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Residual-based shadings for enhancing mosaic and association plots to visualize indepen-
dence models for contingency tables are extended in two directions: (a) perceptually uniform
Hue-Chroma-Luminance (HCL) colors are used and (b) the result of an associated significance
test is coded by the appearance of color in the visualization. For obtaining (a), a general strat-
egy for deriving diverging palettes in the perceptually-based HCL space is suggested. As for
(b), cut offs that control the appearance of color are computed in a data-driven way based
on the conditional permutation distribution of maximum-type test statistics. The shadings
are first established for the case of independence in 2-way tables and then extended to more
general independence models for multi-way tables, including in particular conditional inde-
pendence models.

Key Words: Association plots; Conditional inference; Contingency tables; HCL colors; HSV
colors; Mosaic plots.

1. INTRODUCTION

Relationships between categorical variables are typically analyzed based on the underlying
contingency tables that can be explored for (in)dependence. Two standard methods from the
statistical tool box are log-linear models (see, e.g., Agresti 2002) for modeling (in)dependence
structures and mosaic plots (Hartigan and Kleiner 1981) for bringing them out graphically. Both
methods can also be combined such that a certain mosaic plot visualizes a particular log-linear
model by controlling splitting order and direction and shading of the tiles in the mosaic dis-
play (Friendly 1994, 1999; Theus and Lauer 1999; Hofmann 2001). In particular, Friendly (1994)
suggested a shading strategy based on the residuals (typically, Pearson or deviance residuals) of
the associated log-linear model that elevates the mosaic plot from a display for frequencies in a
contingency table to a visualization technique that encompasses both observed frequencies and
residuals. This shading allows for judging the quality of a model fit and spotting dependence pat-
terns that have not been accounted for by the model. Other techniques for visualizing dependence
in contingency tables such as association plots (Cohen 1980) can also be enhanced by using this
residual-based shading.

In this paper, the shading of Friendly (1994) is extended in two directions: usage of perceptually-
based HCL (Hue-Chroma-Luminance) colors and combination of visualization and significance
testing. Friendly’s shading is typically implemented in statistical software using color spaces such
as HLS (Hue-Luminance-Saturation) or HSV (Hue-Saturation-Value) colors. The dimensions of
both spaces are only poorly mapped to the perceptual dimensions of the human visual system
(Brewer 1999; Ihaka 2003) which makes it more difficult to properly read and interpret the cor-
responding plots. For overcoming this problem, a general strategy for constructing diverging
palettes in the perceptually-based HCL space (Ihaka 2003) is derived. To couple the visualization
and the independence model of a contingency table more tightly than in previous approaches, the
residual-based shading is extended such that appearance of color in the display is equivalent to
significance of the associated independence test. This is achieved by using data-driven cut offs for
the appearance of color computed from the conditional permutation distribution (Ernst 2004; Pe-
sarin 2001) of maximum-type test statistics. The resulting residual-based shadings are illustrated
both for mosaic and association plots using real world data sets.
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The remainder of the paper is structured as follows: Section 2 gives a brief introduction to
significance tests and visualization techniques for the independence problem in 2-way contingency
tables. Based on this, Section 3 introduces the extended residual-based shadings using percep-
tually uniform HCL colors and combining visualization and significance testing. The results are
generalized to multi-way tables in Section 4 with a more detailed discussion of adapting them to
conditional independence problems. Section 5 summarizes the paper and gives some concluding
remarks.

2. INDEPENDENCE IN 2-WAY TABLES

In this section, the basic tools for testing and visualizing independence in 2-way tables are
briefly reviewed. For illustration, a data set about treatment and improvement of patients with
rheumatoid arthritis from Koch and Edwards (1988) is used. The data set is also discussed in
Friendly (2000) and the subset of the 59 female patients from the study is given in Table 1.

2.1 Tests

To fix notations, we consider a 2-way contingency table with cell frequencies [nij ] for i = 1, . . . , I
and j = 1, . . . , J and row and column sums ni+ =

∑
i nij and n+j =

∑
j nij , respectively. Given an

underlying distribution with theoretical cell probabilities πij , the null hypothesis of independence
of the two categorical variables can be formulated as

H0 : πij = πi+π+j . (1)

The estimated expected cell frequencies under H0 are n̂ij = ni+n+j/n++. As well-established
in the stastical literature, a very closely related hypothesis is that of homogeneity which in par-
ticular leads to the same expected cell frequencies and is hence not discussed explicitely below.
The probably best known and most used measure of discrepancy between observed and expected
values are the Pearson residuals

rij =
nij − n̂ij√

n̂ij

. (2)

The most convenient way to aggregate the I × J residuals to one test statistic is their sum of
squares

X2 =
∑
i,j

r2
ij , (3)

because this is known to have an unconditional limiting χ2 distribution with (I−1)(J−1) degrees
of freedom under the null hypothesis. This is the well-known χ2 test which is typically introduced
first in statistics textbooks when addressing the independence problem in 2-way tables (see, e.g.,
Agresti 2002).

However, the sum of squares is not the only plausible way of capturing deviations from zero
in the residuals. There are many other conceivable functionals λ(·) which lead to reasonable
test statistics λ([rij ])—and without further specification of a certain pattern of dependence no

Table 1: Treatment and improvement among 59 patients with rheumatoid arthritis.

Improvement
None Some Marked

Treatment Placebo 19 7 6
Treated 6 5 16
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functional λ(·) uniformly dominates all others in terms of power of the resulting test procedure.
Therefore, the choice of the functional is usually also guided by the data analysis problem at
hand: one functional which is particularly suitable for identifying the cells responsible for the
‘dependence’ (i.e., significant departure from independence), if any, is the maximum of the absolute
values

M = max
i,j

|rij |. (4)

Given a critical value cα for this test statistic, all residuals whose absolute values exceed cα violate
the null hypothesis of indendence at significance level α (Mazanec and Strasser 2000, ch. 7). Thus,
the interesting cells responsible for the dependence can easily be identified.

Furthermore, an important reason for using the unconditional limiting distribution for the
X2 statistic from Equation 3 was the closed form result for the distribution. Recently, with
the improving perfomance of computers, conditional inference (or permutation tests, conditioning
on the observations)—carried out either by simulation or by computation of the (asymptotic)
permutation distribution—have been receiving increasing attention (e.g., Ernst 2004; Pesarin 2001;
Strasser and Weber 1999). For testing the independence hypothesis from Equation 1, using a
permutation test is particularly intuitive due to the permutation invariance (given row and column
sums) of this problem. Consequently, all results in this paper are based on conditional inference
performed by simulating the permutation distribution of test statistics of type λ([rij ]).

Note, that virtually all ideas discussed in this paper also extend straightforwardly to the
situation where other measures of discrepancy (such as, e.g., deviance residuals) are used instead
of the Pearson residuals [rij ].

For the arthritis data from Table 1, both tests indicate a clearly significant dependence of
improvement on treatment: the sum-of-squares statistic from Equation 3 is X2 = 11.296 with a
p value of p = 0.0032, and the maximum statistic from Equation 4 is M = 1.87 with p = 0.0096.
Both p values have been computed from a sample of size 5, 000 from the permutation distribution
under independence generated via sampling tables with the same row and column sums ni+ and
n+j using the Patefield (1981) algorithm and computing the respective statistic for each of these
tables.

2.2 Visualizations

Two well-established visualization techniques for independence in 2-way tables are mosaic plots
and association plots. Both are suitable to bring out departures of an observed table [nij ] from
the estimated expected table [n̂ij ] in a graphical way. The latter focuses on the visualization of
the Pearson residuals rij (under independence) while the former primarily displays the observed
frequencies nij .

Mosaic plots (Hartigan and Kleiner 1981) can be seen as an extension of grouped bar charts
where width and height of the bars show the relative frequencies of the two variables: a mosaic plot
simply consists of a collection of tiles with areas proportional to the observed cell frequencies as
shown in the left panel of Figure 1. A rectangle corresponding to 100 percent of the observations
is first split horizontally with respect to the treatment frequencies and then vertically with respect
to the conditional improvement frequencies. This shows that there have been more placebo than
treated patients with no improvement and vice versa for marked improvement. This strategy of
splitting with respect to conditional frequencies given all previous variables can also directly be
used for visualizing multi-way tables (see Hofmann 2003, for an overview of how to construct and
read mosaic displays).

Association plots (Cohen 1980) visualize the table of Pearson residuals: each cell is represented
by a rectangle that has (signed) height proportional to the corresponding Pearson residual rij and
width proportional to the square root of the estimated expected counts

√
n̂ij . Thus, the area is

proportional to the raw residuals nij − n̂ij . The association plot for the arthritis data is shown in
the right panel of Figure 1 which leads to the same interpretation as the mosaic plot: there are
more placebo patients with no improvement and fewer with marked improvement than expected
under independence—vice versa for the treated patients.
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Figure 1: Classic mosaic and association plot for the arthritis data.

3. RESIDUAL-BASED SHADINGS

Colors are commonly used to enhance mosaic and association plots. To integrate a visualization
of the residuals [rij ] into the mosaic display—which in its ‘raw’ version only visualizes the observed
frequencies [nij ]—Friendly (1994) suggested a residual-based shading for the mosaic tiles that can
also be applied to the rectangles in association plots (Meyer, Zeileis, and Hornik 2003). In this
section, we first briefly review the Friendly (1994) shading, before we suggest different colors and
a combination of visualization and significance testing to extend these residual-based shadings.

3.1 Friendly Shading

The extensions of Friendly (1994) to mosaic plots provide a substantial improvement of the
original mosaic plots enhancing them from a plot for contingency tables to a visualization technique
for log-linear models and their residuals—and thus also for independence problems including 2-way
tables as the simplest case.

The idea is to use a color coding for the mosaic tiles that visualizes the sign and absolute size
of each residual rij : Cells corresponding to small residuals (|rij | < 2) are shaded white. Cells
with medium sized residuals (2 ≤ |rij | < 4) are shaded light blue and light red for positive and
negative residuals, respectively. Cells with large residuals (|rij | ≥ 4) are shaded with a fully
saturated blue and red, respectively. Mosaic plots enhanced by this shading can thus also bring
out departures from independence (or other log-linear models in multi-way tables) graphically
and visualize patterns of dependence. The heuristic for choosing the cut offs 2 and 4 is that
the Pearson residuals are approximately standard normal which implies that the highlighted cells
are those with residuals individually significant at approximately the α = 0.05 and α = 0.0001
levels. However, the main purpose of the shading is not to visualize significance but the pattern
of deviation from independence (Friendly 2000, p. 109).

In addition to the shading of the rectangles themselves, the Friendly shading also encompasses
a choice of line type and line color of the borders of the rectangles with similar ideas as described
above. As both mosaic and association plots are area-proportional visualization techniques, we
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focus on area shadings and always use solid black borders throughout this paper, but the extensions
suggested in the following could also be applied to control line type and color.

3.2 Colors

The way the (light) blue and red colors are chosen differs somewhat between various implemen-
tations of Friendly mosaic plots: In his original SAS implementation (see Friendly 2000), Michael
Friendly uses colors from a palette based on HLS color space. The implementation in the stan-
dard packages of the R system for statistical computing and graphics (R Development Core Team
2006) employs colors from HSV space. Both spaces are rather similar transformations of RGB
(Red-Green-Blue) space (Brewer 1999; Poynton 2000) and are very common implementations of
colors in many computer packages (Moretti and Lyons 2002) making the generation of the Friendly
shading very simple. As both spaces can easily generate the same colors, we only discuss HSV
space in the following.

The HSV space looks like a cone (see e.g., Wikipedia 2006, which also provides links to com-
parisons with other color spaces discussed in this paper) with black at its peak (zero value) and full
color wheels for different saturations at the other end, around a white center (full value). Type and
amount of color are controlled by hue and saturation, respectively. Typically, polar coordinates
(h, s, v) rescaled for s and v to the interval [0, 100] (or the unit interval) are used in this space,
giving it the appearance of a cylinder. For generating colors in the Friendly shading, the following
strategy is used: The hue h codes the sign of the residuals—h = 0 (red hue) is used for negative
residuals, h = 240 (blue hue) for positive residuals. The absolute size of the residuals is then coded
by the saturation s which is set to 0, 50 and 100, respectively, for small/medium/large residuals.
The value is always fixed at v = 100. This is also depicted in the upper panel of Figure 2 which
shows the saturation/value plane for the given hues h = 0 and h = 240. The full-color palette
shows the colors used for the Friendly shading when the residuals are increasing from left to right.
The reduced-color palette will be explained in Section 3.3.

Although this HSV-based shading is already very useful for enhancing mosaic and association
plots and although HSV is a very commonly available implementation of color spaces, HSV color
space in general and the Friendly shading in particular have a number of disadvantages. Most
importantly, HSV colors are not perceptually uniform because the three HSV dimensions map
only poorly to the three perceptual dimensions of the human visual system (Brewer 1999; Ihaka
2003). Consequently, the HSV dimensions are confounded, e.g., saturation is not uniform across
different hues. A fully saturated blue (240, 100, 100) is perceived to be much darker than a fully
saturated red (0, 100, 100) or green (120, 100, 100). This makes it more difficult for the human
eye to judge the size of shaded areas and can therefore lead to color-caused optical illusions when
used in statistical graphs (Cleveland and McGill 1983). Furthermore, flashy fully saturated HSV
colors are good for drawing attention to a plot, but hard to look at for a longer time (Ihaka 2003)
which makes graphics shaded with such colors harder to interpret. Finally, white is employed as
the neutral color for small residuals in the Friendly shading, however typically grey is found to
convey neutrality or un-interestingness much better than white (Brewer 1999).

Alternative ways to choose colors have been available for a long time, but have been only
slowly adopted for implementations of colors in computer packages in general and for shading
in statistical graphs in particular. The idea of using perceptually-based colors that are ‘in har-
mony’ goes back until at least Munsell (1905) who introduced a color notation for balanced colors.
Based on similar principles, Cynthia Brewer and co-workers suggested different types of palettes
(qualitative/sequential/diverging) and provided the online tool ColorBrewer.org (Harrower and
Brewer 2003) for selecting an appropriate palette for a specific problem. Furthermore, the Commis-
sion Internationale de l’Éclairage (CIE, 2004) introduced the two perceptually-based color spaces
CIELAB and CIELUV where the latter is typically preferred for emissive color technologies such
as computer displays. Ihaka (2003) discusses how CIELUV colors can be used for choosing qual-
itative palettes for statistical graphics such as barplots. By taking polar coordinates in CIELUV
space, it is called HCL (Hue-Chroma-Luminance) space and qualitative palettes can easily be
chosen by using a range of hues for fixed values of chroma and luminance. Such colors are always
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Figure 2: Residual-based shadings in HSV (upper) and HCL space (lower).
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balanced towards the same grey and thus do not have the problem of varying saturations that
the HSV colors have. In general, the HCL space offers much better support for selecting balanced
palettes along simple paths through the space, which will be exploited below.

In the following, we discuss how ideas similar to those from Ihaka (2003) can be used for
deriving diverging HCL palettes that provide a suitable translation of the ideas from the Friendly
shading to perceptually uniform HCL colors. The HCL space looks like a distorted double cone
with black (zero luminance) at one end and white at the other (full luminance). In its middle, there
is a full color wheel for different values of chroma (that controls the colorfulness). Unfortunately,
the HCL space is not as regular as the HSV space: although its dimensions are usually also given
by a hue ranging in [0, 360] degrees and chroma and luminance ranging in [0, 100] percent, not
all combinations (h, c, l) yield valid HCL colors and the admissable combinations of c and l vary
across different hues h. For the task of constructing a diverging palette, this problem can easily
be overcome as we just need two different hues (a ‘negative’ and a ‘positive’ hue) and hence we
can choose two hues that correspond to similar shapes in the chroma/luminance plane. The lower
panel of Figure 2 shows two such planes side by side for the hues h = 0 and h = 260.1 To obtain a
sequence of colors with the similar properties as the Friendly shading, the palette starts at a fully
saturated red (0, 100, 50), goes via a neutral color, ends at a fully saturated blue (260, 100, 50),
and uses linear interpolation in between. Instead of using white (0, 0, 100) as the neutral color,
a light grey (0, 0, 90) is employed as motivated above. The diverging palette (see the full-color
palette in Figure 2) uses both chroma—i.e., the colorfulness—and luminance—i.e., the amount of
grey—to code the absolute size of the quantity visualized—i.e., the residuals rij—when applied to
the independence problem. By changing the neutral color or by changing the maximum chroma,
respectively, this can be changed to using only chroma or luminance for this purpose, but using
both is a very effective way of visualization (i.e., yields palettes with more distinctive colors) and
corresponds more closely with the properties of the Friendly shading.

Applying these palettes to the mosaic plot of the arthritis data yields the displays in the
upper middle and right panels of Figure 3 (with data-driven cut offs as defined Section 3.3). This
illustrates that especially the full color cells (in the ‘marked’ column) are less flashy and more
balanced in the HCL shading as compared to the HSV shading.

3.3 Significance

The shading scheme of Friendly (1994) was suggested to visualize the pattern of dependence in
contingency tables, as discussed above, but the presence (or absence) of colors in a plot also always
conveys an impression of interestingness (or un-interstingness, respectively). That is, viewers
might be tempted to interpret the absence of color in a plot as a clue that there is no significant
departure from independence. Or vice versa, colored cells would convey the impression that there
is significant dependence. Currently, both are not true as can be seen in the upper left panel of
Figure 3 which shows the mosaic display for the arthritis data with Friendly shading. Although
there is significant dependence (as according to both the maximum and sum-of-squares tests),
no residual exceeds an absolute value of 2 and hence no cell is colored. Of course, it can be
argued that the shading was not designed for this purpose and that different cut offs than 2 and
4 should be used here. However, in this situation, it would be nice if such cut offs could be chosen
automatically in a data-driven way. Strategies for this are derived in the following.

The Friendly shading can be interpreted to be a visualization of the maximum statistic M from
Equation 4 which always employs the critical values cα 2 and 4. However, it is not clear to which
significance levels α these critical values correspond because the distribution of M depends on
the underlying contingency table. The natural solution to this problem is to compute the critical
values from the distribution of M in a data-driven way (i.e., for the table visualized) and use these
instead of the hard-coded values 2 and 4. In the upper middle and right panels of Figure 3 this is
done for the arthritis data by employing the critical values 1.24 at level α = 0.1 and 1.64 at level

1The hue h = 260 is chosen rather than h = 240 because its chroma/luminance plane is most similar, as assessed
by the area of the symmetric difference of the planes, to that of h = 0.
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α = 0.01 (using the diverging HSV and HCL palettes, respectively) derived from the permutation
distribution of M for the arthritis data as described in Section 2.1. By using these cut offs, the
presence of color in the plot is equivalent to significance (of the maximum statistic M) at level
α = 0.1 and α = 0.01, respectively, and exactly the cells which violate the independence hypothesis
are highlighted. For the arthritis data, these are in particular the cells in the last column that
signal that there are significantly more treated patients and fewer placebo patients with marked
improvement than would be expected under independence.

The significance levels α = 0.1 and α = 0.01 are chosen because this leads to displays where
fully colored cells are clearly significant (p < 0.01), cells without color are clearly non-significant
(p > 0.1), and cells in between can be considered to be weakly significant (0.01 ≤ p ≤ 0.1). Of
course, users could choose any other set of significance levels they feel comfortable with, e.g., only
a single cut off at α = 0.05 or three cut offs at 0.1, 0.05 and 0.01 etc. Another option could be
to use a continuous shading where the p value corresponding to a cell controls the interpolation
between the neutral and the full color. However, this typically results in too much color in the
plot which in turn tends to conceal the important cells and over-emphasize the unimportant ones.
Hence, a discrete shading with few colors is much easier to interpret.

This maximum shading is already very flexible and combines visualization and inference. How-
ever, it can only be applied when employing the maximum statistic because it is the only aggre-
gation functional λ(·) where a single large residual |rij | exceeding its critical value is equivalent to
a significant value of the whole test statistic λ([rij ]). Typically, applying the maximum statistic
is feasible and also appropriate for exploratory analysis, but it would be desirable to also have a
residual-based shading that can incorporate visualization of significance when the sum-of-squares
statistic X2 (or any other functional λ(·)) is used. For the reasons discussed above, it is not
possible to achieve this by shading individual cells differently but can only be realized by using
different colors for the whole table. As outlined before, colorfulness is intuitively matched with
interestingness, therefore a rather natural idea is to use the fully colored palette only when the
corresponding test is significant and to use a less colorful palette if not. For the HCL scheme, the
amount of color can conveniently be controlled by varying the maximum chroma value used. For
the full colors, the maximum chroma was set to 100 as shown in Figure 2 and is decreased to 20 for
the reduced-color palette. This palette still codes the absolute size of the residuals by luminance
(i.e., the amount of grey), uses the same neutral grey for small ‘un-interesting’ residuals, codes
positive and negative residuals by different hues, but gives less emphasis to the pattern by making
the plot less colorful. A similar effect can be obtained in the HSV space if the value is reduced
from 100 to 50 for reduced-color palettes (see Figure 2). As for the full colors, the dimensions
used for creating this palette are confounded and hence the HCL scheme is clearly preferable.

To see such a sum-of-squares shading in practice, we employ a data set on the number of
piston ring failures in three legs (north/center/south) in four different steam-driven compressors
at an Imperial Chemical Industries plant. The contingency table is given in Haberman (1973),
re-analyzed by Everitt and Hothorn (2006) and displayed in the lower row of Figure 3. Neither
the sum-of-squares test (X2 = 11.722, p = 0.069) nor the maximum test (M = 1.78, p = 0.112)
find evidence for a departure from independence in the data (at the 5% level). However, as argued
by Everitt and Hothorn (2006), a closer look at the size of the residuals might be interesting. To
do so, we choose two fixed cut offs within the range of residuals, 1 and 1.5, showing that more
failures (than expected under independence) in the center leg and less failures in the south leg
were observed for compressor 1 and vice versa for compressor 4. This is brought out clearly by all
three shadings in the lower row of Figure 3. However, less emphasis is given to this pattern by
the sum-of-squares shadings in the middle and right panel because the reduced color palettes are
used due to non-significance of the associated test (at 5% level). Comparing the HSV-based and
HCL-based version shows that the latter are less flashy and more balanced.

Other strategies for constructing palettes for general aggregation functionals λ(·) (including
the sum of squares) that are similar in spirit to the maximum shading are conceivable. Instead
of using a reduced-color palette for non-significant tests, a no-color palette with only a light grey
could be employed. This could also be seen as always using cut offs outside the range of residuals
for non-significant tests. Analogously, for significant tests, cut offs that are always inside the range
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10 Residual-based Shadings for Visualizing (Conditional) Independence

of residuals could be chosen. The latter could be determined by subject-matter knowledge, as a
fraction of the associated critical value, or as certain quantiles of the absolute residuals.

4. EXTENSIONS

To introduce the new residual-based shadings without too much overhead in Section 3, we have
only considered the independence problem in 2-way tables. In this section, generalizations of these
ideas to independence problems for multi-way tables are outlined.

Mosaic displays have been emphasized in the literature to be an excellent means of visualization
for log-linear models (Friendly 1999; Theus and Lauer 1999); typical hypotheses of interest include
complete, joint or conditional independence. For all of these hypotheses, tables of estimated
expected values and residuals (again Pearson or deviance) can be computed and Friendly (1994,
1999) shows that his residual-based shading scheme can directly be applied to these more complex
independence models. For inference, the most commonly used aggregation functional for the
residuals is again the sum of squares yielding the associated Pearson or likelihood ratio statistic,
respectively (Agresti 2002).

As these independence models for multi-way tables also provide the structure required for
the residual-based HCL shadings derived in Section 3, both the maximum shading and the sum-
of-squares shading can straightforwardly be applied. However, such independence models often
additionally provide further structure that allows decomposition of the overall model into smaller
independence problems which can be exploited both for choosing appropriate data-driven cut-offs
in the shading and for selecting a suitable layout of mosaic or association plots. Specific strategies
for the conditional independence problem in 3-way tables are derived in the following.

Association plots are not commonly used for contingency tables with more than two margins,
although there is nothing in the definition that would prevent application in higher dimensions.
However, as argued for the mosaic plots by Friendly (1999) and Theus and Lauer (1999), it becomes
increasingly important to choose a good layout as the number of variables grows.

How the structure of the independence problem can be exploited for selecting a suitable layout
and shading for mosaic and association plots, is exemplified with the conditional independence
problem in 3-way tables. For a table [nijk] with underlying theoretical probability distribution
[πijk], this can be formulated as

H0 : πij|k = πi+|kπ+j|k. (5)

where πij|k are the conditional probabilities given the stratum k with k = 1, . . . ,K. Under the
assumption of conditional independence, we can again estimate expected frequencies [n̂ijk] and
the corresponding residuals [rijk]. To test the conditional independence hypothesis, usually the
sum-of-squares statistic is used ∑

i,j,k

r2
ijk =

∑
k

X2
k , (6)

which is simply the sum of the individual sum-of-squares statistics X2
k in each stratum k.

Alternatively, a maximum statistic similar to that from Equation 4 can be constructed

max
i,j,k

|rijk| = max
k

Mk. (7)

As in the 2-way case, this allows for identification of the cells which are responsible for the deviation
from conditional independence (if any). If it is not so much of interest in which cell but only in
which stratum the deviation occurs, then it would be natural to use

max
k

∑
i,j

r2
ijk = max

k
X2

k . (8)
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Given a critical value for this statistic, all strata k whose associated sum-of-squares statistics X2
k

exceed the critical value are in conflict with the hypothesis of conditional independence.
All these statistics are of type

λagg(λindep([rijk])), (9)

where λindep is a functional for assessing independence in stratum k and λagg is a functional for
aggregating over the k = 1, . . . ,K strata. If the maximum is used for the latter, then identification
of the strata responsible for the non-independence is possible. If additionally λindep is the maxi-
mum, the corresponding cells can also be identified. Hence, the double maximum statistic from
Equation 7 is the only functional allowing for detection of both the strata and the cells violating
the conditional independence hypothesis.

However, the main purpose of the formulation of the different test statistics is not so much infer-
ence but their applicability to diagnostic plots via residual-based shadings. As already discussed,
it is possible for all aggregation functionals to simply use either the full-color or the reduced-color
shading for all cells in the contingency table—this strategy would have to be used for the sum-of-
squares statistic from Equation 6. If λagg is the maximum as in Equation 8, then the full-color
palette would only be used in those strata in conflict with the hypothesis of conditional indepen-
dence whereas the reduced-color palette would be used for the remaining strata. Finally, if both
λagg and λindep are the maximum, then the same strategy as in Section 3 can be pursued, i.e.,
only the full-color palette is used but with data-driven cut offs derived from the distribution of
the double maximum statistic from Equation 7.

To arrange the shaded rectangles of the association or the mosaic plot, respectively, the most
intuitive approach is to use the same conditioning in the display that was also used for condi-
tioning in the model. For this situation, Friendly (1999) discusses a grouping similar to coplots
(conditioning plots, see Cleveland 1993) that lead to trellis graphics (Becker, Cleveland, and Shyu
1996). Thus, a natural visualization of such an independence model would be a trellis-like coplot
where each stratum k could be visualized by an association or mosaic display. This has also the
advantage that only the conditional independence problem but not the conditioning distribution
over k = 1, . . . ,K is visualized which could obscure departures from conditional independence if
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Figure 4: Conditional mosaic plot with double maximum shading for conditional independence of
smoking and disease given gender.
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Figure 5: Conditional association plot with maximum sum-of-squares shading for conditional
independence of memory and attitude given age and education.

the number of observations in each stratum n++k are very different.
For illustration, a 3-way and a 4-way table are employed: The first is taken from a case-control

study of smoking and Alzheimer’s disease published in Salib and Hillier (1997) and re-analyzed
using conditional inference techniques in Hothorn, Hornik, van de Wiel, and Zeileis (2006). It
provides data on the smoking behaviour (no, <10, 10–20, >20 cigarettes per day), disease status
(Alzheimer’s, other dementias, other diagnoses) and gender. The question is whether smoking and
disease status are conditionally independent given gender. All three statistics suggested above
find evidence for departure from independence: the sum-of-squares statistic from Equation 6 is∑

k X2
k = 46.828 (p = 0), the maximum sum-of-squares statistic from Equation 8 is maxk X2

k =
35.867 (p = 0), and the double maximum statistic from Equation 7 is maxk Mk = 3.348 (p = 0).
The p values are again computed by drawing 5, 000 samples from the corresponding permutation
distribution. The conditional mosaic plot in Figure 4 shows clearly that the association of smoking
and disease is present only in the group of male patients. The double maximum shading employed
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Figure 6: Conditional mosaic plot with maximum sum-of-squares shading for conditional indepen-
dence of memory and attitude given age and education.

allows for identification of the male heavy smokers as the cells ‘responsible’ for the dependence:
other dementias are more frequent and Alzheimer’s disease less frequent in this group than expected
under independence. Interestingly, there seems to be another large residual for the light smoker
group (<10 cigarettes) and Alzheimer’s disease—however, this is only significant at 10% and not
at the 1% level as the other two cells.

As a 4-way example, we use the punishment data (Andersen 1991) from a study of the Gallup
Institute in Denmark in 1979 about the attitude of a random sample of 1, 456 persons towards
corporal punishment of children. The contingency table comprises four margins: memory of
punishments as a child (yes/no), attitude as a binary variable (approval of “moderate” punishment
or “no” approval), highest level of education (elementary/secondary/high), and age group (15–24,
25–39, ≥40 years). It is of interest whether there is an association between memories of corporal
punishments as a child and attitude towards punishment of children as an adult, controlling for
age and education. Figure 5 shows a conditional association plot of memory and attitude given age
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14 Residual-based Shadings for Visualizing (Conditional) Independence

and education. This can be interpreted as a diagnostic residual plot for the associated log-linear
conditional independence model. Alternatively, a conditional mosaic plot as in Figure 6 can be used
for visualizing the contingency table and its associated residuals from the conditional independence
model using the same shading. Both reveal an association between memories and attitude for the
lowest education group (first column) and highest age group (last row): experienced violence seems
to engender violence again as there are less adults that disapprove punishment in the group with
memories of punishments than expected under independence. For the remaining four age-education
groups, there seems to be no association: all residuals of the conditional independence model are
very close to zero in these cells. All three tests agree again that there is significant departure
from conditional independence in this table: the sum-of-squares statistic is

∑
k X2

k = 34.604
(p = 0.0002), the maximum sum-of-squares statistic is maxk X2

k = 11.626 (p = 0.0064), and the
double maximum statistic is maxk Mk = 2.573 (p = 0.0056). The maxk X2

k result is visualized
by means of a maximum sum-of-squares shading in Figure 5 with user-defined cut offs 1 and 2,
chosen to be within the range of the residuals. The full-color palette is used only for those strata
associated with a sum-of-squares statistic X2

k significant at (overall) 5% level, the reduced-color
palette is used otherwise. This highlights that the dependence pattern is significant only for the
middle and high age group in the low education column. The other panels in the first column
and last row also show a similar dependence pattern, however, it is not significant at 5% level and
hence graphically down-weighted by using reduced color.

5. CONCLUSIONS

Various strategies for constructing residual-based shadings for visualizing (conditional) inde-
pendence in contingency tables via mosaic and association plots are discussed. The shading of
Friendly (1994) is extended in two directions: the use of perceptually uniform HCL colors and the
combination of visualization and significance testing. To achieve the former, a general guideline
for constructing diverging palettes in HCL space is introduced. The advantages of using this HCL
shading scheme instead of an HSV scheme are that the colors from this perceptually-based color
space provide uniform saturations over different hues and that the colorfulness in this shading can
be controlled independently from the other two dimensions. To combine visualization and signifi-
cance testing, two approaches are presented: The first approach, based on the maximum statistic,
always uses a fully colored palette but relies on data-driven cut offs such that the presence of color
is equivalent to significance of the associated maximum test. The second approach, also applicable
to other statistics such as the sum of squares, uses pre-defined cut offs (e.g., 2 and 4) but codes
the result of the associated significance test by using full colors only if it is significant and the
same type of palette with a reduced amount of color otherwise. Both strategies can not only be
applied to the simple independence problem in 2-way contingency tables, but also to arbitrary
inpendence models fitted via log-linear models in higher dimensions. In addition, it might be
possible to exploit the structure of a given independence problem to achieve better visualizations
which is illustrated for the conditional independence problem. All significance tests are carried
out using a conditional inference approach instead of relying on unconditional asymptotic results.
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COMPUTATIONAL DETAILS

The results in this paper were obtained using R 2.5.1 (R Development Core Team 2006,
http://www.R-project.org/) and the packages vcd 1.0-5 (Meyer, Zeileis, and Hornik 2006),
MASS 7.2-34 (see Venables and Ripley 2002), grid 2.5.1 (see Murrell 2002) and colorspace 0.95
(Ihaka 2006). A vignette that demonstrates how all empirical examples can exactly be reproduced
in R is provided in the package vcd, see vignette("residual-shadings", package = "vcd").
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