
A Unified Approach to Structural Change Tests

Based on ML Scores, F Statistics, and OLS

Residuals

Achim Zeileis
Wirtschaftsuniversität Wien

Abstract

Three classes of structural change tests (or tests for parameter instability) which have
been receiving much attention in both the statistics and econometrics communities but have
been developed in rather loosely connected lines of research are unified by embedding them
into the framework of generalized M-fluctuation tests (Zeileis and Hornik 2003).

These classes are tests based on maximum likelihood scores (including the Nyblom-Hansen
test), on F statistics (supF , aveF , expF tests) and on OLS residuals (OLS-based CUSUM
and MOSUM tests). We show that (representatives from) these classes are special cases of
the generalized M-fluctuation tests, based on the same functional central limit theorem, but
employing different functionals for capturing excessive fluctuations.

After embedding these tests into the same framework and thus understanding the rela-
tionship between these procedures for testing in historical samples, it is shown how the tests
can also be extended to a monitoring situation. This is achieved by establishing a general
M-fluctuation monitoring procedure and then applying the different functionals corresponding
to monitoring with ML scores, F statistics and OLS residuals. In particular, an extension of
the supF test to a monitoring scenario is suggested and illustrated on a real-world data set.

Keywords: structural change, parameter instability, functional central limit theorem, aggregation
functional, fluctuation test, OLS-based CUSUM test, supF test, Nyblom-Hansen test, monitoring.

1. Introduction

Methods for detecting structural changes or parameter instabilities in parametric models, typically
(linear) regression models, have been receiving much attention in both the econometrics and
statistics communities. Various classes of tests emerged which have been developed focusing on
different properties:

• ML scores
Nyblom (1989) derived an LM test based on maximum likelihood (ML) scores for the alter-
native that the parameters follow a random walk, which was extended by Hansen (1992) to
linear regression models. Recently, Hjort and Koning (2002) suggested a general class of ML
score-based structural change tests (without mentioning explicitely that this generalizes the
Nyblom-Hansen test).

• F statistics
The class of tests based on F statistics (Wald, LR, and LM test statistics) has been developed
for the alternative of a single shift at an unknown timing. The asymptotic theory was
established for models estimated by generalized methods of moments (GMM) by Andrews
(1993) focusing on the intuitive supF test and extended by Andrews and Ploberger (1994)
who showed that the aveF and expF tests enjoy certain optimality properties.

• Fluctuation tests
Starting from the recursive CUSUM test of Brown, Durbin, and Evans (1975) a large variety
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2 A Unified Approach to Structural Change Tests

of fluctuation tests for structural change in linear regression models estimated by ordinary
least squares (OLS) have been suggested (see Kuan and Hornik 1995, for an overview). These
tests are typically derived without having a particular pattern of deviation from parameter
stability in mind, and have been emphasized to be also suitable as an explorative tool.
In particular, fluctuation tests based on OLS residuals like the OLS-based CUSUM and
MOSUM test (Ploberger and Krämer 1992; Chu, Hornik, and Kuan 1995a) are popular
because they are easy to compute and to interpret.

Although developed for different alternatives (random walk / single shift / no particular) and for
different estimation techniques (ML / GMM / OLS), these tests are more related to each other
than obvious at first sight.

In the following, we provide a unifying view on all these structural change tests by embedding
representatives from all three classes into the generalized M-fluctuation test framework (Zeileis and
Hornik 2003). More precisely, those tests which are based on a single estimate of the parameters
on the full sample (and not multiple estimates from recursively growing or rolling subsamples) can
be shown to be special cases of the M-fluctuation framework. The M-fluctuation tests are always
derived in the following steps: choose a model and an estimation technique (or equivalently its
score or estimating function), compute the partial sum process of the scores for which a functional
central limit theorem (FCLT) holds, and then compute a statistic by applying a scalar functional
that captures the fluctuations in the process. Hence, the unified tests are based on the same FCLT
and just use different functionals for computing a test statistic. This view also helps to separate
the estimation technique from the functionals employed.

In terms of estimation techniques, we mainly focus on the linear regression model estimated by
OLS—this is done only for simplicity and we would like to emphasize that the same types of
test statistics can be derived for parameters estimated, e.g., by ML, instrumental variables (IV) or
Quasi-ML, among others. GMM is also covered in the case where the number of parameters equals
the number of moment restrictions. For the general case, some—but not all (as components of
the parameter vector and components of the fluctuation process cannot be matched in general)—
properties of the tests discussed can be obtained—see Sowell (1996) or also ? for robust GMM.

As for the functionals employed, we focus on the most popular tests from the three frameworks
discussed, namely the OLS-based CUSUM test, the supLM test and the Nyblom-Hansen test.
By understanding the connections between these tests, it becomes more clear what they have in
common and also what makes them (and their counterparts which are based on multiple parameter
estimates) particularly suitable for certain alternatives. Furthermore, their common features can
be exploited, e.g., for deriving new tests in a monitoring situation.

Monitoring structural changes is a topic that gained more attention recently (Chu, Stinchcombe,
and White 1996; Leisch, Hornik, and Kuan 2000; Carsoule and Franses 2003; Zeileis, Leisch,
Kleiber, and Hornik 2005; Horváth, Huškova, Kokoszka, and Steinebach 2004). It is concerned
with detecting parameter instabilities online in a situation where new data is arriving steadily
rather than detecting changes ex post in historical samples. Here, we establish an FCLT which
yields a general class of M-fluctuation tests for monitoring which has similar unifying properties
as for the historical tests. Subsequently, we apply functionals that correspond to monitoring
with the OLS-based CUSUM, supLM and Nyblom-Hansen test, respectively. Whereas the OLS-
based CUSUM test was considered previously for monitoring (Zeileis et al. 2005), new monitoring
procedures are derived for the supLM and the Nyblom-Hansen test.

The remainder of this paper is organized as follows: Section 2 briefly reviews the class of generalized
M-fluctuation tests into which the other classes of tests are embedded subsequently. Section 3
extends the M-fluctuation tests to the monitoring situation and discusses how the OLS-based
CUSUM, supLM , and Nyblom-Hansen test can be employed for monitoring before illustrating the
monitoring techniques by a Monte Carlo study and by applying them to a real-world data set.
Conclusions are provided in Section 4 and proofs and tables of critical values are attached in an
appendix.
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2. Generalized M-fluctuation tests

We assume n observations of some dependent variable yi and a regressor vector xi, such that the
yi are

yi ∼ F (xi, θi) (i = 1, . . . , n). (1)

following some distribution F with k-dimensional parameter θi, conditional on the regressors xi.1

The ordering of the observations usually corresponds to time. There are various sets of assumptions
under which the results presented below hold, including Krämer, Ploberger, and Alt (1988), Bai
(1997) or Andrews (1993).
The hypothesis of interest is “parameter stability”, i.e.,

H0 : θi = θ0 (i = 1, . . . , n) (2)

against the alternative that the parameter θi changes over time.
To assess this hypothesis, the parameter θ is first estimated by M-estimation, which includes
ML, OLS, IV, Quasi-ML, other robust estimation techniques, and is also related to GMM. The
parameter estimate θ̂ is computed once for the full sample (assuming H0 is true) along with a
corresponding fluctuation process that captures departures from stability. Both, the estimate and
the corresponding fluctuation process, depend on the choice of a suitable estimating function (or
score function) ψ(·) which should have zero expectation at the true parameters E[ψ(yi, xi, θi)] = 0.
Hence, under the null hypothesis the parameter estimate θ̂ can be computed from the first order
conditions

n∑
i=1

ψ(yi, xi, θ̂) = 0 (3)

and the decorrelated partial sums of the expression on the left can be used as the fluctuation
process capturing structural changes over time. The resulting cumulative score process is referred
to as the empirical fluctuation process efp(·) and is formally defined as

Wn(t, θ) = n−1/2

bntc∑
i=1

ψ(yi, xi, θ) (4)

efp(t) = Ĵ−1/2 Wn(t, θ̂), (5)

where Ĵ is some suitable consistent estimate of the covariance matrix of the scores ψ(Yi, θ). The
simplest estimator would be Ĵ = n−1

∑n
i=1 ψ(yi, xi, θ̂)ψ(yi, xi, θ̂)> which can be plugged into

Equation 5 but also HC or HAC covariance matrix estimators could be used (see Zeileis and
Hornik 2003, for more details).
Under the null hypothesis, an FCLT holds: on the interval [0, 1], the empirical fluctuation process
efp(·) converges to a k-dimensional Brownian bridge W 0(·), which can also be written as W 0(t) =
W (t)− tW (1), where W (·) is a standard k-dimensional Brownian motion. Under the alternative,
the fluctuation should generally be increased and the process should typically exhibit peaks at the
times changes in θi occur.
In some situations, it is helpful not to look at the cumulative score process itself but rather some
transformation ẽfp = λtrafo(efp). For example, it has been shown in various situations that moving
sums instead of cumulative sums are better suited to detect multiple changes. A moving score
process can be obtained by transformation with the MOSUM transformation λMOSUM such that
the limiting process is also transformed to λMOSUM(W 0(t)) = W 0(t+ h)−W 0(t), the increments
of a Brownian bridge with bandwidth h.
To define a test statistic based on the empirical fluctuation process, a scalar functional is required
that captures the fluctuations in the process. The corresponding limiting distribution is then

1Instead of using the conditional approach, the distribution of the full vector of observations (yi, xi)
> could also

be modelled.
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4 A Unified Approach to Structural Change Tests

determined by application of the functional to the limiting process. Closed form solutions exist
for the distributions implied by certain functionals, but critical values can be obtained easily by
simulations for any kind of functional. As the empirical process is essentially a matrix with n
observations over time and k components (usually corresponding to parameters), this functional
can typically be split up into a functional λcomp which aggregates over the k components and
a functional λtime which aggregates over time. If λcomp is applied first, a univariate process is
obtained which can be inspected for changes over time. However, applying λtime first results in
k independent test statistics such that the component/parameter that causes the instability can
be identified. Common choices for λtime are the absolute maximum, the mean or the range and
typical functionals λcomp include the maximum norm (or L∞ norm, denoted as || · ||∞) or the
squared Euclidean norm (or L2 norm, denoted as || · ||22), see Hjort and Koning (2002) and Zeileis
and Hornik (2003) for more examples.

The test statistics unified in this paper are all of the form

λtime

(
λcomp(efp(t))

d(t)

)
, (6)

where d(·) is a weighting function. Hence, statistics based on ML scores, F statistics and OLS
residuals can all be shown to be based on the same empirical fluctuation process (and the same
FCLT) and to only differ in the choice of the functionals λtime, λcomp and the function d.

By now, we did not specify a precise model to be estimated, i.e., in particular we did not yet specify
the estimating functions ψ(y, x, θ) to be used. As discussed in Section 1, the tests unified in this
paper were developed for rather different classes of models (ML / GMM / OLS), but all tests are
directly applicable to the model with the greatest practical relevance, the linear regression model.
Therefore, we will give some more details about this model, but we would like to emphasize that
the results below do not only hold for the linear regression model. The model only determines the
estimating functions that are used whereas our results are mainly about functionals for capturing
parameter instabilities. However, if some specific estimating function is needed we use that of the
linear regression model. In the linear model yi = x>i β + ui with error variance σ2 we are faced
with the question whether we want to regard θ = (β, σ2)> as the parameter vector to be estimated
or whether we treat σ2 as a nuisance parameter and just assess the stability of β. For simplicity,
we follow the latter approach and thus use the OLS estimating functions ψ(y, x, β) = (y− x>β)x.
Furthermore, we assume (for this particular model) that an intercept is included, i.e., that the
first component of xi is equal to unity.

2.1. ML scores

Nyblom (1989) suggesed an LM test based on ML scores for the hypothesis of parameter stability
against a random walk alternative. Hansen (1992) extended this test to linear regression models
where the ML scores and OLS first order conditions both give the estimating functions ψ(y, x, β) =
(y−x>β)x already introduced above. Based on these estimating functions (ft in Hansen’s notation,
which additionally include a component for the variance σ2), the cumulative score process Wn(t, θ̂)
(St in Hansen’s notation) and the covariance matrix estimate Ĵ given above (V in Hansen’s
notation), Hansen (1992) derives a test statistic called LC . It is defined in his Equation (9) and
can be transformed as follows:

LC = n−1
n∑

i=1

Wn(i/n, θ̂)>Ĵ−1Wn(i/n, θ̂)

= n−1
n∑

i=1

efp(i/n)>efp(i/n)

= n−1
n∑

i=1

||efp(i/n)||22 .
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Thus, it is a statistic of type (6) where the empirical fluctuation process is first aggregated over
the components using the squared Euclidean norm and then over time using the mean. To be
more precise, λcomp is || · ||22, the squared L2 norm, λtime is the mean and the weighting functions
is d(t) = 1 for all t. Hence, the limiting distribution is

∫ 1

0
||W 0||22, the integral of the squared

L2 norm of a k-dimensional Brownian bridge. This functional is also called Cramér-von Mises
functional (Anderson and Darling 1952).
Hansen (1992) suggests to compute this statistic for the full process efp(t) to test all coefficients
simultaneously and also for each component of the process (efp(t))j (denoting the j-th component
of the process efp(t), j = 1, . . . , k) individually to assess which parameter causes the instability.
Note, that this approach leads to a violation of the significance level of the procedure if no multiple
testing correction is applied. This can be avoided if a functional is applied to the empirical
fluctuation process which aggregates over time first yielding k independent test statistics (see
Zeileis and Hornik 2003, for more details).

2.2. F statistics

Andrews (1993) and Andrews and Ploberger (1994) suggested three types of test statistics—supF ,
aveF and expF statistics—that are based on different kinds of F statistics—Wald, LM or LR
statistics—in a very general class of models fitted by GMM. As the statistics are not only easy to
interpret but also possess certain optimality properties against single shift alternatives, these tests
enjoy great popularity and are probably the most used in practice. The class of GMM estimators
considered by Andrews (1993) is similar to the M-estimators considered here except that we only
treat the case of pure and not partial structural changes.
Although the asymptotic behaviour for the tests based on Wald, LM and LR statistics is the same,
only the test based on LM statistics can be embedded into the framework above because this is
the only statistic which is only based on the full sample estimate θ̂. The other two require partial
sample estimates before and after a hypothetical breakpoint which is moved over a subset of the
sample Π, a closed subset of (0, 1).
Andrews (1993) defines the ingredients for the supLM test in his Equation (4.4): he employs
the process of cumulative estimating functions Wn(t, θ̂) (m̄1T (θ̃, π) in Andrews’ notation), and
a variance estimate of Ĵ−1 (Ŝ−1M̂(M̂Ŝ−1M̂)−1M̂Ŝ−1 in Andrews’ notation) which is in linear
models equivalent to the covariance matrix estimate used in the previous section. This supLM
statistic can then be transformed as follows:

sup
t∈Π

LM (t) = sup
t∈Π

(t(1− t))−1Wn(t, θ̂)Ĵ−1Wn(t, θ̂)

= sup
t∈Π

(t(1− t))−1efp(t)>efp(t)

= sup
t∈Π

||efp(t)||22
t(1− t)

.

Therefore, this test statistic is also a special case of (6): the empirical fluctuation process is again
first aggregated over the components using the squared L2 norm, weighted by the variance of the
Brownian bridge and then aggregated over time using the supremum over the interval Π. This can
be intuitively interpreted as rejecting the null hypothesis when the L2 aggregated process crosses
the boundary b(t) = c · d(t) where c determines the significance level. More precisely, λcomp is
again || · ||22, λtime is supt∈Π, and d(t) = t(1 − t). Hence, the limiting distribution is given by
supt∈Π(t(1− t))−1||W 0(t)||22.
The aveLM and expLM can be derived analogously, with the same λcomp and d and replacing
only λtime by the average and the exp functional respectively.

Another view on the same statistic could be to not use the process efp but ẽfp = λLMefp where
λLM is a transformation functional λtrafo defined as (t(1 − t))−1|| · ||22. This yields the univariate
process of LM statistics which just has to be aggregated over time using the supremum. This view
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6 A Unified Approach to Structural Change Tests

corresponds to the argumentation of Andrews (1993) who establishes the FCLT not at the level
of cumulative scores but at the level of F statistics.

For the Wald- and LR-based statistics, the same aggregation functionals are used and the limiting
distribution is identical, but on the basis of a fluctuation process that requires estimation of the
model on various sub-samples.

2.3. OLS residuals

The mother of all fluctuation tests is the CUSUM test of Brown et al. (1975) based on recursive
residuals. Ploberger and Krämer (1992) showed how the CUSUM test can also be based on OLS
residuals. Computing the test statistic is very simple—the corresponding formula is given in
Equation (10) in Ploberger and Krämer (1992)—it is the absolute maximum of the cumulative
sums of the OLS residuals scaled by an estimate σ̂2 of the error variance. To embed this statistic
into the M-fluctuation test framework, the main trick is to exploit that the OLS residuals ûi =
yi − x>i β̂ are the first component of the empirical estimating functions in linear regression models
(ψ(y, x, β))1 = y − x>β when an intercept is included in the regression.

This allows for the following transformation:

sup
t∈[0,1]

∣∣∣∣∣∣(σ̂2n)−1/2

bntc∑
i=1

ûi

∣∣∣∣∣∣ = sup
t∈[0,1]

∣∣∣∣∣∣σ̂−1 n−1/2

bntc∑
i=1

yi − x>i β̂

∣∣∣∣∣∣
= sup

t∈[0,1]

∣∣∣σ̂−1
(
Wn(t, θ̂)

)
1

∣∣∣
= sup

t∈[0,1]

∣∣∣Ĵ−1/2
1,1

(
Ĵ1/2efp(t)

)
1

∣∣∣
This functional looks rather complicated, but it just selects the first component of the fluctuation
process before scaling with the full matrix Ĵ and scales it with the first diagonal element Ĵ1,1

instead which is an estimate of the error variance. As the process Wn(t, θ̂) is not decorrelated, the
resulting test statistic captures changes in the conditional mean of y and not only in the intercept
(to which the first component of the decorrelated process efp would correspond). More precisely,
λcomp is the absolute value of the first component of the scaled non-decorrelated process, λtime is
supt∈[0,1], and d(t) = 1. The corresponding limiting distribution is given by supt∈[0,1] |(W 0(t))1|,
i.e., the supremum of a 1-dimensional Brownian bridge.

Instead of using the maximum absolute value, various other functionals for capturing the fluctua-
tion in the CUSUM of the OLS residuals have been suggested: Krämer and Schotman (1992) use
the range, Ploberger and Krämer (1996) employ the Cramér-von Mises functional (as used in the
Nyblom-Hansen test) that provides a test that is trend-resistant, and Zeileis (2004) uses alternative
boundaries proportional to the standard deviation of the Brownian bridge d(t) =

√
t(1− t).

Another approach is to use moving sums instead of cumulative sums (Chu et al. 1995a). As pointed
out above, the corresponding fluctuation process can be obtained by applying an appropriate
transformation λMOSUM before aggregating the process to a test statistic.

In linear models that only have an intercept (xi = 1, i = 1, . . . , n), the OLS-based CUSUM and
MOSUM processes are equivalent to the recursive estimates (RE) process (Ploberger, Krämer,
and Kontrus 1989) and the moving estimates (ME) process (Chu, Hornik, and Kuan 1995b) which
fit regressions on growing or rolling windows of observations respectively. In models with more
regressors, the RE and ME test are not special cases of the M-fluctuation test, but the underlying
processes converge to the same limiting processes, i.e., a k-dimensional Brownian bridge and its
increments respectively. Thus, the situation is similar as for the F statistics: when the model is
estimated on multiple sub-samples a test can be obtained which is not strictly a special case but
has very similar structural properties and in particular the same limiting distribution.
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3. Monitoring with M-fluctuation tests

Monitoring of structural changes is concerned with detecting parameter instabilities online in
incoming data, a topic that has been receiving much attention recently. Formally, this means that
after the so-called history period of observations 1, . . . , n (corresponding to t ∈ [0, 1]) where the
parameters are assumed to be stable θi = θ0, it is tested whether they remain stable for further
incoming observations i > n (the monitoring period, corresponding to t > 1), The end of this
monitoring period may in principle be infinity, but some power might be gained if it is limited to
some finite T > 1 or N = bnT c, respectively.

The theory of monitoring structural changes in linear regression models was introduced by Chu
et al. (1996), who used fluctuation processes based on recursive residuals and recursive estimates.
Their test was extended by Leisch et al. (2000) to general estimates-based processes. Carsoule
and Franses (2003) present an application to score-based processes in autoregressive models and
Zeileis et al. (2005) discuss several extensions in the context of dynamic econometric models in-
cluding processes based on OLS residuals and new boundary functions. In the statistical literature,
Horváth et al. (2004) discuss various residual-based monitoring techniques using different bound-
ary functions.

As illustrated by Carsoule and Franses (2003) and Zeileis et al. (2005), there are various different
approaches to the application of monitoring for data analysis. The most intuitive is probably in a
policy intervention setting where it should be assessed if and when a known intervention becomes
effective. In such a situation, it is plausible to establish a fitted model once before the interven-
tion and then compare the incoming data with this fitted model. Another application might be
diagnostic checking of a model which is actively used for data analysis during the monitoring pe-
riod. Here, the practitioner typically wants to update the model with every incoming observation
which leads naturally to the recursive/moving estimates monitoring tests that can be carried out
with virtually no additional computations. Monitoring is also useful for exploratory analysis of
time series, especially when there is a large number of high-frequent series. Tests based on OLS
residuals are particularly attractive in such a situation because they are very easy to compute and
interpret. For more details see Zeileis et al. (2005).

Here we extend these monitoring techniques in two directions: (1) we establish a general class of
M-monitoring processes and (2) apply functionals to them corresponding to the Nyblom-Hansen,
supLM , and OLS-based CUSUM test. As for (1), an FCLT has to be established for the extended
empirical M-fluctuation processes that makes them applicable to much more general models than
only linear regression. The resulting M-monitoring class has unifying properties that are com-
pletely analogous to the historical tests. As for (2), appropriate boundary functions have to be
chosen. This is different from testing in historical samples where only a single statistic has to be
computed whereas monitoring is a sequential testing problem in which some rule is needed how
to spread type I errors over the monitoring period.

3.1. Extending the historical tests

Establishing the FCLT is rather straightforward: The parameter θ̂ is still estimated only once
on the history period where the parameters are known to be stable, and the empirical fluctua-
tion process efp(t) from Equation (5) is extended by evaluating the estimating functions on new
incoming observations (i.e., for 1 < t ≤ T ). The resulting process efp(t) = Ĵ−1/2Wn(t, θ̂) still
converges to a Brownian bridge W 0(t) = W (t) − tW (1) on the interval [0, T ]. A formal proof is
given in the appendix. The covariance matrix estimate Ĵ might or might not be the same as for
the historical tests, for the FCLT to hold it is only important that it is consistent. In the simplest
case, the covariance matrix estimator is also evaluated on the history sample, but in some cases
rescaling might be beneficial (Zeileis et al. 2005). Based on this FCLT, it is easy to provide the
probabilistic ingredients for a monitoring procedure: As for the historical tests, we capture the
fluctuation using some scalar functional λ(efp(t)). But in contrast to the historical setup, this is
not only evaluated once, but re-evaluated sequentially for each incoming observation. Thus, we
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8 A Unified Approach to Structural Change Tests

do not need a single critical value but a boundary function b(t) and the hypothesis of parameter
stability throughout the monitoring period is rejected if the process λ(efp(t)) crosses the boundary
b(t) for any t ∈ [1, T ]. To obtain a sequential testing procedure with asymptotic significance level
α, this needs to fulfill 1−α = P(λ(W 0(t)) ≤ b(t) | t ∈ [1, T ]). For boundaries of type b(t) = c ·d(t)
in which d(t) determines the shape of the boundary and c the significance level, it is easy to obtain
appropriate values of c for any given d(t) by simulation. However, the challenge is to choose a
shape d(t) that spreads the power (or size) of the procedure rather evenly (if no further knowledge
about the location of potential shifts is available) or directs it at the (potential) timing of the
shift (see Zeileis et al. 2005; Horváth et al. 2004, for a more detailed discussion of boundaries for
monitoring).

OLS-based CUSUM test

Applying the functionals corresponding to the historical tests is easiest for the OLS-based CUSUM
process. In the linear regression model, the first component of the empirical fluctuation process
Ĵ
−1/2
1,1

(
Ĵ1/2efp(t)

)
1

is of course still equivalent to the cumulative sums of the OLS residuals

for which appropriate boundaries are discussed in Zeileis et al. (2005). They recommend using
d(t) = t.

supLM test

The basic idea for extending the supLM test to the monitoring setup is also straightforward: in
the historical test, the hypothesis of parameter stability is rejected if the process ||efp(t)||22 crosses
a boundary which is proportional to the variance of the Brownian bridge t(1− t). For monitoring,
the same idea can be used; the boundary should then be proportional to t(t− 1), the variance of
the Brownian bridge for t > 1. However, this poses the same problem as in the historical test,
because at t = 1 both the process and the boundary are 0 and it has to be bounded away for the
asymptotic theory to be valid. In the historical test, this is done by bounding it away on the time
scale, i.e., taking the supremum only over the compact interval Π. For monitoring, this is rather
unintuitive because one could not start to monitor directly from the beginning. An alternative
approach is to bound it away from zero in the direction of b(t) using some offset. Two conceivable
approaches are to add some constant π and thus use d(t) = t2 − t + π or to simply use d(t) = t2

instead of t2 − t. The former is probably more similar in spirit to the historical test, the latter
leads to a procedure which can be seen as an extension of the monitoring procedure based on OLS
residuals given above. Let us assume for a moment that we have a linear regression model with
just one constant regressor xi = 1. Then, efp(t) is the process of cumulative OLS residuals and
the OLS-based monitoring procedure rejects the null hypothesis if

| efp(t) | > c · t ⇔ (efp(t))2 > c2 · t2

⇔ ||efp(t)||22 > c2 · t2.

Therefore, the general k-dimensional case using the boundary b1(t) = c · t2 can be seen as an
extension of this 1-dimensional case. For k = 1 the squared critical values from Zeileis et al.
(2005) can be used and are given in Table 2 in the appendix along with new critical values for
k > 1. Table 3 reports critical values for boundary b2(t) = c · (t2 − t + π) with π = 0.1. The
boundary b1 spreads its power rather evenly over the monitoring period while b2 directs most of its
power against changes at the beginning of the monitoring period. This is emphasized by Figure 1
that shows both boundaries for T = 2 and α = 0.1. It can be seen that the boundaries are crossing
at about t = 1.55 such that b1 will perform better for earlier changes and b2 better for changes
that occur later. This is confirmed by simulated hitting times which are depicted in the appendix.
In summary, both boundaries are suitable for capturing fluctuations in the ||efp(t)||22 process: b1
can be seen as an extension of the procedure suggested in Zeileis et al. (2005) and spreads its
power rather evenly while b1 uses a trimming parameter similar to the historical procedure and is
especially suitable for detecting changes early in the monitoring period.
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Figure 1: Comparison of boundaries for ||W 0(t)||22

Nyblom-Hansen test

To extend the Nyblom-Hansen test statistic—the mean of ||efp(t)||22—to the monitoring situation,
a natural idea would be to consider the cumulative mean process bntc−1

∑bntc
i=1 ||efp(t)||22. Suitable

boundaries can be found in Borodin and Salminen (2002, p. 378). However, the cumulative mean
is varying very slowly and it will become increasingly difficult to detect fluctuations in efp(t). As
a low detection delay is crucial in monitoring, this functional does not seem to be very suitable
for this task. A way to overcome this problem, at least partially, would be to use a running mean
process n−1

∑bntc
i=bntc−n+1 ||efp(t)||22 with bandwidth n instead of the cumulative mean process.

Both have in common that the process gives the historical test statistic for t = 1. Of course, other
bandwidths than n would also be feasible even if they would not yield an immediate extension
of the historical statistic. However, none of these processes seems to be promising for monitoring
with a low detection delay. Hence, monitoring based on cumulative or running means of squared
Euclidian norms is not pursued further here.

3.2. Simulation of size and power

Before applying these monitoring procedures to real-word data, a Monte Carlo study is conducted
to study size and power properties in a scenario where the data generating process can be con-
trolled. Following Carsoule and Franses (2003), an AR(2) model is considered

yi = β1 + β2yi−1 + β3yi−2 + ui (7)

where β1 is the mean, β2 and β3 are the autocorrelations at lag 1 and 2 and ui are standard
normal innovations. In the history period (t ∈ [0, 1], first n observations), the mean is zero and
the autocorrelations are 1.2 and -0.4, respectively. In the monitoring period up to T = 2, the
new incoming observations are tested using the OLS-based CUSUM test and the supLM test with
boundaries b1 and b2 as defined in the previous section. At time t0 there is a structural break and
the coefficients change to β = (0.5, 1.2,−0.7)> for t > t0. This is essentially the setup of Carsoule
and Franses (2003), but in addition to the autocorrelations we monitor the intercept instead of
the variance. Monitoring the variance is also covered by the M-fluctuation framework, but as we
have treated the variance as a nuisance parameter for the previous examples, we continue to do
so here. As before, the parameters are estimated by OLS and critical values for α = 0.1 are used.
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10 A Unified Approach to Structural Change Tests

All of the critical values can be obtained from the tables in the appendix.2 In the simulation, the
size of the history sample n and the timing of the shift t0 are varied: n is taken to be either 25,
50, 100 or 500 and t0 is one of 1.0, 1.25, 1.5 or 2 where the latter corresponds to ‘no break’.
Table 1 reports the empirical boundary crossing probabilities from 5,000 replications in each cell.
For the first scenario (t0 = 2, no break), this corresponds to the size of the test and for the
second (t0 = 1) to power only. For the remaining two scenarios (t0 = 1.25 and 1.5), the empirical
boundary crossing probability has to be split up into type I error (crossing for t ≤ t0) and power
(crossing for t > t0). Confirming the findings of Carsoule and Franses (2003) and Zeileis et al.
(2005), the tests are somewhat oversized in small samples with pronounced autocorrelations. The
power for history samples as small as n = 25 has therefore be taken with a grain of salt. However,
both size and power improve significantly with the sample size showing a small advantage for the
supLM -based tests. This is not surprising as the OLS-based test is only sensitive to changes in
the conditional mean. As for the comparison between the boundary b1 and b2, it seems that the
boundary b1(t) = c · t2 is more robust to random crossings early in the monitoring period because
it is better bounded away from zero while having similar power properties.
In summary, this shows that the tests perform quite well. However, they should be treated
carefully when applying them in autoregressive models with strong autocorrelations and/or few
observations. Zeileis et al. (2005) show that estimates-based tests exhibit similar size distortions
in autoregressive models that can be tackled by rescaling the fluctuation processes with differ-
ent covariance matrix estimates. This is also a potential route of enhancement for score-based
processes, but lies beyond the scope of this paper.

t0 = 2 t0 = 1.0 t0 = 1.25 t0 = 1.5
n type size power type I power type I power

OLS 27.9 30.8 4.7 22.0 13.9 11.9
25 supLM (b1) 51.8 66.0 18.0 43.4 34.5 21.7

supLM (b2) 56.0 69.5 30.8 32.5 44.7 14.9
OLS 18.6 29.1 2.9 19.0 9.9 10.2

50 supLM (b1) 36.0 67.2 10.9 46.0 22.9 23.1
supLM (b2) 41.1 68.6 22.4 36.4 33.8 15.3

OLS 14.9 37.3 1.6 22.5 7.0 12.1
100 supLM (b1) 27.4 86.0 6.0 60.0 15.6 33.1

supLM (b2) 32.4 84.2 16.5 48.6 25.6 23.2
OLS 11.1 95.4 0.6 72.7 3.7 36.0

500 supLM (b1) 15.1 100.0 1.4 98.5 5.2 88.4
supLM (b2) 18.9 100.0 7.6 92.4 13.0 78.0

Table 1: Finite sample size and power (in %) for simulated AR(2) model

3.3. Application to seatbelt data

Although the main purpose of this paper is to give a unifying view on testing and monitoring
changes with various functionals and not to suggest new testing/monitoring techniques, we want
to illustrate the OLS-based CUSUM test and supLM test for monitoring using a real-world data
set. The well-known seatbelt data (Harvey and Durbin 1986) provides a monthly time series from
1969(1) to 1984(12) of the number of car drivers in Great Britain killed or seriously injured in
traffic accidents. The series exhibits several breaks, in particular one in 1983(1) associated with
the seatbelt law introduction in the UK on 1983-01-31. Harvey and Durbin (1986) analyzed this
data set with historical tests, but a monitoring approach would probably have been more natural
for evaluating the impact of this policy intervention (had the methodology been available at that

2For the OLS-based CUSUM test it is the square root of the value for k = 1 in Table 2: 1.383. For the supLM
tests the values for k = 3 parameters have to be taken from Table 2 and 3: 3.823 and 8.787, respectively.
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Figure 2: Monitoring with OLS-based CUSUM test (left) and supLM test (right)

time). Here, we monitor the impact of the seatbelt law introduction using the observations from
1976(1) to 1983(1) as the history period—excluding all previous breaks—based on a multiplica-
tive SARIMA(1, 0, 0)(1, 0, 0)12 model for the log frequencies fitted by OLS as in Zeileis, Kleiber,
Krämer, and Hornik (2003).

Figure 2 depicts both monitoring processes—for the OLS-based CUSUM test and the supLM
test—along with their boundaries (in red) and a dashed vertical line for the beginning of the
monitoring period. Both are based on the same empirical fluctuation process efp(t) computed by
using the OLS estimating functions. The OLS-based CUSUM process is computed, just as in the
historical case, as the first component of the re-correlated process

∣∣∣Ĵ−1/2
1,1

(
Ĵ1/2efp(t)

)
1

∣∣∣ using the

usual OLS estimate for the variance as Ĵ1,1. The process shows only small fluctuations in the
history period but starts to deviate from 0 immediately after the start of the monitoring period
and crosses its boundary b(t) = 1.568 · t (employing the 5% critical value for T = 2) in 1983(7),
signalling that the seatbelt law intervention was effective. The clear deviation from zero which
continues after the boundary crossing emphasizes that this is not a random crossing but is caused
by a structural change in the data.

Monitoring with the supLM test leads to very similar results: the right panel of Figure 2 shows
the result of monitoring with the process of squared Euclidian norms ||efp(t)||22 together with the
boundaries b1(t) = 4.603 · t2 (solid line) and b2(t) = 10.334 · (t2 − t+ 0.1) (dashed line). To make
the graph more intellegible, the square root of the process and its boundaries is plotted. It also
clearly deviates from zero with the beginning of the monitoring period, crosses both boundaries
and thus also clearly signals a structural change. The boundary b1 is crossed in 1983(5) and b2
(not surprisingly) a bit earlier in 1983(3). In summary, all three methods perform very similar on
this data set and are all able to detect the effect of the policy intervention quickly after only a few
observations in the monitoring period.

4. Conclusions

In this paper, we provide a unifying view on three classes of structural change tests by embedding
them into the framework of generalized M-fluctuation tests. The three classes are tests based on
ML scores, F statistics and OLS residuals which have been developed in rather loosely connected
lines of research. Special emphasis is given to the most prominent representatives from these
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12 A Unified Approach to Structural Change Tests

classes, namely the Nyblom-Hansen test, the supLM test and the OLS-based CUSUM test, which
can be shown to be based on the same empirical fluctuation process, only employing different
functionals for capturing excessive fluctuations within the process.
The knowledge about the connections between these historical tests is subsequently used to extend
the tests to online monitoring of structural changes. To accomplish this, a general FCLT for
empirical M-fluctuation processes in a monitoring situation is established and several strategies for
extending the supLM and Nyblom-Hansen test are discussed. Finally, the methods are illustrated
in a policy intervention context for the UK seatbelt data.

Computational details

The results in this paper were obtained using R 2.1.1 (R Development Core Team 2005, http://
www.R-project.org/) and the package strucchange 1.2-11 (Zeileis, Leisch, Hornik, and Kleiber
2002) which are both freely available at no cost under the terms of the GNU General Public
Licence (GPL) from the Comprehensive R Archive Network at http://CRAN.R-project.org/.
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14 A Unified Approach to Structural Change Tests

A. Appendix

A.1. Proofs

In Zeileis and Hornik (2003), it is shown that the empirical fluctuation process from Equation (5)
converges to a Brownian bridge on the unit interval [0, 1]. Here, the results are extended to any
compact interval [0, T ] with T ≥ 1. As in the proofs of Zeileis and Hornik (2003) the fact that
t ∈ [0, 1] is never needed, the same argumentation can be used. Therefore, we just sketch the most
important steps using the same notation.

A(θ) = E[−ψ′(yi, xi, θ)], (8)
J(θ) = VAR[ψ(yi, xi, θ)], (9)

where yi ∼ F (xi, θ0), ψ′(·) is the partial derivative of ψ(·) with respect to θ.

Under suitable regularity conditions, θ̂ is consistent for θ0 under the null hypothesis and
√
n(θ̂−θ0)

is asymptotically normal with zero mean and covariance matrix A(θ)−1J(θ){A(θ)−1}>. Equiva-
lently, we can write √

n(θ̂ − θ0)
·= A(θ0)−1 ·Wn(1, θ0), (10)

where an
·= bn means that an − bn tends to zero in probability.

Applying a first order Taylor expansion then yields the FCLT:

Wn(t, θ̂n) ·=
1√
n

bntc∑
i=1

ψ(yi, xi, θ0) +
1
n

bntc∑
i=1

ψ′(yi, xi, θ0) ·
√
n(θ̂ − θ0)

·= Wn(t, θ0)−
bntc
n

A(θ0) ·A(θ0)−1Wn(1, θ0)

d−→ Z(t)− t · Z(1),

where Z(·) is a Gaussian process with continuous paths, mean function E[Z(t)] = 0 and covariance
function COV[Z(t), Z(s)] = min(t, s) · J(θ0). Therefore, with a consistent non-singular estimate Ĵ
of J(θ0) efp(t) = Ĵ−1/2Wn(t, θ̂) converges to a Brownian bridge W 0(t) = W (t)− tW (1).

A.2. Monitoring with supLM test

For monitoring with the supLM test, the process ||efp(t)||22 is used and the hypothesis of parameter
stability is rejected if this process crosses a boundary of type b(t) = c·d(t) in the monitoring period
[1, T ]. The function d(t) determines the shape of the boundary and above we have suggested using
d(t) = t · (t − 1) + trimming and in particular d(t) = t2 (in b1) or d(t) = t2 − t + 0.1 (in b2).
Under the null hypothesis, the process ||efp(t)||22 converges to the Euclidean norm process of a
k-dimensional Brownian bridge ||W 0(t)||22 on [0, T ] and hence the critical value c has to be chosen
such that the following equation holds:

P
(
||W 0(t)||22 < c · d(t) | t ∈ [1, T ]

)
= 1− α.

Suitable simulated values of c for selected values of α, k and T are provided in Tables 2 and 3
for the boundaries b1 and b2. Each of these is based on 10,000 replications, where each Brownian
bridges is simulated from 10,000 normal pseudo-random numbers per unit time interval.
To compare the properties of different monitoring procedures, Zeileis et al. (2005) employ his-
tograms of hitting times for the limiting process (under the null hypothesis). Using this approach,
insight is gained how the test spreads its size (and typically also power) over the monitoring in-
terval without having to focus on a small set of alternatives from the infinite set of conceivable
patterns of deviation from parameter stability. Figures 3 and 4 depict the hitting times derived
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from 1-dimensional and 5-dimensional Brownian bridges with boundaries b1 and b2 at 10% signif-
icance level. Both show that b2 directs most of its size to the beginning of the monitoring period
whereas b1 spreads it a bit more evenly such that the corresponding monitoring procedure will
have more power against changes that occur very late in the monitoring period. Comparing the
hitting time distributions for k = 1 and k = 5, the pictures are very similar but somewhat shifted
to the right in the latter case.
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Figure 3: Hitting times for ||W 0(t)||22 process with k = 1 and boundary b1 (left) and b2 (right)
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Figure 4: Hitting times for ||W 0(t)||22 process with k = 5 and boundary b1 (left) and b2 (right)
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16 A Unified Approach to Structural Change Tests

k α T
(in %) 1.25 1.5 2 3 4 6 8 10

1 20.0 0.541 0.917 1.343 1.766 2.045 2.256 2.375 2.455
15.0 0.628 1.064 1.570 2.088 2.384 2.621 2.782 2.849
10.0 0.754 1.291 1.913 2.528 2.873 3.201 3.378 3.460
5.0 0.979 1.690 2.459 3.291 3.760 4.186 4.368 4.528
1.0 1.570 2.669 3.905 5.290 5.871 6.620 6.744 7.022
0.1 2.353 3.827 5.929 7.779 8.839 10.407 10.433 11.567

2 20.0 0.876 1.481 2.182 2.932 3.316 3.702 3.950 4.064
15.0 0.989 1.676 2.477 3.302 3.753 4.195 4.475 4.612
10.0 1.161 1.948 2.875 3.849 4.394 4.932 5.201 5.316
5.0 1.440 2.460 3.525 4.846 5.407 6.010 6.535 6.612
1.0 2.055 3.494 5.058 7.051 7.721 8.789 9.255 9.245
0.1 3.164 4.622 7.054 9.648 10.438 12.939 14.190 13.764

3 20.0 1.183 1.953 2.974 3.915 4.469 5.036 5.136 5.316
15.0 1.322 2.174 3.315 4.359 4.946 5.563 5.744 5.963
10.0 1.523 2.503 3.823 4.959 5.632 6.307 6.598 6.855
5.0 1.817 3.030 4.603 6.016 6.816 7.621 8.006 8.329
1.0 2.532 4.195 6.392 8.350 9.381 10.360 11.212 11.534
0.1 3.548 5.630 9.047 11.422 12.697 14.876 15.491 15.671

4 20.0 1.454 2.417 3.631 4.896 5.532 6.085 6.380 6.524
15.0 1.607 2.680 3.979 5.407 6.079 6.704 7.079 7.228
10.0 1.814 3.064 4.539 6.123 6.872 7.608 7.948 8.083
5.0 2.151 3.661 5.375 7.266 8.125 9.043 9.489 9.741
1.0 2.861 4.955 7.240 9.682 11.012 12.280 12.457 13.044
0.1 3.932 6.598 10.092 12.876 14.164 16.875 16.653 17.439

5 20.0 1.714 2.897 4.327 5.803 6.461 7.217 7.479 7.790
15.0 1.875 3.197 4.692 6.365 7.105 7.896 8.214 8.541
10.0 2.090 3.598 5.256 7.162 7.917 8.873 9.216 9.604
5.0 2.463 4.232 6.135 8.372 9.320 10.388 10.838 11.172
1.0 3.224 5.519 8.178 11.022 12.082 13.811 14.356 14.858
0.1 4.284 7.078 11.076 14.259 16.324 19.442 18.021 20.323

10 20.0 2.967 5.010 7.445 9.885 11.281 12.498 13.213 13.383
15.0 3.176 5.378 7.952 10.569 12.115 13.405 14.145 14.392
10.0 3.458 5.884 8.658 11.545 13.138 14.631 15.453 15.716
5.0 3.897 6.691 9.753 13.094 14.824 16.446 17.581 17.834
1.0 4.897 8.386 12.516 16.318 18.317 20.212 21.394 22.346
0.1 6.079 10.407 15.855 20.095 22.292 25.794 26.585 28.056

15 20.0 4.176 7.001 10.361 13.999 15.818 17.404 18.191 18.690
15.0 4.424 7.428 10.947 14.867 16.782 18.346 19.371 19.842
10.0 4.747 7.950 11.862 15.931 18.107 19.769 20.787 21.441
5.0 5.298 8.778 13.202 17.704 20.028 21.862 23.135 23.920
1.0 6.449 10.660 16.025 21.607 24.251 26.250 28.078 29.326
0.1 7.626 12.553 19.416 26.807 30.234 31.283 32.880 35.525

Table 2: Simulated critical values for supLM test with boundary b1
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k α T
(in %) 1.25 1.5 2 4 5 6 8 10

1 20.0 2.465 3.069 3.554 3.878 3.969 4.128 4.146 4.180
15.0 2.846 3.516 4.053 4.452 4.536 4.724 4.760 4.716
10.0 3.389 4.153 4.766 5.191 5.268 5.439 5.522 5.434
5.0 4.330 5.233 6.043 6.373 6.605 6.904 6.762 6.750
1.0 6.603 7.867 9.064 9.402 9.831 10.185 9.796 10.350
0.1 9.638 11.148 13.748 13.571 14.382 15.250 15.727 14.254

2 20.0 3.869 4.800 5.506 5.877 6.125 6.231 6.291 6.317
15.0 4.290 5.365 6.071 6.473 6.822 6.907 6.945 7.030
10.0 4.968 6.180 6.941 7.358 7.759 7.862 7.830 7.915
5.0 6.037 7.442 8.411 8.973 9.255 9.361 9.249 9.387
1.0 8.388 10.231 11.705 12.477 12.858 12.816 12.760 12.940
0.1 11.749 13.687 16.285 17.155 17.809 16.242 18.481 17.510

3 20.0 5.018 6.319 7.170 7.578 7.825 8.027 8.043 8.180
15.0 5.570 6.943 7.864 8.284 8.537 8.815 8.770 8.964
10.0 6.316 7.758 8.787 9.233 9.543 9.802 9.810 10.012
5.0 7.515 9.056 10.334 10.825 11.097 11.599 11.559 11.772
1.0 10.454 12.486 13.799 14.624 14.745 15.682 15.297 15.462
0.1 15.296 16.253 18.294 19.459 19.822 20.143 19.861 20.332

4 20.0 6.229 7.620 8.579 9.190 9.516 9.658 9.671 9.797
15.0 6.787 8.308 9.296 10.011 10.338 10.499 10.442 10.631
10.0 7.545 9.268 10.293 11.053 11.534 11.631 11.597 11.785
5.0 8.814 10.884 11.920 12.696 13.312 13.483 13.452 13.595
1.0 11.719 14.253 15.352 16.566 17.422 17.871 17.574 17.660
0.1 15.599 17.773 20.459 22.374 22.532 22.710 22.012 23.279

5 20.0 7.294 8.841 9.890 10.787 10.951 11.165 11.301 11.348
15.0 7.938 9.673 10.682 11.623 11.828 12.054 12.143 12.271
10.0 8.756 10.786 11.770 12.736 12.985 13.293 13.385 13.421
5.0 10.163 12.286 13.611 14.686 15.078 15.157 15.334 15.447
1.0 13.147 15.439 17.088 18.176 18.985 19.285 19.563 19.613
0.1 16.797 19.179 22.383 23.175 23.759 24.916 25.602 25.863

10 20.0 12.157 14.718 16.534 17.475 17.971 18.128 18.294 18.429
15.0 13.002 15.746 17.543 18.591 19.083 19.215 19.460 19.515
10.0 14.048 16.911 18.903 20.047 20.462 20.774 20.992 20.943
5.0 15.796 18.842 21.169 22.207 22.778 23.149 23.397 23.477
1.0 19.450 22.810 25.853 27.226 27.880 28.133 28.678 28.393
0.1 25.148 27.875 33.228 32.496 33.011 32.983 35.636 36.626

15 20.0 16.787 20.542 22.493 23.796 24.305 24.572 24.821 24.972
15.0 17.783 21.588 23.643 25.066 25.552 25.823 26.067 26.279
10.0 18.988 23.190 25.187 26.768 27.216 27.403 27.638 28.063
5.0 21.144 25.548 27.723 29.384 29.684 30.140 30.377 30.536
1.0 25.641 30.410 33.347 35.561 35.850 35.640 35.652 36.259
0.1 31.345 36.453 40.389 42.309 43.366 41.742 42.356 43.278

Table 3: Simulated critical values for supLM test with boundary b2
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