisson as classic distribution for count data.

Probability mass function: For $y \in \{0, 1, 2, \ldots \}$ and parameter $\lambda > 0$.

$$\Pr(Y = y) = \frac{\exp(-\lambda) \cdot \lambda^y}{y!}.$$
The Poisson distribution

Illustration: Poisson as classic distribution for count data.

Probability mass function: For \(y \in \{0, 1, 2, \ldots \} \) and parameter \(\lambda > 0 \).

\[
\Pr(Y = y) = \frac{\exp(-\lambda) \cdot \lambda^y}{y!}.
\]

Example: \(Y \sim \text{Poisson}(\lambda = 1.5) \).

R> library("distributions3")
R> Y <- Poisson(lambda = 1.5)
R> print(Y)
[1] "Poisson distribution (lambda = 1.5)"
R> pdf(Y, 0:5)
[1] 0.22313 0.33470 0.25102 0.12551 0.04707 0.01412
The Poisson distribution

Moments:

```
R> mean(Y)
[1] 1.5
R> variance(Y)
[1] 1.5
```
The Poisson distribution

Moments:
R> mean(Y)
[1] 1.5
R> variance(Y)
[1] 1.5

Cumulative probabilities and quantiles:
R> cdf(Y, 0:5)
[1] 0.2231 0.5578 0.8088 0.9344 0.9814 0.9955
R> quantile(Y, c(0.1, 0.5, 0.9))
[1] 0 1 3
The Poisson distribution

Moments:
R> mean(Y)
[1] 1.5
R> variance(Y)
[1] 1.5

Cumulative probabilities and quantiles:
R> cdf(Y, 0:5)
[1] 0.2231 0.5578 0.8088 0.9344 0.9814 0.9955
R> quantile(Y, c(0.1, 0.5, 0.9))
[1] 0 1 3

Random numbers:
R> set.seed(0)
R> random(Y, 5)
[1] 3 1 1 2 3
Goals in the 2018 FIFA World Cup

Illustration: Goals scored by the two teams in all 64 matches.

Covariates: Basic match information and prediction of team (log-)abilities.

```r
R> data("FIFA2018", package = "distributions3")
R> head(FIFA2018)
goals team match type stage logability difference
1 5 RUS 1 A group 0.1531 0.8638
2 0 KSA 1 A group -0.7108 -0.8638
3 0 EGY 2 A group -0.2066 -0.4438
4 1 URU 2 A group 0.2372 0.4438
5 3 RUS 3 A group 0.1531 0.3597
6 1 EGY 3 A group -0.2066 -0.3597
```
Goals in the 2018 FIFA World Cup

Basic fitted distribution:

```r
R> p_const <- Poisson(lambda = mean(FIFA2018$goals))
R> p_const
[1] "Poisson distribution (lambda = 1.3)"
```
Goals in the 2018 FIFA World Cup

Basic fitted distribution:
R> p_const <- Poisson(lambda = mean(FIFA2018$goals))
R> p_const
[1] "Poisson distribution (lambda = 1.3)"

Alternatively:
R> p_const <- fit_mle(Poisson(lambda = 1), FIFA2018$goals)
Goals in the 2018 FIFA World Cup

Basic fitted distribution:

R> p_const <- Poisson(lambda = mean(FIFA2018$goals))
R> p_const
[1] "Poisson distribution (lambda = 1.3)"

Alternatively:

R> p_const <- fit_mle(Poisson(lambda = 1), FIFA2018$goals)

Observed and expected frequencies:

R> observed <- proportions(table(FIFA2018$goals))
R> expected <- pdf(p_const, 0:6)
Goals in the 2018 FIFA World Cup

Basic fitted distribution:
R> p_const <- Poisson(lambda = mean(FIFA2018$goals))
R> p_const
[1] "Poisson distribution (lambda = 1.3)"

Alternatively:
R> p_const <- fit_mle(Poisson(lambda = 1), FIFA2018$goals)

Observed and expected frequencies:
R> observed <- proportions(table(FIFA2018$goals))
R> expected <- pdf(p_const, 0:6)

Comparison:
R> tab <- 100 * rbind(observed, expected)
R> tab

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>observed</td>
<td>25.78</td>
<td>37.50</td>
<td>25.00</td>
<td>7.812</td>
<td>1.562</td>
<td>1.5625</td>
<td>0.7812</td>
</tr>
<tr>
<td>expected</td>
<td>27.34</td>
<td>35.45</td>
<td>22.99</td>
<td>9.938</td>
<td>3.222</td>
<td>0.8358</td>
<td>0.1806</td>
</tr>
</tbody>
</table>
Goals in the 2018 FIFA World Cup

R> barplot(tab, beside = TRUE)
Probabilistic regression

Extension: Poisson generalized linear model (with log link).

Regression: Number of goals per team explained by ability difference (based on bookmakers odds).

```r
R> m <- glm(goals ~ difference, data = FIFA2018, family = poisson)
R> lmtest::coeftest(m)
z test of coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | 0.2127 | 0.0813 | 2.62 | 0.0088 ** |
| difference | 0.4134 | 0.1058 | 3.91 | 9.3e-05 *** |
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Probabilistic regression

Extension: Poisson generalized linear model (with log link).

Regression: Number of goals per team explained by ability difference (based on bookmakers odds).

\[
R \textgreater m \leftarrow \text{glm(goals} \sim \text{difference, data = FIFA2018, family = poisson)}
R \textgreater \text{lmtest::coeftest(m)}
\]

z test of coefficients:

| Estimate | Std. Error | z value | Pr(>|z|) |
|----------|------------|---------|----------|
| (Intercept) | 0.2127 | 0.0813 | 2.62 | 0.0088 ** |
| difference | 0.4134 | 0.1058 | 3.91 | 9.3e-05 *** |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Probabilistic regression

Fitted probability distributions:

R> p_reg <- Poisson(lambda = fitted(m))
R> length(p_reg)
[1] 128
R> head(p_reg)

```
1   2
"Poisson distribution (lambda = 1.768)" "Poisson distribution (lambda = 0.866)"
3   4
"Poisson distribution (lambda = 1.030)" "Poisson distribution (lambda = 1.486)"
5   6
"Poisson distribution (lambda = 1.435)" "Poisson distribution (lambda = 1.066)"
```
Fitted probability distributions:
R> p_reg <- Poisson(lambda = fitted(m))
R> length(p_reg)
[1] 128
R> head(p_reg)

"Poisson distribution (lambda = 1.768)"
"Poisson distribution (lambda = 0.866)"
"Poisson distribution (lambda = 1.030)"
"Poisson distribution (lambda = 1.486)"
"Poisson distribution (lambda = 1.435)"
"Poisson distribution (lambda = 1.066)"

Convenience function:
R> p_reg <- prodist(m)
Probabilistic regression

Opportunities: Unification and simplification of many computations.
Probabilistic regression

Opportunities: Unification and simplification of many computations.

Domain-specific:
- Probabilities for match results (assuming independence of goals).
- Corresponding probabilities for win/draw/lose.
- Also for more refined predictions of expected goals.
Probabilistic regression

Opportunities: Unification and simplification of many computations.

Domain-specific:
- Probabilities for match results (assuming independence of goals).
- Corresponding probabilities for win/draw/lose.
- Also for more refined predictions of expected goals.

General modeling:
- Probabilistic forecasts.
- Scoring rules.
- Goodness-of-fit assessments.
Graphical model assessment

Question: Is the model calibrated?

```R
R> expected <- pdf(p_reg, 0:6)
R> head(expected, 4)
   d_0  d_1  d_2  d_3  d_4  d_5  d_6
1 0.1707 0.3017 0.2667 0.15721 0.06949 0.024571 0.0072403
2 0.4208 0.3642 0.1576 0.04548 0.00984 0.001703 0.0002457
3 0.3571 0.3677 0.1893 0.06498 0.01673 0.003444 0.0005911
4 0.2262 0.3362 0.2498 0.12377 0.04599 0.013669 0.0033857
R> expected <- colMeans(expected)
```

Rootogram: Visualize frequencies and their deviations on a square root scale.
Question: Is the model calibrated?

Idea: Compare observed and average expected frequencies.

```r
R> expected <- pdf(p_reg, 0:6)
R> head(expected, 4)
        d_0  d_1  d_2  d_3  d_4  d_5  d_6
1 0.1707 0.3017 0.2667 0.15721 0.06949 0.024571 0.0072403
2 0.4208 0.3642 0.1576 0.04548 0.00984 0.001703 0.0002457
3 0.3571 0.3677 0.1893 0.06498 0.01673 0.003444 0.0005911
4 0.2262 0.3362 0.2498 0.12377 0.04599 0.013669 0.0033857

R> expected <- colMeans(expected)
```
Graphical model assessment

Question: Is the model calibrated?

Idea: Compare observed and average expected frequencies.

R> expected <- pdf(p_reg, 0:6)
R> head(expected, 4)

<table>
<thead>
<tr>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1707</td>
<td>0.3017</td>
<td>0.2667</td>
<td>0.1572</td>
<td>0.06949</td>
<td>0.024571</td>
<td>0.0072403</td>
</tr>
<tr>
<td>0.4208</td>
<td>0.3642</td>
<td>0.1576</td>
<td>0.04548</td>
<td>0.00984</td>
<td>0.001703</td>
<td>0.0002457</td>
</tr>
<tr>
<td>0.3571</td>
<td>0.3677</td>
<td>0.1893</td>
<td>0.06498</td>
<td>0.01673</td>
<td>0.003444</td>
<td>0.0005911</td>
</tr>
<tr>
<td>0.2262</td>
<td>0.3362</td>
<td>0.2498</td>
<td>0.12377</td>
<td>0.04599</td>
<td>0.013669</td>
<td>0.0033857</td>
</tr>
</tbody>
</table>

R> expected <- colMeans(expected)

Rootogram: Visualize frequencies and their deviations on a square root scale.
Graphical model assessment

R> bp <- barplot(sqrt(observed), offset = sqrt(expected) - sqrt(observed),
+ xlab = "Goals", ylab = "sqrt(Frequency)")
R> lines(bp, sqrt(expected), type = "o", pch = 19, lwd = 2, col = 2)
R> abline(h = 0, lty = 2)
Graphical model assessment

```r
R> library("topmodels")
R> rootogram(m)
```
R> library("ggplot2")
R> theme_set(theme_minimal())
R> rootogram(m)
Graphical model assessment

Furthermore: Other visualizations supported in `topmodels`.

- Rootogram.
- PIT (probability integral transform) histogram.
- (Randomized) quantile residual Q-Q plot.
- Worm plot.
- Reliagram (reliability diagram).
Outlook

distributions3: Support for more distributions and models.

topmodels: Fully leverage *distributions3* infrastructure, introductory vignettes.

Moreover: Interface scoring rules from *scoringRules*.
References

Twitter: @AchimZeileis

Web: https://www.zeileis.org/