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Abstract

The implementation of a recently suggested class of structural change tests, which test for
parameter instability in general parametric models, in the R language for statistical computing
is described: Focus is given to the question how the conceptual tools can be translated into
computational tools that reflect the properties and flexibility of the underlying econometric
methodology while being numerically reliable and easy to use.

More precisely, the class of generalized M-fluctuation tests is implemented in the package
strucchange providing easily extensible functions for computing empirical fluctuation processes
and automatic tabulation of critical values for a functional capturing excessive fluctuations.
Traditional significance tests are supplemented by graphical methods which do not only vi-
sualize the result of the testing procedure but also convey information about the nature and
timing of the structural change and which component of the parametric model is affected by
it.
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1 Introduction

This paper is about combining two fields of econometric research—testing for structural change and
econometric computing—with the following focus: How can a general class of tests be translated
into a unified and sound implementation that reflects the conceptual properties of the theoretical
tests and allows for as much flexibility as possible in applications?
Structural change has been receiving attention in many fields of research and data analysis, in
particular in time series econometrics: to learn if, when and how the structure of the data gener-
ating mechanism underlying a set of observations changes. Starting from the Recursive CUSUM
test of Brown, Durbin, and Evans (1975) a large variety of fluctuation tests for structural change
has been suggested and Kuan and Hornik (1995) introduced a generalized and unifying framework
of fluctuation tests for linear regression models which has been extended to general parametric
models estimated with M-type estimators by Zeileis and Hornik (2003). Among the special cases of
this general class of tests are several well-known tests like the OLS-based CUSUM test (Ploberger
and Krämer 1992, 1996), the Nyblom-Hansen test (Nyblom 1989; Hansen 1992), the class of tests
of Hjort and Koning (2002) and the supLM , aveLM and expLM tests of Andrews (1993) and
Andrews and Ploberger (1994).
The generalized M-fluctuation test class provides a conceptual tool box for constructing structural
change tests in the following steps: 1. estimate the model which should be tested for structural in-
stabilities, 2. derive an empirical fluctuation process from the cumulative sums of the M-estimation
scores that is governed by a functional central limit theorem and that captures fluctuations over
time, 3. aggregate the empirical fluctuation process to a scalar test statistic, augmented by a suit-
able visualization technique. The idea for step 3 is that boundaries can be chosen that are crossed
by the limiting process (or some functional of it) only with a known probability α. Hence, if the
empirical fluctuation process crosses these theoretical boundaries the fluctuation is improbably
large and the null hypothesis of parameter stability can be rejected.
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Computing and computational methods play an important role in econometric practice and (ap-
plied) research. However, there is a broad spectrum of various possibilities of combining economet-
rics and computing: two terms which are sometimes used to denote different ends of this spectrum
are 1. computational econometrics which is mainly about methods that require substantial com-
putations (e.g., bootstrap or Monte Carlo methods), and 2. econometric computing which is about
translating econometric ideas into software. Of course, both approaches are closely related and
cannot be clearly separated, but this paper is mostly concerned with econometric computing in the
above sense and it is of interest beyond the structural change scope as it illustrates how a flexible
and general class of tests can be translated into a set of modern computational tools. We discuss
strategies for such an implementation based on language features including object orientation,
functions as first class objects, nested lexically scoped functions and incorporation of re-usable
components. These strategies are applied subsequently to the class of generalized M-fluctuation
tests which are implemented in the package strucchange written in the R language for statistical
computing (R Development Core Team 2005, see http://www.R-project.org/). R is an open-
source system that offers all of the language features indicated above and is one of the most used
environments for statistical computing—and although currently not the most popular language
for econometric computing, R also finds increasing attention among econometricians (Cribari-Neto
and Zarkos 1999; Racine and Hyndman 2002).
The remainder of this paper is organized as follows: Section 2 discusses the ideas and principles
used for turning conceptual into computational tools independent of the programming language
and in advance of the application to the problem of generalized M-fluctuation tests. Section 3 is
concerned with the computation of M-fluctuation processes and Section 4 with the computation
of the corresponding tests. In both sections, the underlying theory (established in Zeileis and
Hornik 2003) is briefly reviewed before the translation into the R language is described. Section 5
illustrates the usage of the software in the analysis of artificial and real-world data before a brief
summary and some conclusions are given in Section 6.

2 From conceptual to computational tools

2.1 Goals

What are desirable features of the implementation of an econometric procedure? It should be
easy to use, numerically reliable, computationally efficient, flexible and extensible and reflect the
features of the underlying conceptual method. In many situations, although not necessarily in
all, some of these desired features might be antagonistic: e.g., some computational efficiency can
usually be gained by sacrificing extensibility to a certain extent. Also, what is easy to use might be
very different for different types of users: here, we assume that the users are at least comfortable
with using a command line interface (CLI). Certainly, there are users that prefer simple graphical
user interfaces (GUIs), but in a scientific context this approach is typically too limited to reflect
the flexibility of a conceptual procedure. Furthermore, it is always possible to build a GUI on top
of some CLI application, if it should be necessary to communicate some more specific functionality
to a non-advanced group of users.
With the different goals stated above, what should be the guiding principle when implementing a
new procedure? We advocate that the implementation should always be guided by the properties
of the underlying procedure (while trying to ensure as much efficiency and accuracy as possible),
i.e., the resulting functions should do that what we think the method does conceptually. This
typically makes the functions easy to use for those who know the underlying methodology and,
vice versa, theoretical concepts can also be communicated by supplying software that is easily
applicable. And if the underlying method is flexible, such software often also becomes extensible
and flexible in a rather natural fashion. Just implementing how we perceive a certain method
and think about it may seem like a trivial principle, but many programs written today are still
not guided by the underlying theory but rather by the limitations that programming languages
used to have (and some still have), where programmers were forced to represent everything in
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numeric vectors and matrices only.1 Therefore, we will discuss briefly some language features that
are available in modern programming languages and how these might be useful to accomplish our
goals.2

2.2 Language features

Object orientation The advantages of object-orientated programming for statistical and econo-
metric computing are probably well-known and it is rather obvious how object orientation can help
to achieve the goals formulated in the previous paragraph: We can define classes whose instances
can be rather complex objects that represent an abstraction of a certain procedure or type of data.
And for these classes, methods performing typical tasks can be implemented (e.g., see Chambers
and Hastie 1992; Doornik 2002).

Functions as first-class objects This concept is not implemented in many statistical/econometric
computing environments and is thus not as well known as object orientation. It refers to functions
being a basic data type that can be passed as a formal argument to another function and that
can also be (part of) a return value of a function. To some degree this feature can be substituted
by object orientation: for example, if we want to write a function that carries out computations
based on the residuals of a fitted model (of arbitrary type), we could either assume the existence
of a method for extracting residuals (thus, rely on object orientation) or we could expect the
residual-extracting function as a second argument. Of course, both approaches can also be com-
bined: the formal method could be used unless some other function is specified. The latter two
approaches are more flexible—e.g., as there might be different kinds of residuals that could be of
interest and are not all supported by the formal method—and require less discipline from users
and developers when adding new functionality. Substituting functions as return values by means
of object orientation is more complicated (and less intuitive) as we will emphasize in the next
paragraph.

Lexical scope Lexical scoping—which is used here as a sloppy term for nested lexically scoped
functions—is only an issue if functions can create other functions as their return value: If these
returned functions have free variables (i.e., neither formal parameters nor local variables), the
scoping rules determine where the values for these symbols are searched. With lexical scoping the
values for free variables are stored in the so-called function closure, i.e., in the environment in which
the function was created. This avoids carrying out computations several times in different places,
yielding simpler and more intelligible implementations. Lexical scope has many applications in
statistics (see Gentleman and Ihaka 2000), e.g., for computing distributions, bootstrapping or
optimization. A simple example would be the computation of a maximum likelihood estimate.
In a first step, the likelihood function could be set up by taking the data as input and returning
a function that only depends on the parameters. Thus, the data would not have to be passed
around explicitly and we could focus on the object of interest: the likelihood as a function of the
parameters. In a second step, this function could be passed on to the optimizer which can return
the estimated parameters. See Gentleman and Ihaka (2000) for a detailed discussion.

Compiled code For most programmers it is easier and more convenient to write in interpreted
languages, but efficiency can be gained if compiled code is used. To enjoy the advantages of both,
there are different approaches: some interpreted languages allow for (byte) compilation, others
allow for dynamic linking of compiled code such that the more convenient user interface in inter-
preted code is retained while doing the number crunching in compiled code. When implementing a

1Of course, every implementation is limited by the features of the language it is written in, but there are certainly
more flexible tools available than exploited by many programmers of econometric functions.

2This discussion should serve as a motivation and is thus rather non-technical and in some places not very precise
from a computer-scientific perspective.
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new procedure, developers should be aware of both possibilities and try to combine computational
efficiency with a user-friendly interface.

Re-usable components This is not strictly a programming language feature in a computer-
scientific sense, but important for the choice of the environment in which a new procedure should
be implemented and hence discussed here. Of course, it is desirable that the environment chosen
provides components that new functions can build on—and that encourages programmers to im-
plement procedures that can again be used as building blocks by others. Thus, ideally we want to
use a system that already provides us with many tools, and it should be used in such a way that
existing functionality is not re-implemented. Similarly, the new programs should also be written
in such a fashion that the functionality is easily accessible to other developers which can in turn
re-use these new building blocks. For example, for doing computations in a standard model, e.g.,
linear regression, a numerically reliable OLS fitter for linear models should be provided by the sys-
tem (and not be re-implemented by the programmer), whereas for computations in non-standard
models, the new fitter for such a model should be provided by the developer as a stand-alone
function (for other developers to use) and further computations should only be done subsequently
(and not both steps in a single function).
To sum up, these features could be combined in a strategy for implementing an econometric
procedure: First, it needs to be clear what the important properties of the conceptual method are
that is going to be implemented. Then, an abstraction in the form of a function, an object, or a
class structure reflecting these properties can be created. If possible, this should build on existing
functions and classes, and if necessary, computationally intensive parts can be placed into more
efficient compiled code. Employing a functional approach for this, is typically more intuitive as
it corresponds to the way we deal with many methods analytically. Hence, where appropriate,
procedures should take functions as arguments and return functions (which might be simplified if
nested lexically scoped functions are available).
Although none of the features discussed above are really new, and have been available in some
form in statistical computing environments for about 10-15 years, many programmers still use
languages that provide very little support in these directions or they use the languages as if they
did not provide these features: i.e., what is implemented more often than not are single monolithic
functions that return a lot of potentially useful output given some starting information. This
might be considered to be ‘easy to use’ if one is only interested in this particular procedure, but
such programs are usually hard to extend and whether or not they are reliable is also often by no
means obvious.

2.3 A simple example

With respect to the main topic of this paper “implementing a class of structural change tests”, the
principles discussed are still very vague. The reason is that it is difficult to give general rules or
guidelines for the implementation of tests because they depend so heavily on the challenges the
particular class of tests poses. Nevertheless, before going into details about how this problem is
solved for the specific class of generalized M-fluctuation tests, some aspects should be motivated
that typically occur when implementing a model-based test with a non-standard distribution.
Let us assume that there are different types of models from which we can extract some quantity
of interest (e.g., residuals, scores or coefficients) based on which a test statistic should be derived.
Furthermore, the (asymptotic) distribution is not known, non-standard or does depend on the
data, such that it has to be approximated by some sort of simulation. To translate this into a
function modeltest, in the first step the fitted model needs to be computed: we can either expect
the user to have done that, or do it ourselves by asking the user for a model specification plus a
model fitter. Or we can support both and interpret the corresponding argument as a fitted model
if no fitting function is supplied and regard it as a model specification if a fitter is specified. In a
second step, an extractor function is needed that computes the residuals, say, for which a method
to a generic function is available. Therefore, the arguments of the function modeltest could be
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modeltest(obj, fit = NULL, extractor = residuals, n = 10000)

where obj has to be either a fitted model (when fit = NULL) or a model specification to be fitted
by fit. The extractor function is by default residuals but could be set to some other function.
The argument n should be the number of simulated replications for the distribution of the test
statistic. The body of the function would then have

obj <- if(!is.null(fit)) fit(obj)

statistic <- compute_statistic(extractor(obj))

sim_stat <- simulate_statistic(n, extractor(obj))

p_fun <- function(x) sum(sim_stat > x)/n

q_fun <- function(x) quantile(sim_stat, x)

return(list(fitted_model = obj,

statistic = statistic,

p_value = p_fun(statistic),

p_fun = p_fun,

q_fun = q_fun))

First, the model is fitted (if necessary), then the test statistic is computed based on the quan-
tity of interest, and n simulated replications from the distribution of the statistic are generated
under the null hypothesis. Here, we assume that compute_statistic is a known function and
simulate_statistic is an algorithm like bootstrap, MCMC, permutation or simulation from an
asymptotic distribution. Based on the n replications sim_stat the empirical p value function
p_fun and the empirical quantile function q_fun can be defined. Finally, model, statistic, p value,
p value function and quantile function can be returned. The latter two are defined using lexical
scoping, the free variables sim_stat and n are not exported and only stored in the closure of the
functions. So the question could be asked why we should return these at all or why not simply
return sim_stat instead? The simulated distribution can be useful for other tasks, e.g., visualizing
critical values (at user-defined significance levels not known in advance) so it should be stored in
some way; and as we are typically interested in the distribution only for computing critical values
and p values, this interface is much more convenient and the p_fun and q_fun should not have to
be set up again every time another method is applied.
Although this example is very simple, it clarifies some of the basic ideas for the implementation
expounded in the following. The class of M-fluctuation tests poses a few further challenges, not
yet addressed: in particular, the function called compute_statistic above on which all further
steps like simulation or visualization depend can also be user-defined. For the implementation we
exploit all language features discussed in the previous section except compiled code because all
computations carried out are fairly simple. The bottleneck for M-fluctuation tests is typically the
model-fitting and not the computation of the test statistic. Our implementation is object-oriented
and relies on nested lexically scoped functions and builds on/provides re-usable components. The
only comprehensive system offering statistical functionality and high quality computer graphics
that incorporates all of the required features is the R system for statistical computing. Other
object-oriented systems such as Ox or MATLAB, which are probably more popular for econometric
tasks, could also be used but certain tasks would have to solved differently than described here.
In languages without object orientation, such as GAUSS, it would be very hard to derive an
implementation with the same generality as our suggested solution.

2.4 Software delivery

Another advantage of using R is that software delivery—a very important issue when new software
is implemented—is simple: in our case, the generalized M-fluctuation tests are implemented in
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the package strucchange (Zeileis, Leisch, Hornik, and Kleiber 2002; Zeileis, Kleiber, Krämer, and
Hornik 2003)—mainly in the new functions gefp and efpFunctional—which is, like R itself,
available at no cost under the terms of the general public licence (GPL) from the comprehensive
R archive network at http://CRAN.R-project.org/. Therefore, the software can not only be
used by everyone interested, the whole source code can be inspected. Hence, with the wording
from Claerbout’s principle (see Leisch and Rossini 2003, for a discussion), this article is not only
an advertisement for a scholarship (in form of the strucchange package), the scholarship itself is
also freely available. This assures easy reproducibility of the results in this paper; an issue which
received increased attention in both statistics and econometrics (McCullough and Vinod 2003).

3 Generalized M-fluctuation processes

3.1 Theory

In structural change problems, it is of interest to test the hypothesis that the parameters of a
certain model remain constant over all observations against the alternative that they change over
“time”.
More formally, we have a parametric model with k-dimensional parameter θi for n ordered obser-
vations of a possibly vector-valued variable Yi (i = 1, . . . , n). Under the assumption that for each
observation at time i there is a parameter θi such that the model holds, the null hypothesis is that
the parameters are constant over the full sample period

H0 : θi = θ0 (i = 1, . . . , n)

which is tested against the alternative that θi changes over “time”. The tests described in the
following have power against various patterns of departures from parameter constancy. In time
series applications, the observations are typically ordered with respect to time, but different order-
ings may be more natural in other applications: e.g., ordering with respect to a specific prognostic
factor in biometric studies or with respect to income in economic models.
The idea of the tests is to estimate the parameter vector once for all n observations based on an
M-estimation score function ψ(·) which has zero expectation at the true parameters E(ψ(Yi, θi)) =
0 and to use the (scaled) cumulative sum process of these scores to detect instabilities in the
parameters. The full sample M-estimator is implicitly defined by

n∑
i=1

ψ(Yi, θ̂) = 0. (1)

This includes various estimation techniques as special cases, such as ordinary least squares (OLS),
maximum likelihood (ML), instrumental variables (IV), (generalized) estimating equations (GEE),
robust M-estimation, Quasi-ML. Generalized method of moments (GMM) is also closely related
to this class of estimators.
Under parameter stability, the scores ψ(Yi, θ̂) have zero mean but under the alternative there will
be systematic deviations from zero which can be captured using the cumulative sum process of
the scores:

Wn(t) = n−1/2

bntc∑
i=1

ψ(Yi, θ̂). (2)

It can be shown that for this process a functional central limit theorem (FCLT) holds which implies
that the process W (·) converges to a process Z(·) that is a Gaussian process with zero mean and
covariance function COV[Z(t), Z(s)] = min(t, s) ·J , where J is the (asymptotic) covariance matrix
of the scores ψ. Usually, this covariance structure can easily be estimated, the simplest estimator
being

Ĵ = n−1
n∑

i=1

ψ(Yi, θ̂)ψ(Yi, θ̂)>, (3)
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but under heteroskedasticity or serial correlation more elaborate estimators that are consistent
under weaker assumptions should be used, e.g., HC (White 1980; Cribari-Neto 2004) or HAC type
estimators (Andrews 1991; Lumley and Heagerty 1999). Given such a consistent covariance matrix
estimate Ĵ the decorrelated empirical fluctuation process efp(·) can be computed

efp(t) = Ĵ−1/2Wn(t), (4)

which converges to a Brownian bridge W 0(·)

efp(·) d−→ W 0(·). (5)

This FCLT provides the probabilistic basis for the structural change tests in Section 4 but before
that the implementation of the generalized M-fluctuation processes efp(·) is discussed.

3.2 Implementation

For computing an empirical fluctuation process efp(·) defined in Equation (4) the estimate of the
model parameters θ̂ is required. In principle, it would be sufficient to specify the data Yi and
the score function ψ(·) for which Equation (1) could be solved by some generic optimizer. But in
practice, this could lead to severe numerical problems as different functional forms of ψ(·) usually
require different optimization techniques. Fortunately, we do not need to re-invent the wheel here
as we can use existing well-established R functions to fit many popular models and we just need
to extract the scores or estimating functions at the fitted model. This has two advantages: 1. the
usual model specification interface can be used for fitting a model and 2. the numerical accuracy
and computational efficiency of the model fitting functions already available in R can be exploited.
Thus, we just need a model fitter with corresponding model specification and a function to extract
the scores ψ(Yi, θ̂) and then we can provide infrastructure to compute the empirical fluctuation
process efp(·) based on these. Furthermore, it would be desirable to plug in a covariance matrix
estimator for Ĵ which is also evaluated at the fitted model so that neither the model/scores nor
the covariance matrix estimate has to be computed by the user beforehand.
These ideas have been implemented in the function gefp in the package strucchange. The most
important arguments of gefp are:

gefp(..., fit = glm, scores = estfun, vcov = NULL, data = list())

where ... can be an arbitrary model specification which is passed together with the data (a
data.frame that holds the data and is by default empty) to the model fitting function fit—by
default glm for fitting generalized linear models (GLMs). If fit is set to NULL, ... is assumed to
be already the fitted model. The argument scores is the function responsible for extracting the
matrix of scores (ψ(Yi, θ̂)) from the fitted model—by default this is the generic function estfun
which has methods for extracting the estimating functions (or scores) from linear models (fitted
by lm), GLMs including logit and probit models (fitted by glm) and robust regressions (fitted by
rlm in MASS). The argument vcov is a function for computing some covariance matrix estimate
Ĵ—by default it is defined to compute the estimate defined in Equation (3).
The essential steps carried out by gefp in computing efp(·) are:

fm <- if(is.null(fit)) list(...)[[1]]

else fit(..., data = data)

psi <- scores(fm)

J <- vcov(fm)

n <- nrow(psi)

process <- apply(psi, 2, cumsum)/sqrt(n)

Thus, in a first step the model fitting function is applied (if necessary) to the model specification
and the data, yielding a fitted model fm. From this the scores psi and the covariance matrix esti-
mate J are extracted before the cumulative sum process process from Equation (2) is computed.
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Note, that the arguments fit, scores and vcov are all full functions whose evaluation is taken
on by gefp and does not have to be done by the user.
Of course, the actual function gefp is much longer and provides several additional features, but
the code above contains the core steps which have been just slightly simplified to illustrate the
procedure. The function gefp then returns an object of class "gefp" which contains in particular
the empirical fluctuation process along with some meta-information such as the fitted model. The
full list of arguments is

gefp(..., fit = glm, scores = estfun, vcov = NULL, data = list(),

fitArgs = NULL, order.by = NULL,

sandwich = TRUE, parm = NULL, decorrelate = TRUE)

The arguments in the first line have already been discussed above. The arguments in the second
line provide a way to specify further arguments to fit via fitArgs and order.by can be used to
define an ordering, e.g., based on a regressor, while the default is that the observations are already
ordered. The third line gives a few arguments that allow for finer control of the computation of
the empirical fluctuation process: sandwich specifies whether the matrix computed by vcov is
the full sandwich estimate or only the “meat” of the sandwich; parms can be set to a subset of all
parameters estimated, corresponding to selecting only a few columns of the fluctuation process and
decorrelate specifies whether the process should be decorrelated by multiplication with Ĵ−1/2

or whether the process should only be scaled using the diagonal elements of Ĵ−1/2. The latter is
useful if only a single CUSUM-type process of “residuals” should be computed.
By now, we can compute a fitted object representing an empirical fluctuation process for which
the limiting process is known. This is the basic probabilistic ingredient for computing the limiting
distribution for the significance tests discussed in the next section.

4 Generalized M-fluctuation tests

4.1 Theory

In the previous section, we derived an empirical fluctuation process efp(·) (see Equation (4)) that
is able to capture instabilities in the parameter estimates of a model. It is already possible to
visually inspect this process for excessive fluctuations but for inference we want to aggregate it
to a test statistic using some scalar functional λ(efp) that brings out deviations from the limiting
process.
What are sensible choices for λ(·)? In finite samples, the process is essentially a matrix (efpj(i/n))i,j

with i = 1, . . . , n corresponding to“time”points and j = 1, . . . , k corresponding to the independent
components of the process which are typically components of the parameter vector θ. Hence, two
strategies for constructing a test statistic are straightforward: 1. We can aggregate the process
over time first, yielding k independent test statistics each associated with one component of the
process. 2. We can first aggregate over the components yielding a fluctuation process which can
reveal the timing of a potential structural change. More formally, this means that in most situ-
ations we can split λ into two parts: λtime and λcomp for aggregation over time and components
respectively. Typical choices for λtime are the absolute maximum L∞, the mean or range—and
for λcomp again L∞ or the squared Euclidean norm L2 (see Hjort and Koning 2002, for more
examples). Depending on the order of the aggregation, as pointed out above, either the timing of
the shift or the component affected by it can be identified.
The only functional which allows for both interpretations is the double maximum statistic

max
i=1,...,n

max
j=1,...,k

∣∣∣∣efpj(i/n)
b(i/n)

∣∣∣∣ , (6)

where L∞ is used for aggregation in both directions and the null hypothesis of stability is rejected
when the maximum exceeds some boundary function b(t) which is typically chosen to be constant,
i.e., b(t) = 1.
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Another popular statistic (e.g., used by Nyblom 1989; Hansen 1992, among others) is the Cramér-
von Mises statistic which has some optimality properties for random walk alternatives. It can be
constructed by aggregating first over the components using the squared Euclidean norm L2 and
then over time by taking the mean.

n−1
n∑

i=1

||efp(i/n)||22 . (7)

In situations where there is shift in the parameters and then a second shift back, it is advantageous
to aggregate over time using the range and reject if the maximum range becomes too large. The
corresponding test statistic is

max
j=1,...,k

rangei=1,...,nefpj(i/n). (8)

Critical values for arbitrary functionals can easily be obtained by simulation of λ(W 0): justified
by the FCLT from Equation (5) we can simulate Brownian bridges and apply the functional λ(·)
to them to obtain a sample from the limiting distribution of the test statistic. In certain special
cases, closed form solutions are also known: series expansions are available for functional (6) with
constant boundary (Ploberger and Krämer 1992) and functional (8) (?). For the functional (7),
simulated asymptotic critical values can be found in Hansen (1992).

4.2 Implementation

Given the flexibility of the generalized M-fluctuation test framework described in the previous
section, we would like to have an implementation that reflects this flexibility and provides support
for the full class of tests and not only certain special cases. Therefore, we want to translate the
simple conceptual idea of applying an arbitrary functional λ to an empirical fluctuation process efp
into an equally simple computational tool where we just need to specify the functional and can then
apply it to "gefp" objects containing the empirical fluctuation process. The implementation idea is
that based on a specification of the functional critical values are simulated (or a closed form solution
is used if supplied), a sensible visualization technique is chosen which reflects the properties of the
test statistic and then an integrated object is returned which knows about process visualization,
computation of the test statistic and the corresponding p values. Thus, this object provides
infrastructure which can be used by methods for the generic functions plot for visualization and
sctest (structural change test) for significance testing.
Of course, the simulation of critical values could in principle also be carried out on the fly, but as
many rather high-dimensional processes might have to be generated for obtaining reliable p values
this can be burdensome and it makes the usage much easier if p values are just simulated once and
stored in a suitable object. At first sight, this does not seem very different from the traditional
approach of producing printed tables of critical values, but it has two advantages: 1. Producing
and printing tables as well as looking at them is tedious. Users are usually not really interested
in the table itself but only in the computation of a critical value, or preferably a p value, and it is
much more convenient if the computer handles the look-up. 2. It gives the user much more freedom
and flexibility in trying out new functionals by quickly simulating critical values based on a smaller
number of replications which gives sufficiently good results for exploration. When more reliable
p values are needed, production quality tables can be computed by more extensive simulations
with a higher number of replications and stored again in a convenient integrated object.
For several frequently used functionals such objects are readily available in strucchange including
maxBB for the double maximum functional from Equation (6), meanL2BB for the Cramér-von Mises
functional from Equation (7) and rangeBB for the range test from Equation (8).
New objects for user-specified functionals can be easily generated with the function efpFunctional
whose most important arguments are
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efpFunctional(

functional = list(comp = function(x) max(abs(x)), time = max),

boundary = function(x) rep(1, length(x)),

computePval = NULL, computeCritval = NULL,

nobs = 10000, nrep = 50000, nproc = 1:20)

Obviously, the most important argument is functional which can either be a single function or
a list of two functions named comp and time to be applied in the order of appearance. Hence, the
default is to first aggregate over the components using the absolute maximum and then over time
using the maximum. The boundary argument is used for weighting of the process after the first
of the two parts of the functional has been applied, the default is a constant boundary. If either
of the arguments computePval or computeCritval is specified, they are used for computing the
limiting distribution, otherwise it is simulated using the settings in nobs, nrep and nproc.
The function computePval has to take two arguments, the test statistic and the number of pro-
cesses k, and has to return the corresponding p value. computeCritval is the inverse function,
i.e., given a significance level and the number of processes k it should return the corresponding
critical value. If neither of those functions is specified (i.e., both set to NULL) nrep replications
of nproc-dimensional Brownian bridges, each consisting of nobs observations, are generated and
subsequently the specified functional is applied to obtain a sample from λ(W 0). The empirical
quantile function evaluated at a grid of p values is then used for computing a table of critical
values. By default, the p values are in 0.1% steps up to 15% and in 1% steps up to 100% (but
could be changed using the argument probs not listed above). If nproc is set to NULL only a
1-dimensional Brownian bridge is simulated and p values for higher-dimensional processes are
derived from a Bonferroni correction: i.e., if p is the 1-dimensional p value the k-dimensional
p value is 1− (1− p)k. This is appropriate and saves a lot of computation time if the independent
component statistics are aggregated using the maximum.
An object created by efpFunctional is of class "efpFunctional" and has slots with functions
plotProcess, computeStatistic and computePval that are defined based on lexical scoping.
That is, although basically the usual table of significance levels and critical values has been tab-
ulated internally, the user is provided with a much more convenient interface for performing
significance tests. In a language without nested lexically scoped functions, a workaround would
be to return the classical table of critical values and to set up the functions separately again in
each of the methods applied subsequently.
The plotProcess function chooses a suitable visualization technique for the particular functional
specified. Either it produces a time series plot if λcomp is applied first or it produces a histogram-
like line plot if λtime is applied first. In both cases, the boundary representing the critical value
is added and if a functional other than the maximum is applied second a dashed line representing
the test statistic is drawn. This allows for carrying out the significance test graphically and at the
same time conveying information about the timing and/or the component of the shift. If different
visualization techniques should be applied a suitable function plotProcess can be supplied in the
call to efpFunctional.
The various options in efpFunctional provide the fine control required for incorporating the
heterogeneous possibilities covered by the underlying M-fluctuation test theory. But in most
situations, the application of the functions is very easy at the user-level: first, an empirical fluc-
tuation process object gefp.obj for a certain model is fitted by gefp and second a functional
object efpFun.obj can be computed by efpFunctional (if not already available in strucchange).
Subsequently, significance tests can be carried out by visualization or in the traditional way by
computing a test statistic and a p value. In R, the commands are simply

plot(gefp.obj, functional = efpFun.obj)

sctest(gefp.obj, functional = efpFun.obj)

using the methods for the generic functions plot and sctest. Examples based on artificial and
real-word data are provided in the next section.
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5 Applications and illustrations

In this section, we apply the previously established conceptual and computational tools to two real-
world data sets which exhibit structural changes. In both cases, GLMs are fitted to the data, the
corresponding ML scores are used for constructing the empirical fluctuation processes and several
combinations of λcomp and λtime functionals are used for visualizing the corresponding significance
tests. In addition, two artificial data sets are used to illustrate how non-standard regression
techniques can easily be plugged into the functions discussed. More specifically, generalized M-
fluctuation tests will be used for detecting parameter instabilities in beta regression (Ferrari and
Cribari-Neto 2004).
The R commands presented are sufficient for reproducing the results.

5.1 Boston homicides

The “Boston Gun Project” was launched in the mid-1990s to address the problem of high youth
homicide rates in Boston. This policy intervention implemented the “Operation Ceasefire” which
aimed at lowering the homicide rate by a deterrence strategy. As it is unknown when this inter-
vention became effective Piehl, Cooper, Braga, and Kennedy (2003) use modified versions of the
supF test (Andrews 1993) to assess whether the project was a success.
Here, we use a simple Poisson GLM for the mean number of youth homicides per month, the
corresponding time series is depicted in the left panel of Figure 1. As the additional regressors
population and seasonality used by Piehl et al. (2003) in their model A have no significant influence
at a 5% level we just fit an intercept to the data. The null hypothesis of a constant mean over the
full sample period from 1992(1) to 1998(5) is tested with the M-fluctuation test based on the ML
scores of the GLM and a quadratic spectral kernel HAC estimator (Andrews 1991) with VAR(1)
prewhitening and automatic bandwidth selection based on an AR(1) approximation for estimating
the covariance matrix Ĵ .
The package strucchange and the Boston homicide data contained in the package are loaded via

R> library(strucchange)

R> data(BostonHomicide)

Then, we can fit the empirical fluctuation process using the function gefp:

R> bh.efp <- gefp(homicides ~ 1, family = poisson, data = BostonHomicide,

+ vcov = kernHAC)

The formula homicides ~ 1 and the family = poisson arguments are passed together with the
data frame BostonHomicide to the default fitting function glm which fits a Poisson GLM for the
intercept of the homicides time series. The vcov argument is set to the function kernHAC which is
contained in the package sandwich (Zeileis 2004b), that is required by strucchange and implements
the kernel HAC estimator.
For assessing the significance of any changes in the mean number of youth homicides the Cramér-
von Mises statistic from Equation (7) is used which is already available as the "efpFunctional"
object meanL2BB in strucchange. The significance test can be carried out by

R> sctest(bh.efp, functional = meanL2BB)

M-fluctuation test

data: bh.efp
f(efp) = 0.9337, p-value = 0.005

yielding a test statistic of 0.934 with a highly significant approximate asymptotic p value of 0.005
(the lowest p value stored in meanL2BB). A more informative way of performing the same test is
the visualization produced by
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Figure 1: Boston homicides (left) and empirical M-fluctuation process with mean L2 norm (right).

R> plot(bh.efp, functional = meanL2BB)

The resulting display can be found in the right panel of Figure 1 which conveys two messages:
1. As the test statistic (visualized by the dashed horizontal line) exceeds its default 5% critical
value (solid horizontal line) there is evidence for a change in the mean number of youth homicides.
2. The peak in early 1996 suggests that there has been a single shift in the mean at around that
time. The corresponding segmented regression model with an estimated changepoint in 1996(7)
(estimated by maximizing the segmented likelihood) is depicted in the left panel of Figure 1.

5.2 Austrian national guest survey

To illustrate the usage of the M-fluctuation test framework in other scenarios than time series
regression, we analyze data provided by the Austrian national tourist office from the Austrian
national guest survey about the summer seasons 1994 and 1997. Aggregated data from this
survey are available from TourMIS (http://tourmis.wu-wien.ac.at/), an online Marketing-
Information-System for tourism managers, a subset of the disaggregated data are analyzed in
Dolnicar and Leisch (2000). The subset of the data used in this paper can be obtained from
http://www.ci.tuwien.ac.at/~zeileis/data/gsa.rda and then loaded by load("gsa.rda").
In the following, we investigate how the preference for cycling as a summer vacation activity
varies with the available socio-economic indicators using a logistic regression model based on the
variables Cycle (cycling done/not done), Age (age in years), HHIncome (household income in ATS
per month), Gender (male/female) and Year (1994/1997). The gender has only a slight but
significant influence on the preference for cycling so for simplicity the model is fitted just for the
subset of 6256 male tourists which does not substantially change the results of the parameter
instability tests presented below. The year has a significant influence—cycling became on average
slightly more popular from 1994 to 1997—and a polynomial of degree 2 in age is appropriate—
cycling becomes increasingly less popular for older tourists. However, the household income is
not significant and hence was not included in the logistic regression model. As changes in the
preference for cycling with income would seem intuitive, we test the structural stability of the
coefficients of the logistic regression model over log-income.3

3Of course, ordering by income would yield equivalent results, but the graphics are much more intelligible if a
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In R, logistic regression models are fitted as binomial GLMs, again via the function glm. There-
fore, the empirical M-fluctuation process can be constructed from the ML scores of the model
Cycle ~ poly(Age, 2) + Year using the following call to gefp:

R> gsa.efp <- gefp(Cycle ~ poly(Age, 2) + Year, family = binomial,

+ data = gsa, order.by = ~log(HHIncome), parm = 1:3)

The order.by argument specifies that changes over increasing (log-)income should be detected
and parm = 1:3 specifies that only the first three parameters (intercept and the two coefficients
of the age polynomial) are tested, i.e., we do not test for changes in the year effect as interaction
between income and year seems less plausible.
To assess the parameter stability in this model several versions of the double maximum statistic
from Equation (6) are used in order to illustrate the usage of efpFunctional. First, we use the
version with a constant boundary already available in the maxBB object which first aggregates
over the components and then over time. The command plot(gsa.efp, functional = maxBB)
produces a plot of the aggregated process which crosses its 5% level boundary—hence, there are
significant parameter instabilities in the model—and shows two peaks at about the lower quartile
9.99 and upper quartile 10.65 of log-income which can be interpreted as the “timing” of the shifts.
To additionally reveal the component of the shift we look at the non-aggregated process: as pointed
out in Section 4 the double maximum tests are the only which allow for both identification of timing
and component of structural changes which means that in the visualization also boundaries for
the non-aggregated process can be plotted. Such a display for the same functional is produced by

R> plot(gsa.efp, functional = maxBB, aggregate = FALSE)

whose results are shown in Figure 2. It shows that both the intercept and the quadratic term
in the age polynomial exhibit structural instabilities over income as the corresponding processes
cross their boundaries with peaks at the “times” described above. The first shift affects the
quadratic age term and the second shift the intercept; the linear term shows some fluctuations
at both points but none of which are significant. These instabilities show that the income has a
significant influence on the preference for cycling and that there is also an interaction effect with
age. However, this influence is not linear—otherwise this would have been picked up by including
the variable log(HHIncome) into the regression model—but somewhat step-shaped. The reason is
that for tourists with a low income (below the lower quartile) cycling is much more popular with
young tourists and less popular with middle-aged tourists compared to the higher income groups.
The corresponding formal significance test can be carried out by calling sctest(gsa.efp, func-
tional = maxBB) which gives a test statistic of 2.059 and a highly significant asymptotic p value
of 0.001.
To illustrate the usage of efpFunctional, we consider two other versions of double maximum
tests with a different aggregation strategy (dmax1) and a different boundary function (dmax2) .
The functional dmax1 created by

R> dmax1 <- efpFunctional(functional = list(time = function(x) max(abs(x)),

+ comp = max), computePval = maxBB$computePval)

produces an equivalent test with the same test statistic as maxBB, hence the same closed-form
p value function can be used. The only difference is the order of aggregation: dmax1 first aggre-
gates over time and then over the components which leads to a different visualization: the output
of plot(gsa.efp, functional = dmax1) is depicted in the left panel of Figure 3. It gives the
same results as in Figure 2—the coefficients for the intercept and the quadratic term in the age
polynomial are responsible for the shift—it just provides another (and for this particular combi-
nation of functionals less informative) view on the same process. The output of sctest(gsa.efp,
functional = dmax1) is identical to that using maxBB described above. If a functional should

log-scale is used.
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be applied which leads to a similar visualization but where the order of aggregation cannot be
interchanged, the range test via plot(gsa.efp, functional = rangeBB) could be used leading
to a very similar visualization.
The functional dmax2 uses the same functional as maxBB but with a different boundary function
which is proportional to the standard deviation of the Brownian bridge plus a small intercept
b(t) = t · (1− t)+0.05 (similar to the functional considered in Zeileis 2004a). The functional dmax2
is created by

R> set.seed(123)

R> dmax2 <- efpFunctional(functional = list(comp = function(x) max(abs(x)),

+ time = max), boundary = function(x) sqrt(x * (1 - x)) + 0.05,

+ nobs = 1000, nrep = 1000, nproc = NULL)

which simulates a table of critical values based on a Bonferroni approximation. The seed of the
random number generator and the low number of observations and replications in the simulation
are chosen for making the results quickly reproducible for the reader; they do not introduce
much bias in the p values and are sufficient for illustration purposes. The process, aggregated
over components, together with its new boundary can be easily displayed by plot(gsa.efp,
functional = dmax2) leading to the plot in the right panel of Figure 3. The corresponding
structural change test, again carried out by sctest(gsa.efp, functional = dmax2), gives the
test statistic 4.795 and an approximate asymptotic p value of 0 (which just reflects that none of
the nrep = 1000 simulated Brownian bridges led to a greater test statistic).
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Figure 2: 3-dimensional empirical M-fluctuation process for guest survey data with double maxi-
mum functional.
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Figure 3: Empirical M-fluctuation process tested with dmax1 (left) and dmax2 (right) double
maximum functional.

Both functionals dmax1 and dmax2 do not provide many new insights compared to maxBB and were
mainly employed for illustrating how new functionals can easily be created and applied to data by
users without writing a new implementation of the full test. In real applications, typically only a
single functional will be used (otherwise one would have to correct for multiple testing) and the
choice of the functional can and should be guided by knowledge about the problem at hand: it
can be used to incorporate prior information about the timing and/or the component of the shift
as well as the particular alternative of interest (see Zeileis and Hornik 2003, for a brief discussion).

5.3 Beta regression

To illustrate that the new function gefp from can not only be used with the standard glm function
for generalized linear regression models, we present a brief example for beta regression. This
regression method for rates and proportions was suggested by Ferrari and Cribari-Neto (2004) and
an implementation in the R language is provided in betareg (de Bustamante Simas 2004).
This package can be loaded by

R> library(betareg)

and it provides the function betareg which fits a beta regression model via ML based on a formula
specification. Thus, beta regression is based on an estimating function and we just need a function
which can extract the ML scores from a fitted "betareg" object. As the package does not include
such an extractor, we simply provide an estfun method in the appendix, based on Equations (8)
and (9) in Ferrari and Cribari-Neto (2004). This is already sufficient to compute generalized M-
fluctuation processes based on beta regression fitted by betareg. Here, we simulate two artificial
series which are subsequently assessed by gefp. For both series, we simulate 200 observations from
a beta distribution with a single shift in the parameters. We follow the parameterization of Ferrari
and Cribari-Neto (2004) employing the mean µ and precision φ (corresponding to the commonly
used shape parameters µφ and (1−µ)φ). Both simulated series start with the parameters µ = 0.3
and φ = 4 and for the first series µ changes to 0.5 at t = 0.75 while φ remains constant whereas
for the second φ changes to 8 at t = 0.5 and µ remains constant.
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R> set.seed(123)

R> y1 <- c(rbeta(150, 0.3 * 4, 0.7 * 4), rbeta(50, 0.5 * 4, 0.5 *

+ 4))

R> y2 <- c(rbeta(100, 0.3 * 4, 0.7 * 4), rbeta(100, 0.3 * 8, 0.7 *

+ 8))

In the following, a generalized M-fluctuation process is fitted to each series and its fluctuation is
assessed using the default maxBB functional from Equation (6).

R> y1.efp <- gefp(y1 ~ 1, fit = betareg)

R> y2.efp <- gefp(y2 ~ 1, fit = betareg)

R> plot(y1.efp, aggregate = FALSE)

R> plot(y2.efp, aggregate = FALSE)

The upper panel of Figure 4 depicts the resulting process along with its boundaries for the series y1.
This gives exactly the desired results: while the process for φ exhibits only moderate fluctuation,
the process for the intercept (corresponding to µ) crosses its 5% level boundary and thus signals
a significant parameter instability. From the triangular shape it can be seen that the mean of the
series increased at about t = 0.75. Similarly, the results for y2 reflect exactly how the data was
generated. Now, the process for µ fluctuates only moderately whereas the triangular shape of the
process for φ signals a clear and significant increase in φ at about t = 0.5.

6 Conclusions

It is discussed how the ideas and flexibility of a conceptual method can be translated into econo-
metric software by exploiting language features such as object orientation, functions as first class
objects and nested lexically scoped functions and by incorporating/exporting modular re-usable
functions.
The implementation of the class of generalized M-fluctuation tests for structural change in the R
language for statistical computing and graphics is described some detail. This is based on building
blocks provided by other functions or packages which could be user-supplied or well-known and
established R functions. The objects computed are again re-usable components which can be easily
used in other programs than those intended by the author; for example in tests for cointegration
where similar limiting distributions may occur.
The analysis with generalized M-fluctuation tests is carried out in three steps: 1. computation of
an empirical fluctuation process, 2. specification of a functional used for significance testing, and
3. visualization and performance of the corresponding significance test. These steps are reflected
in strucchange in the following way:

1. The function gefp computes empirical fluctuation processes (an object of class "gefp") based
on possibly user-defined models and corresponding scores. Numerically reliable functions are
available for linear regression, generalized linear models and robust regression. Any other
model with an M-type estimator can easily be plugged in: all that is needed is the model
fitting function and a function to extract the scores from the fitted model. Furthermore, a
function for estimating the covariance matrix can be supplied to gefp.

2. The function efpFunctional takes a specification of an aggregation functional and then
simulates automatically a table of critical values and chooses a sensible visualization tech-
nique. The resulting "efpFunctional" object provides functions for computation of the
test statistic and corresponding p value and for process visualization. Suitable objects for
frequently used functionals are already available in strucchange.

3. The generic functions plot and sctest have methods for "gefp" objects with an argument
for "efpFunctional" objects allowing for performing the corresponding significance test
either visually or by computation of a test statistic and p value.

Copyright© 2005 Elsevier B.V.



A. Zeileis / Computational Statistics & Data Analysis 50 (2006) 2987–3008 17

S
er

ie
s 

1

−
2.

5
−

1.
5

−
0.

5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

S
er

ie
s 

2

Time

S
er

ie
s 

1

−
0.

2
0.

2
0.

6

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

S
er

ie
s 

2

Time

Figure 4: Beta regression, change in µ (upper) and in φ (lower).
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Furthermore, strucchange provides additional functions which can complement the analysis with
M-fluctuation tests but lie beyond the scope of this paper: e.g., functions for estimating breakpoints
and segmented regression models. More detailed information on all these functions can be found
by inspecting the reference manual and, of course, the source code itself which are both contained
in the package and freely available from http://CRAN.R-project.org/ where also forthcoming
versions of the package will be available.

Computational details

The results in this paper were obtained using R 2.3.0 and the packages strucchange 1.2-12, zoo 1.0-
6, sandwich 1.1-1 and betareg 1.1
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A Beta regression estimating functions

To apply the generalized M-fluctuation test methodology to beta regression as implemented in the
betareg package (de Bustamante Simas 2004) a function is required that extracts the ML scores
from a fitted "betareg" object. The easiest way to do so is by providing an estfun method based
on Equations (8) and (9) in Ferrari and Cribari-Neto (2004).4

estfun.betareg <- function(x, ...)
{
## extract response y and regressors X
xmat <- x$x
y <- x$y

## extract coefficients
beta <- coef(x)
phi <- beta[length(beta)]
beta <- beta[-length(beta)]

## compute y*
ystar = x$funlink$linkfun(y)

## compute mu*
eta <- xmat %*% beta
mu <- x$linkinv(eta)
mustar <- digamma(mu * phi) - digamma((1 - mu) * phi)

## compute diagonal of matrix T
Tdiag <- x$funlink$mu.eta(eta)

## compute scores of beta
rval <- phi * (ystar - mustar) * Tdiag * xmat

## combine with scores of phi
rval <- cbind(rval,
phi = (mu * (ystar - mustar) + log(1-y) - digamma((1-mu)*phi) + digamma(phi)))

attr(rval, "assign") <- NULL
return(rval)

}

4This code will also be provided to the betareg authors.
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