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SUMMARY

The classical approach to testing for structural change employs retrospective tests using a
historical data set of a given length. Here we consider a wide array of fluctuation-type tests
in a monitoring situation – given a history period for which a regression relationship is known
to be stable, we test whether incoming data are consistent with the previously established
relationship. Procedures based on estimates of the regression coefficients are extended in three
directions: we introduce (a) procedures based on OLS residuals, (b) rescaled statistics and
(c) alternative asymptotic boundaries. Compared to the existing tests our extensions offer
ease of computation, improved size in finite samples for dynamic models and better power
against certain alternatives, respectively. We apply our methods to three data sets, German
M1 money demand, U.S. labor productivity and S&P 500 stock returns.

Keywords: Online monitoring, empirical fluctuation process, CUSUM, MOSUM, moving esti-
mates, recursive estimates.
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1. INTRODUCTION

Structural stability is of prime importance in applied time series econometrics. Estimates derived
from unstable relationships erroneously considered as stable are not meaningful, inferences can
be severely biased, and forecasts lose accuracy. In a comprehensive study using a sample of 76
representative US monthly time series and several thousand forecasting relations derived from
these, Stock and Watson (1996) found evidence for parameter instability in a substantial fraction
of their models.
The by now standard approach to the detection of structural changes attempts to detect breaks
ex post, see Hansen (2001) for a state of the art survey. Starting with the pioneering work of
Chu, Stinchcombe and White (1996) a second line of research has emerged: given that in the real
world new data arrive steadily it is frequently more natural to check whether incoming data are
consistent with a previously established relationship, i.e., to employ a monitoring approach.
While such problems have been considered in statistical quality control for a long time, similar
questions also arise in econometric regression models. Below we adopt a sequential testing ap-
proach in the context of dynamic regression models and implement a variety of procedures for the
monitoring situation.
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As of today, there are essentially two theoretical papers about monitoring in the econometrics
literature (Chu et al., 1996, Leisch, Hornik and Kuan, 2000). When we wrote the first version of
this paper, we believed it was the first to apply monitoring methodology in dynamic econometric
models. However, when our paper was under review Carsoule and Franses (2003) appeared which
contains a brief illustration utilizing a U.S. industrial production index. In this paper, we demon-
strate the usefulness of these methods in applications to a wide array of data sets: German M1
money demand (Lütkepohl, Teräsvirta and Wolters, 1999) – where one might suspect a structural
shift following the German monetary union in 1990 – U.S. labor productivity (Hansen, 2001), and
S&P 500 stock returns. In contrast to Carsoule and Franses (2003), we consider various modifi-
cations and extensions of the “plain” Chu et al. (1996) and Leisch et al. (2000) methods which, in
our view, are crucial in empirical work.

On the methodological side, tests for structural change suffer from a huge alternative as there are
infinitely many conceivable ways of deviation from the null hypothesis of structural stability. In
econometric literature, two classes of structural change tests emerged that deal with this problem
in different ways: F tests are designed for a single-shift (of unknown timing) alternative and enjoy
certain (weak) optimality properties in this setup (Andrews, 1993, Andrews and Ploberger, 1994).
Fluctuation tests, on the other hand, do not assume a particular pattern of structural change.
The generalized fluctuation test framework “includes formal significance tests but its philosophy is
basically that of data analysis as expounded by Tukey .... Essentially, the techniques are designed
to bring out departures from constancy in a graphic way instead of parameterizing particular
types of departure in advance and then developing formal significance tests intended to have high
power against these particular alternatives.” (Brown, Durbin and Evans, 1975, pp. 149–150). To
be able to capture different types of structural changes, fluctuation tests can either be based on
sequences (so-called “(empirical) fluctuation processes”) of estimates of the regression coefficients
or on regression residuals (recursive or OLS), both from a widening data window or from a moving
window of fixed size. Due to the broad alternative this rich variety of tests proved very useful
in practice (Stock and Watson, 1996), e.g., contrary to F statistics the moving window tests are
able to capture certain double structural changes where parameters temporarily deviate from a
“normal” level (Chu, Hornik and Kuan, 1995). The probably best-known test from the fluctuation
test framework is the recursive (or standard) CUSUM test introduced by Brown et al. (1975),
later extended by Krämer, Ploberger and Alt (1988) to dynamic models. A unifying view on
fluctuation-type tests in historical samples is provided by Kuan and Hornik (1995). These tests
are commonly used to detect structural change ex post and are here referred to as historical tests.
The class of fluctuation tests can be extended to the monitoring of structural changes, i.e., for
detecting shifts online. Chu et al. (1996) introduced the first fluctuation test for monitoring by
extending the recursive estimates test of Ploberger, Krämer and Kontrus (1989). Leisch et al.
(2000) generalized these results and established a class of estimates-based fluctuation tests for
monitoring.

In view of the broad alternative it would seem that what the practitioner requires is (1) a wide
variety of tests and (2) tools that are helpful to understand the type of deviation from the null
hypothesis of stability. Regarding (1), we extend several ideas from the historical to the moni-
toring framework. For instance, we consider processes based on OLS residuals as these are not
only easy to compute and interpret but also able to capture various types of structural changes.
Furthermore, we consider rescaled estimates-based processes in order to improve empirical size
which is especially important for practical purposes. Finally we suggest alternative boundaries
for the Brownian bridge in order to improve power against certain alternatives. Regarding (2),
we show how to combine formal significance tests with a graphical analysis of empirical fluctua-
tion processes. As argued by (Cleveland, 1993, pp. 12–14), visualization and probabilistic infer-
ence can supplement each other: “Visualization—with its two components, graphing and fitting—
. . . stresses a penetrating look at the structure of the data.” Empirical fluctuation processes are
eminently suitable for this purpose.

All applications are carried out in the statistical software package R (R Development Core Team,
2003, see http://www.R-project.org/), which offers a growing collection of methods useful to
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MONITORING STRUCTURAL CHANGE 3

econometricians and therefore finds more and more attention in the econometrics community
(Cribari-Neto and Zarkos, 1999, Racine and Hyndman, 2002). All methods introduced are available
in the package strucchange (Zeileis, Leisch, Hornik and Kleiber, 2002), which reflects the common
features of the procedures and offers a modern computational and graphical approach to testing
for structural change. Empirical fluctuation processes as well as F statistics can be fitted and
graphed and formal significance tests can be carried out.
The rest of this paper is structured as follows. Section 2 presents the model. We briefly summarize
the results of Chu et al. (1996) and Leisch et al. (2000) at the beginning of Section 3 and then
extend the class of fluctuation tests for monitoring in three directions as mentioned above. In
Section 4 we apply the methods introduced as well as some historical tests to three data sets. Our
conclusions are summarized in Section 5.

2. THE MODEL

Consider the standard linear regression model

yi = x>i βi + ui (i = 1, . . . , n, n + 1, . . .), (1)

where at time i, yi is the observation of the dependent variable, xi = (1, xi2, . . . , xik)> is a k × 1
vector of regressors, with the first component usually equal to unity, and βi is the k × 1 vector of
regression coefficients.
We refer to the data from i = 1, . . . , n as the history period, where the regression coefficients are
assumed to be constant, i.e. βi ≡ β0, i = 1, . . . , n, and we want to monitor new data from time
n+1 onwards to test whether any structural change occurs in this monitoring period. Thus, tests
for monitoring are concerned with the hypothesis that

βi = β0 (i > n) (2)

against the alternative that at some point in the future the coefficient vector βi changes.
The results in this paper are valid under fairly general assumptions on regressors and disturbances;
basically, they have to be such that a functional central limit theorem holds. One possible set of
assumptions is given by Krämer et al. (1988), who make one assumption about the disturbances
and one about the regressors:

(A1) {ui} is a homoskedastic martingale difference sequence with respect to Ai, the σ-field gen-
erated by {ys, xs, us|s < i}, with E[u2

i |Ai] = σ2.

(A2) {xi} is such that lim supn→∞
1
n

∑n
i=1 ||xi||2+δ < ∞ for some δ > 0 and || · || the Euclidean

norm; and furthermore that
1
n

n∑
i=1

xix
>
i

p−→ Q

for some finite regular nonstochastic matrix Q.

Assumption (A2) allows for dynamic models, provided the regressors are (almost) stationary.
These assumptions can be modified to some extent without affecting the asymptotics, see e.g. Bai
(1997) for a discussion of some variations.
In what follows, β̂(i,j) is the ordinary least squares (OLS) estimate of the regression coefficients
based on the observations i+1, . . . , i+j, similarly matrices Q(i,j) indexed with (i, j) are composed
using the observations from the same data window. Analogously, β̂(i) ≡ β̂(1,i) denotes the OLS
estimate based on all observations from 1 through i, and Q(i) is shorthand for Q(1,i). The OLS
residuals are denoted as ûi = yi − x>i β̂(n) and σ̂2 is some suitable estimator of the disturbance
variance, e.g., σ̂2 = 1

n−k

∑n
i=1 û2

i .
The general idea behind all of the procedures we consider is to derive a process that captures the
fluctuation either in estimates or in residuals of a regression model and to reject the null hypothesis
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4 A. ZEILEIS, F. LEISCH, C. KLEIBER AND K. HORNIK

of stability whenever there is excessive fluctuation in these processes, as assessed against asymptotic
boundaries that the limiting processes are known to cross with a given probability. The following
section presents a class of such fluctuation-type tests and extends them in several directions.

3. THE GENERALIZED FLUCTUATION TEST FOR MONITORING

3.1 Estimates-based processes

Chu et al. (1996) were the first to extend a fluctuation test, namely the RE (recursive estimates)
test, to the monitoring case. They suggested to employ the recursive estimates process

Yn (t) =
i

σ̂
√

n
·Q(n)

1
2

(
β̂(i) − β̂(n)

)
, (3)

where Q(n) = X(n)
>X(n)/n and i = bk + t(n− k)c and t ≥ 0 is standardized time relative to the

history sample (i.e., t = 1 corresponds to i = n), and to reject the null hypothesis whenever (one
component of) the process Yn(t) crosses the boundary ±b1(t) where

b1(t) =

√
t(t− 1)

[
λ2 + log

(
t

t− 1

)]
(4)

in the monitoring period 1 < t < T and λ determines the significance level of this procedure, or
equivalently when maxi |Yin(t)|, i = 1, . . . , k, crosses b1(t). Both 1 < t < T and n < i < Tn are
referred to as the monitoring period as they correspond to the same observations.
Leisch et al. (2000) introduced the generalized fluctuation test for monitoring, which contains the
test of Chu et al. (1996) as a special case. Specifically, they considered processes that reflect the
fluctuation within estimates of the regression coefficients to detect structural changes. Another
special case of this class of tests is the ME (moving estimates) test which uses estimates from a
moving data window of fixed width, i.e.

Zn ( t|h) =
bnhc
σ̂
√

n
·Q(n)

1
2

(
β̂(bntc−bnhc,bnhc) − β̂(n)

)
, (t ≥ h) (5)

and rejects the null hypothesis if (one component of) the process crosses the boundary ±c(t),
where

c(t) = λ ·
√

log+ t, (6)

in the monitoring period 1 < t < T ; here log+ t is 1 for t ≤ e and log t otherwise. In theory the
end of the monitoring period T may be infinity but in many applications using a finite T is more
natural because the monitoring period, or at least a reasonable upper bound for it, is known in
advance. In that way no size is lost for an infinite monitoring period on [T,∞). In addition, Leisch
et al. (2000) consider tests based on the same processes but capturing the fluctuation with the
range instead of the maximum of the deviation of the estimates.

3.2 Residual-based processes

As for tests for structural change in the history period, fluctuation tests for monitoring can not only
be based on the differences of estimates of the regression coefficients but also on residuals; this was
already considered by Chu et al. (1996) although they focused on the recursive estimates approach.
Whereas they used a CUSUM procedure based on recursive residuals we will introduce monitoring
processes based on the computationally more convenient OLS residuals. The OLS residual- and
estimates-based types of tests are equivalent in the case where there is only a constant regressor, a
common situation in statistical quality control. The idea is as intuitive as for the estimates-based
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processes: the regression coefficients are just estimated once for the history period and based on
these estimates the residuals of the observations in the monitoring period are computed. If there is
a structural change in the monitoring period the residuals are expected to deviate systematically
from their zero mean. Thus, we introduce monitoring processes based on the OLS residuals

û
(n)
i = yi − x>i β̂(n). (7)

The OLS-based CUSUM process for monitoring is then defined as:

B0
n(t) =

1
σ̂
√

n

bntc∑
i=1

û
(n)
i (t ≥ 0). (8)

The following functional central limit (FCLT) holds for B0
n(t):

B0
n(t) ⇒ W 0(t) = W (t)− t ·W (1), (9)

where W and W 0 are the (1-dimensional) Brownian motion and Brownian bridge, respectively.
The proof for (9) is essentially the same as in Ploberger and Krämer (1992) for the ordinary OLS-
based CUSUM test except that t is from the compact interval [0, T ], with T > 1, rather than from
[0, 1]: Rewrite (8) as

σ̂B0
n(t) =

1√
n

bntc∑
i=1

ui −
1√
n

bntc∑
i=1

x>i

(
β̂(n) − β

)
. (10)

As in Ploberger and Krämer (1992) the following relation holds uniformly in t on [0, T ]:

1√
n

bntc∑
i=1

x>i

(
β̂(n) − β

)
=

t√
n

n∑
i=1

ui + op(1). (11)

Hence (9) follows from the well-known fact that

1√
n

bntc∑
i=1

ui − t
n∑

i=1

ui

 ⇒ σ (W (t)− tW (1)) = σW 0(t). (12)

The OLS-based MOSUM process for monitoring is defined analogously as:

M0
n(t|h) =

1
σ̂
√

n

 bηtc∑
i=bηtc−bnhc+1

ûi

 (t ≥ h) (13)

= B0
n

(
bηtc
n

)
−B0

n

(
bηtc − bnhc

n

)
, (14)

where η = (n−bnhc)/(1−h). From (14) together with (9) it follows directly that M0
n(t|h) satisfies

the following FCLT:
M0

n(t|h) ⇒ W 0(t)−W 0(t− h), (15)

i.e., the OLS-based MOSUM process converges towards the process of the increments of the Brow-
nian bridge. Therefore the limiting process for the OLS-based CUSUM and MOSUM process is
the 1-dimensional special case of the k-dimensional recursive and moving estimates process. The
respective empirical processes are in fact equivalent if xi = 1 for all i. Thus, the boundaries given
in the previous section can be used as well for the OLS-based processes.
The advantage of estimates-based processes is that there is a process for each regression coefficient,
hence it can be determined which coefficient(s) is (are) responsible for the rejection of the null
hypothesis. The OLS-based processes on the other hand are much easier to compute because a
linear model has to be fit only once for the whole process (and not in every single step) and then
just residuals have to be computed.
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3.3 Rescaling of estimates-based processes

The estimates-based processes from (3) and (5) scale the estimates of the regression coefficients
with the estimate Q(n) of their asymptotic covariance matrix Q that is based on the observations
in the history period. Kuan and Chen (1994) showed by simulation of empirical sizes that the
tests can be seriously distorted in dynamic models and suggested to rescale the processes in order
to repair this defect. Instead of estimating Q always on the basis of the full history period, each
estimate β̂(i,j) is scaled with the corresponding estimate of the covariance matrix Q(i,j), i.e., the
modified processes can be written as

Y ∗
n (t) =

i

σ̂
√

n
·Q(i)

1
2

(
β̂(i) − β̂(n)

)
, (16)

Z∗n ( t|h) =
bnhc
σ̂
√

n
·Q(bntc−bnhc,bnhc)

1
2

(
β̂(bntc−bnhc,bnhc) − β̂(n)

)
. (17)

The respective limiting processes remain of course the same, because both estimates of the co-
variance matrices also converge to Q as n → ∞, but Kuan and Chen (1994) show that they
converge faster in dynamic models. Using the same idea it is quite intuitive that the rescaling of
the estimates-based processes might also provide benefits for monitoring in dynamic models.
Following Kuan and Chen (1994) we consider three data generating processes (DGPs):

yi = % · yi−1 + ui, y0 = 0, (18)
yi = 2 + % · yi−1 + ui, y0 = 0, (19)

yi = 2 + % · xi + ui, xi = % · xi−1 + εi, (20)

with ui and εi n.i.d.(0,1), and simulate the size of the corresponding tests for a range of sample
sizes and of % with α = 0.1 and h = 0.5. We use four different values for the sample size
(n = 10, 25, 50, 100) and two different values for the monitoring period (T = 2, 10) and compute
the empirical size based on 1000 replications. Our simulations show that the problem is the same
in the monitoring case, especially for short history and long monitoring periods: For large values
of % the empirical size of the ME test is seriously distorted, see Table I.
Kuan and Chen (1994) illustrate this phenomenon with the following equation for the DGP (18):

E
(

Q(n)

Q(bntc)

)
= 1− 2(1 + %2)(n− bntc)

nbntc(1− %2)
+ O(n−2). (21)

The second term on the right hand side is a bias term tending to 0 for n →∞ for fixed %, but for
a fixed sample size n it approaches infinity for % → ±1. This bias is reduced for t < 1 and as the
term is monotone in t it is even enhanced if t > 1, so that rescaling will even increase the distortion
of the empirical size of this test. Therefore rescaling makes no sense in the case of the recursive
estimates test for monitoring, but it does for the moving estimates test, because the parameter
that determines the window size is not t but h, and h ≤ 1. This is confirmed by our simulations:
Table II shows that the bias is much smaller for the rescaled processes, especially when the history
size n is reasonably large.
Thus, in practical applications of moving estimates processes the rescaled version should always
be used.

3.4 Boundaries

The shape of the boundaries for empirical fluctuation processes does not make a big difference
under the null hypothesis, because they are always chosen to be crossed with the (asymptotic)
probability α. However, under the alternative they can affect very much the chance to detect
certain patterns of structural changes. For example, the CUSUM tests (in historical samples)
perform poorly if a change occurs late in the sample period. Zeileis (2004) suggests alternative
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Table I: Empirical size of the ME test at the 10% level
DGP T n Autocorrelation coefficient %

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 12.7 14.2 17.1 18.6 21.5 22.0 26.5 32.6 39.7 51.4
25 10.6 8.3 12.6 13.2 15.1 17.0 21.3 26.1 34.1 48.5
50 14.1 12.6 12.2 11.5 14.6 14.1 16.7 20.1 24.2 36.4

2

100 10.5 8.8 11.2 10.3 12.3 12.8 13.3 17.1 19.9 28.3
10 44.8 54.1 62.6 68.9 74.0 85.5 90.7 94.2 98.6 99.9
25 21.0 23.7 30.2 39.2 49.9 63.4 75.6 89.5 98.8 100.0
50 15.8 17.4 21.4 29.3 35.0 46.1 61.7 77.7 93.9 99.7

(18)

10

100 10.7 12.2 11.9 14.4 14.4 18.8 22.2 26.8 39.2 67.1
10 16.5 24.1 24.4 32.1 39.2 49.9 62.5 81.6 93.5 93.8
25 13.7 13.0 15.6 17.1 24.9 30.5 42.8 56.2 78.7 98.8
50 18.3 10.5 11.1 14.7 16.8 18.3 22.7 36.8 62.9 93.7

2

100 10.1 11.4 11.5 13.6 14.0 12.9 17.1 21.9 40.0 78.6
10 61.5 69.4 81.2 85.4 92.1 97.0 99.7 100.0 100.0 100.0
25 23.5 33.6 42.0 50.2 66.0 79.3 93.3 99.2 99.9 100.0
50 18.6 24.5 30.5 36.0 48.6 62.5 79.1 90.7 99.8 100.0

(19)

10

100 11.3 11.7 14.0 14.4 19.0 21.3 30.8 38.1 65.1 99.2
10 18.5 17.1 18.2 20.6 23.1 22.4 25.8 28.0 28.7 37.3
25 12.1 12.1 12.0 13.5 11.5 15.7 15.3 17.9 23.1 26.4
50 13.2 11.9 9.2 12.3 10.1 13.2 11.7 15.0 14.8 22.5

2

100 11.2 9.6 10.1 10.0 8.4 10.9 11.0 11.2 12.4 17.2
10 61.3 67.8 80.0 84.3 92.6 98.0 99.9 100.0 100.0 100.0
25 24.8 33.8 44.6 55.8 66.6 81.7 93.0 99.8 100.0 100.0
50 20.2 22.9 29.0 37.5 49.8 63.3 78.3 92.7 99.7 100.0

(20)

10

100 10.8 10.3 11.9 10.6 11.0 12.0 13.0 13.8 17.3 30.1

Copyright c© 2005 John Wiley & Sons, Ltd. J. Appl. Econ. 20: 99–121 (2005)
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Table II: Empirical size of the rescaled ME test at the 10% level
DGP T n Autocorrelation coefficient %

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10 12.0 15.3 16.2 19.3 18.4 23.8 24.1 27.9 32.5 39.4
25 9.9 12.0 11.7 14.0 15.7 12.9 17.1 21.2 27.3 35.3
50 11.9 8.7 10.1 10.5 12.3 11.9 12.4 16.0 20.3 28.4

2

100 7.7 10.1 10.3 10.3 9.6 10.4 10.8 11.6 15.7 22.7
10 20.0 18.2 23.8 23.5 27.0 29.9 37.2 41.1 51.0 60.7
25 13.6 12.5 13.0 15.1 15.7 17.4 22.4 26.9 33.6 50.5
50 10.2 11.2 13.3 13.1 13.4 17.5 18.3 19.8 31.1 40.7

(18)

10

100 10.9 12.4 10.5 9.9 11.4 13.9 13.9 16.5 19.7 31.1
10 13.2 12.0 15.1 13.9 15.8 15.8 18.9 18.6 22.8 33.5
25 9.3 9.2 10.2 11.3 12.3 11.6 10.5 12.4 15.2 21.0
50 11.8 8.4 8.0 10.3 12.3 11.8 13.1 13.1 10.9 15.4

2

100 9.6 9.8 9.2 8.5 9.9 9.4 10.7 10.4 10.5 13.6
10 17.4 16.3 19.1 22.0 20.7 24.0 27.9 27.7 31.5 43.4
25 11.0 10.6 11.2 10.7 14.4 15.0 17.3 17.8 18.1 23.4
50 10.0 10.4 10.6 11.0 11.6 13.8 14.5 17.4 18.1 17.9

(19)

10

100 10.8 10.0 9.2 10.9 11.4 10.8 12.3 12.5 13.3 11.4
10 15.2 17.0 17.0 14.6 15.6 18.2 18.5 21.1 21.8 25.4
25 9.4 10.4 10.6 10.3 10.3 11.7 11.5 13.2 13.3 16.8
50 10.5 9.8 11.0 7.2 10.6 10.5 11.1 11.7 12.8 16.0

2

100 8.4 11.6 9.4 10.5 11.2 9.2 8.0 8.3 11.3 13.2
10 16.8 16.2 19.4 20.3 22.1 22.8 25.1 27.1 32.7 45.5
25 8.4 9.2 9.9 13.7 12.9 16.1 16.9 21.1 19.7 21.3
50 9.8 10.4 10.7 10.8 11.8 14.5 17.6 13.8 17.4 18.9

(20)

10

100 10.1 9.7 9.5 11.4 10.1 11.1 7.6 11.4 12.1 14.5
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boundaries which are able to increase the detection chances of the OLS-based CUSUM test for
early and late changes. Also in the case of monitoring the detection properties for structural
changes in the monitoring period strongly depend on the shape of the boundaries—a topic which
has not yet been studied in detail. Since structural change tests suffer from a huge alternative,
as mentioned in the introduction, alternative boundaries provide a means to derive tests that are
suitable for various types of deviations from stability.
Chu et al. (1996) already state that the RE test for monitoring has good chances to detect changes
early in the monitoring period, but gets increasingly insensitive to late structural changes. This
is due to the fact that most of the size of the test is used at the very beginning of the monitoring
period as Figure 1 shows. It depicts the distribution of hitting times (from 10,000 runs) for the
Brownian bridge, the asymptotic approximation to the RE process, with the standard boundary
(4) using T = 10 at level α = 0.1 and for the increments of a Brownian bridge (with h = 0.5), the
asymptotic approximation to the ME process. It is clear that the size of the ME test is spread
much more evenly; in fact 25 % of the size of the RE test is used on the interval [1, 1.09]. This
is caused by the shape of the boundary b1(t), which can be seen in Figure 3: it starts together
with the Brownian bridge in 0 at t = 1, hence most random crossings will occur very early. We
will introduce boundaries for the RE process that distribute the size more evenly. By controlling
size rather than power we do not have to specify one particular alternative but can expect similar
results for many types of alternatives as the empirical processes typically start to fluctuate and
deviate from their zero mean at the time of the structural change.
In order to obtain a boundary that does not use up the size of the corresponding test at the begin-
ning of the monitoring period it seems natural to choose a boundary with an offset in t = 1, but
with the correct asymptotic growth rate t. The simplest boundary that fulfills these requirements
is

b2(t) = λ · t. (22)

One might want to consider a boundary which is constant at the beginning of the monitoring
period like the boundary (6), but this is inappropriate for a process with growing variance such
as the Brownian bridge, because simulations show that most of the size will then be used at the
point where the boundary changes from being constant to growing. Because there is no (known)
closed-form result for the crossing probability of a Brownian bridge for the boundary (22), we
simulate the appropriate critical values of λ for different values of T as for the ME test. Table III
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Figure 1: Comparison of hitting times for RE and ME process with standard boundaries
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Table III: Critical values for the boundary b2

α T
(in %) 2 3 4 5 6 8 10

20.0 1.159 1.329 1.430 1.472 1.502 1.541 1.567
15.0 1.253 1.445 1.544 1.589 1.619 1.668 1.688
10.0 1.383 1.590 1.695 1.753 1.789 1.838 1.860
7.5 1.467 1.688 1.793 1.861 1.899 1.961 1.964
5.0 1.568 1.814 1.939 2.006 2.046 2.090 2.128
4.0 1.616 1.896 2.022 2.076 2.131 2.159 2.219
3.0 1.680 1.997 2.103 2.177 2.226 2.257 2.311
2.0 1.801 2.114 2.217 2.301 2.397 2.380 2.454
1.0 1.976 2.300 2.423 2.525 2.573 2.597 2.650
0.5 2.118 2.478 2.599 2.712 2.812 2.766 2.888
0.1 2.435 2.789 2.973 3.288 3.226 3.230 3.401

gives the 1 − α quantiles for various significance levels α from a simulation of 10,000 Brownian
bridges.
The size of the corresponding test is also distributed more evenly (see Figure 2). Figure 3 shows
the resulting alternative boundary b2(t) (at level 0.1 for T = 2) in comparison to the standard
boundary. It can be seen that the boundaries cross at about t = 1.3 which means that the detection
chances decrease only for very early changes, but increase for all other changes. This means that
if the history period comprises observations from one year and the next year is monitored, the
chances to detect a change are decreased only for the first three months (given that a change is
immediately discovered with the next observation which is of course not necessarily the case). This
is emphasized by simulations under a single shift alternative with a setup like in Chu et al. (1996)
and Leisch et al. (2000): the data generating process is n.i.d.(2,1) with a history size of n = 100
and a monitoring period T = 10. Under the alternative the mean switches from 2 to 2.8 in the
monitoring period either at t = 1, 1.1, 2, 3. Table IV reports the mean (and standard deviation)
of the detection delay from 100,000 replications for the RE test with both boundaries and the

Time

D
en

si
ty

2 4 6 8 10

0.
00

0.
10

0.
20

0.
30

Figure 2: Hitting times for RE process with alternative boundaries
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Figure 3: Boundaries for the Brownian bridge

ME test at the 5% level together with the associated type I and II errors. It can be seen that in
terms of detection delay the RE test with standard boundaries performs best for early changes:
structural changes occurring immediately at the end of the history period or a little bit later at
observation 110 are detected on average at observation 120 and 138 respectively. But for changes
later in the monitoring period the performance deteriorates dramatically. The ME test on the
other hand has an almost constant detection delay of about 50 observations. The RE test with the
new boundaries offers a compromise between the two approaches as it performs better than the
ME test for early changes and better than the RE test with standard boundaries for late changes.
However, it can be outperformed by both tests for either early or late changes. Furthermore, in
terms of the standard deviation of the detection delay the results are improved compared to the
standard boundaries, and both type I and type II errors are reduced. Note that even for a change
as early as t = 1.1 the RE test with standard boundaries detects some false changes, i.e., alerts
before the actual structural change, and that it fails to pick up certain late changes at all.
It is desirable, of course, to have a more flexible and less heuristic instrument to select the bound-
aries for fluctuation tests: one might want to choose the boundaries according to a specified
prior distribution for the timing of the shift under the alternative. This issue is currently under
investigation.

Table IV: Mean (and standard deviation) of detection delay with type I and II error (in %)

RE (with b1) RE (with b2) ME
shift date delay(sd) type I type II delay(sd) type I type II delay(sd) type I type II

100 20(15) 0 0 39(15) 0 0 51(13) 0 0
110 28(18) 0.66 0 41(17) 0 0 50(14) 0 0
200 88(51) 2.61 0.01 78(41) 0.55 0 48(18) 1.00 0
300 149(82) 3.10 0.04 117(65) 1.92 0 54(20) 3.28 0
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4. APPLICATIONS

We demonstrate the usefulness of the methods introduced in the previous section in applications
to three data sets: German M1 money demand (Lütkepohl et al., 1999), U.S. labor productivity
(Hansen, 2001), and S&P 500 stock returns. These examples illustrate three slightly different
approaches to monitoring:

1. The German M1 money demand application illustrates how monitoring can be used for the
evaluation of the impact of known events (policy interventions) when it is not known if and
when such an intervention becomes effective. An error correction model (ECM) modelling
the relatively complex relationship of several variables is used.

2. The U.S. labor productivity application illustrates monitoring as a means of diagnostic check-
ing of a model that is updated with incoming observations. A simple AR(1) model for a
univariate time series is used.

3. The S&P 500 stock returns application illustrates the usage of monitoring as an exploratory
tool for automatic screening of a large number of time series. Several hundred return series
are monitored each for a change in the mean.

The analysis of the three data sets is carried out using the package strucchange (Zeileis et al.,
2002) which implements all suggested procedures in the R system for statistical computing. To
facilitate replication of our results, we use only data sets that are freely available from the World
Wide Web and are now also included in the strucchange package. The R system and the struc-
change package are both freely available at no cost under the terms of the GNU General Public
Licence (GPL) from the Comprehensive R Archive Network at http://CRAN.R-project.org/

4.1 German M1 money demand

Lütkepohl et al. (1999) investigated the stability and linearity of a German M1 money demand
function based on data from the German central bank using seasonally unadjusted quarterly time
series from 1961(1) to 1995(4). The data are available on the World Wide Web in the data
archive of the Journal of Applied Econometrics (http://qed.econ.queensu.ca/jae/1999-v14.
5/lutkepohl-terasvirta-wolters/). Lütkepohl et al. (1999) found a stable relationship for the
M1 money demand for the time before the German monetary unification on 1990-06-01 but a
clear structural instability for the extended sample period up to 1995(4), which they modelled by
smooth transition regression techniques. Specifically, they established a stable and linear regression
relationship for the German M1 money demand using an ECM based on data for the logarithm
of real M1 per capita mi, the logarithm of a price index pi, the logarithm of the real per capita
gross national product yi and the long-run interest rate Ri.
OLS estimation of their model yields the following equation for the phase from 1961(1) to 1990(2)
before the German monetary unification:

∆mi = −0.30∆yi−2 − 0.67∆Ri − 1.00∆Ri−1 − 0.53∆pi

−0.12mi−1 + 0.13yi−1 − 0.62Ri−1 (23)
−0.05− 0.13Q1− 0.016Q2− 0.11Q3 + ûi,

where Q1–Q3 are seasonal dummies and all coefficients (except for the intercept) are highly sig-
nificant; the fitted model gives an adjusted R2 = 0.943. In a cointegration relationship, the
estimators of coefficients on I(1) variables converge at a faster rate than those of the coefficients
on I(0) variables, hence they may be treated as known when monitoring the error correction
model. We therefore aggregate the cointegrated variables mi−1, yi−1 and Ri−1 to a single variable
ei−1 = −0.12mi−1 + 0.13yi−1− 0.62Ri−1 to assure stationarity of this regressor in the ECM. This
way of testing for structural change in ECMs is similar to the procedure suggested by Hansen
(1992).
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Figure 4: Historical residual-based fluctuation tests

Fluctuation test (recursive estimates test)
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Figure 5: Historical estimates-based fluctuation tests
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In the following, we first show that the structural change modelled by Lütkepohl et al. (1999)
can be detected using fluctuation tests in this ECM, i.e., we investigate the behaviour under the
alternative. Second, we present some Monte Carlo evidence confirming that estimation of the
cointegration relationship does not interfere with subsequent monitoring, i.e., we investigate the
behaviour of the tests in an ECM under the null hypothesis. In order to detect a change, two
strategies can be employed: one can use either historical tests trying to find a structural change ex
post or the monitoring methods introduced in the previous section trying to detect the structural
change online. Although we focus on the latter approach in this paper we will first carry out
historical tests as well.
Historical fluctuation tests: First, two residual-based fluctuation tests—the recursive (or stan-
dard) and the OLS-based CUSUM test—are applied to the model (23). Figure 4 shows that both
CUSUM processes lack any significant fluctuation and that neither process crosses its 5% level
boundary; thus, both tests fail to detect structural change in the data. However, two estimates-
based tests—the RE and the ME test with h = 0.15—both show a clear peak or shift respectively
in the beginning of the 1990s (cf. Figure 5), i.e., both tests detect the structural change after
the monetary unification that is also described by Lütkepohl et al. (1999). The reason that the
residual-based tests are insensitive to this change while the estimates-based tests are not is the
well-known fact that the power of both CUSUM tests depends on the angle between the shift
and the mean regressor; in particular they do not have power against shifts orthogonal to the
mean regressor (Krämer et al., 1988, Ploberger and Krämer, 1992). Assuming that there is just
one structural shift, which appears to be a reasonable hypothesis for the present data, the shift
∆β is estimated by β̂(1,118) − β̂(119,140), the difference of the estimated coefficients in the history
and the monitoring period. The mean regressor x̄∞ = limn→∞ 1/n

∑n
i=1 xi is estimated by the

empirical mean. This leads to an estimate for the angle of 90.106◦, confirming the suspicion that
an orthogonal shift is the cause of the lack of power for the residual-based tests.
Monitoring: Now we will confirm the instability of the coefficients in the regression relationship
for the money demand function using the tools introduced in Section 3: the OLS-based CUSUM
process with the alternative boundary b2(t) from (22) and the rescaled moving estimates process.
We consider the observations from 1961(1)–1990(2) as the history period of the monitoring process
and the observations after the monetary unification from 1990(3)–1995(4) as the monitoring period.
Thus, we put ourselves in the position of a researcher in 1990 who wants to find out whether
the model established for the pre-1990 money demand becomes unstable following the monetary
unification. For this a significance level of 5% for a monitoring period of T = 2 is used.
Figure 6 shows the OLS-CUSUM process with the history period left of the vertical dashed line and
the monitoring period on the right. Whereas the process does not exhibit much fluctuation before
1990(2) it does so after the start of the monitoring period: it crosses the standard boundary after
ten observations in 1992(4) and the alternative boundary another seven observations later. As the
break occurs immediately after the end of the history period the standard boundaries perform a
bit better, but note that there is almost a crossing in 1990(4) after just two observations. In a
“real” monitoring situation it would be hard to decide if such a crossing was just a type I error or
caused by a structural change. The ME process (with h = 0.5) also has a clear shift (see Figure
7), but crosses its boundary a little bit later: in the third quarter of 1994. Hence we can find
overwhelming evidence that there has been a structural change in the money demand relationship
after the monetary unification.
Although the detection delay of 2.5 years (for the OLS-based CUSUM test with boundary b1)
might seem rather long at first sight, this might still be useful in practice. First, this needs to
be contrasted with the observation frequency and the dimension of the model. From this point
of view, a method detecting a break after 10 observations for a model containing 11 parameters
would appear to do rather well. Second, with the monitoring approach we are able to do somewhat
better than the common historical tests: For instance, using F statistics (Andrews, 1993; Andrews
& Ploberger, 1994) we would need a sufficient number of observations after the shift in order to
sensibly estimate model (23) for this second phase—this is certainly not the case with only 10
observations.
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Figure 6: OLS-based CUSUM process

Monitoring with ME test (moving estimates test)
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Figure 7: Moving estimates process
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Given the data up to 1995(4) there are various ways to assure that the observed crossings are not
type I errors: First, from visual inspection there seems to be a clear drift in the fluctuation pro-
cesses, beginning after the end of the history period and continuing after the boundary crossing.
Second, the historical estimates-based tests above also found a structural change and their pro-
cesses also indicated a shift in about 1990. Third, the OLS breakpoint estimate for a shift in the
regression coefficients of the ECM is 1990(3), which misses the timing of the monetary unification
just by one observation.
Size simulation: In order to ensure that aggregation of the three I(1) variables to a single
stationary variable as described at the beginning of this section does not lead to size distortions in
the monitoring procedures we use a simulation study. Based on the stable regression relationship
in the history period (observations i = 1, . . . , 118) the ECM with coefficients β̂ from (23) and the
standard deviation σ̂ = 0.0127 (also obtained from the history period) is estimated. To assure
stability for the remaining observations i = 119, . . . , 140 the following DGP is used for each i:

1. mi = mi−1 + ∆mi−1,

2. ∆mi = x>i β̂ + ξi,

where xi is the vector of all regressors and the ξi are n.i.d.(0, σ̂2). Subsequently, the I(1) variables
are again aggregated to a single stationary variable ei and the monitoring procedures are applied to
this partly artificial data set (without a break) with the same settings as for the original data. As
the simulation of the artificial data starts with i = 119 the estimation of the ECM differs only for
the estimates-based monitoring processes whereas the OLS-based procedures estimate the ECM
only once on the history period, which is identical in the original and the semi-artificial data. To
analyze whether the estimation of the ECM affects the OLS-based procedures the artificial DGP
could also be started at i = 2 using time i = 1 as starting values; however, this leads to almost
identical results.
The empirical rejection probabilities (type I errors) based on 10,000 replications of this procedure
are reported in Table V. It can be seen that only the RE test with standard boundaries exceeds
the nominal 5% significance level. The reason for this is not the presence of I(1) terms in the
model equation but the size distortions for the RE test in dynamic models. As described in
Section 3.3, these cannot be remedied by rescaling. The reason that the RE test with the new
boundaries does not suffer from the same problem is that the standard boundaries are more prone
to random crossing in such a short monitoring period (as argued in Section 3.4). The low rejection
probabilities for the other tests are caused by the fact that not the full monitoring period up
to T = 2 is used, rendering the tests rather conservative. In particular, the monitoring period
is too short for the MOSUM and ME type processes to produce erroneous boundary crossings.
In summary, the size simulation confirms the results from the previous section and justifies the
structural change analysis of ECMs as carried out above.

Table V: Size simulation for ECM on artificial M1 data (entries are percentages)
OLS-CUSUM (b1) OLS-CUSUM (b2) RE (b1) RE (b2) OLS-MOSUM ME

0.61 0.01 37.62 0.21 0.00 0.00

4.2 U.S. labor productivity

In his recent overview of“The new econometrics of structural change,”Hansen (2001) examines U.S.
labor productivity in the manufacturing/durables sector, a monthly time series with observations
from 1947(2) through 2001(4) which is available from Bruce Hansen’s homepage (http://www.ssc.
wisc.edu/~bhansen/). He uses a first order autoregressive model for the U.S. labor productivity
in the manufacturing/durables sector which is measured by xi, the growth rate of the Industrial
Production Index to average weekly labor hours.
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Hansen (2001) finds a clear structural change in about 1994 and two weaker changes in 1963
and 1982. For illustration, we choose the time from 1964(1) until 1979(12) as the history period,
because we are interested in monitoring the two later changes. We exclude the time before 1964
because there must not be a break in the history period. OLS estimation of the coefficients in the
historical AR(1) model yields

xi = 0.0025− 0.186xi−1 + ûi, (24)

with both coefficients being highly significant. As for the money demand data we monitor the data
using the OLS-based CUSUM process with boundaries b2(t) from (22) and the rescaled moving
estimates process with h = 0.5 using a 5% level and T = 2.5.
This approach is slightly different from the one in our first example: there is no known event that
might cause an instability in the model considered. We rather assume that we are in a position
where we have established a model equation we want to work with, and we want to learn whether
we have to update it or not.
It could also be argued that in practice one wants to update the model anyway with every new
observation instead of waiting until a change occurs. In this case, monitoring can be used as a
supplementary diagnostic check which comes “for free” as in the RE and ME test the regression
coefficients are updated for every new observation (either for a recursively growing or a moving
data window). Here, “blind” updating of the coefficients could lead to uninterpretable results if
the time period used for estimation contains a structural change, however, simultanous monitoring
would discover this and the model could be adapted to this situation.
The OLS-based CUSUM process for the labor productivity data in Figure 8 provides information
at several levels: First, both versions of the OLS-based CUSUM test find a significant structural
change at the 5% level as the process crosses both the standard and the alternative boundary.
Second, Figure 8 conveys the impression that there are two structural changes: the first in about
1983, where the path starts to depart from zero, and the second in the early 1990s. Third, neither
the standard nor the alternative boundaries detect the first shift at the 5% level, but the process
crosses both boundaries after the second break: the new boundary already in 1998(8) and the
standard one in 2000(5).
Figure 9 provides rather similar results for the ME test. However, the moving estimates process
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Figure 8: OLS-based CUSUM process
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Monitoring with ME test (moving estimates test)
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Figure 10: 2-dimensional moving estimates process
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drifts off somewhat later compared to the CUSUM process. It also does not detect the first change
at the 5% level but crosses its boundary after the second change in 1998(10).
The reason that the OLS-based CUSUM test performs better than the ME test on this particular
data set is the usage of the new boundaries. An RE test with standard boundaries would even fail
to detect a significant change at the 5% level.
However, an additional benefit of the moving estimates is that they shed light on the nature of
the break. The 2-dimensional process for the estimates of the intercept and the coefficient on xi−1

can be plotted separately as in Figure 10. This shows that the break in the 1980s affects both
parameters, because both processes have a shift, but not significantly so. The second break in the
1990s just affects the intercept but not the AR coefficient, thus we are able to conclude that the
type of the detected structural shift is instability in the intercept term.
The results of the monitoring procedures confirm the analysis of Hansen (2001) as they are able
to convey visually that two changes occured in the early 1980s and the mid-1990s, respectively,
matching the breakpoints (estimated by OLS using the full sample) of about 1982 and 1994 rather
well. It is also not surprising that monitoring finds evidence only after the second break as the
first shift in 1982 was fairly weak compared to the clear shift in 1994.

4.3 S&P 500 stock returns

In many situations, e.g., when analyzing financial data, one has to deal with a multitude of high-
frequency time series and not every time series can be analyzed in great detail. Therefore, some
automatic screening mechanism is needed which selects a small number of “interesting” time series
that can be examined more closely in a second stage. If interesting events are associated with a
structural change then monitoring can be used as an exploratory tool for screening. This approach
is illustrated in the following using a simple intercept model for the individual means of all S&P 500
stock return series.
The data are the daily closing prices pi for the stocks that are included in the S&P 500. They are
available from Yahoo! Finance at http://finance.yahoo.com/, an online portal quoting data
provided by Reuters.1 The sampling period used in this application is the time from 2001-08-
01 until the end of the year 2001—using the time before 2001-09-11 as the history period and
monitoring the remaining observations. The question is for which stocks the terroristic attacks of
September 11 had an impact on the mean return after Wall Street was closed for a week. Employing
the screening approach outlined above, each of 484 price series (16 time series had to be excluded
from the analysis due to missing data) is monitored for structural changes using the OLS-based
CUSUM test (with boundary b2) and the OLS-based MOSUM test. (We consider only OLS-based
procedures because they are equivalent to the corresponding estimates-based procedures, both
rescaled or not rescaled, in a model with only an intercept.) The monitoring period is T = 4 and
the significance level of all procedures is again 5%. This setup controls only the individual and
not the overall significance level (which is much higher) but this would only have to be adjusted if
the task were to find out whether a significant change in any series occured which is not the aim
of this application. We rather use an exploratory screening tool for detecting a set of time series
that require further analysis.
The OLS-based CUSUM test finds changes in 167 out of 486 series in the full sampling period
up to the end of 2001, and the OLS-based MOSUM test finds changes in 235 series. Focusing on
the events immediately after the re-opening of Wall Street on 2001-09-17 and 18, the OLS-based
CUSUM and MOSUM tests find changes in 20 and 25 of the series, respectively, 17 of which are
detected by both procedures. These time series selected by the automatic screening could then be
analysed manually.
To illustrate the typical outcome of this approach, we discuss the results of the monitoring pro-
cedures in more detail for two quotes: Delta Air Lines (DAL) and Lucent Technologies (LU). We

1Yahoo! Finance can also easily be queried from within R.
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chose the return series of an airline company where a shock can be expected after September 11
and of a communication company2 where a shock is less likely.
Estimation of the mean of both return series on the history period from 2001-08-01 until 2001-09-10
yields the following results

LU: ∆ log(pi) = −0.013 + ûi,

DAL: ∆ log(pi) = −0.007 + ûi,

with both intercepts not being significantly different from zero at the 5% level. These two models
are subsequently monitored for structural changes following the re-opening of Wall Street after a
week on 2001-09-17.
The empirical fluctuation processes for the stock returns of Lucent Technologies (see Figure 11)
exhibit only very moderate fluctuation during both the history and the monitoring period; in
particular, they do not cross their boundaries. Thus, both the CUSUM and MOSUM procedure
agree with the expectation that September 11 had no significant impact on the level of the LU
stock returns.
In contrast, the empirical fluctuation processes for Delta Air Lines (see Figure 12) exhibit excessive
fluctuations after the end of the history period and both CUSUM and MOSUM test reject the
null hypothesis of structural stability after the first observation in the monitoring period on 2001-
09-17. Although a type I error can be excluded due to the clear peak in both processes which
would have been detected at virtually any significance level (i.e., cannot be explained under the
null hypothesis of constancy of the mean) it is unclear whether this single observation is just an
outlier or corresponds to a (temporary) change in the mean of the returns. From visual inspection
of the fluctuation processes it seems that the slump is followed by an upward trend which causes
the MOSUM process to even cross its upper boundary. This suggests that the shock of one
extremely large negative return is followed by a sequence of unusually large positive returns. This
impression is confirmed by a sensitivity analysis of the procedures for the influence of the 2001-
09-17 observation which shows that even if the 2001-09-17 observation would have been within
the range of the following returns a significant (upward) shift in the returns would have been
detected by both procedures, albeit not after only one observation. In both the original and the
sensitivity setup the CUSUM and MOSUM processes return to values around zero at the end of
the monitoring period with only moderate fluctuations within the boundaries.
This application shows that monitoring methods are able to provide signals rapidly in a high-
frequency context.

5. CONCLUSIONS

Online monitoring of regression relationships that are known to be stable for a history period
is often more natural and more practical than the commonly employed retrospective tests. In
this paper, we have presented a unified approach to the online monitoring of econometric models
which includes three new extensions to tests based on regression estimates: processes based on OLS
residuals, rescaled processes, and alternative boundaries. These offer advantages concerning ease of
computation, finite sample properties in dynamic models, and power against certain alternatives.
These methods might also prove useful in the classical non-sequential context, for instance when
a structural change is suspected at the end of the sample following a certain event (see e.g., Fair,
2003). For this situation, Andrews (2003) recently suggested a class of (non-sequential) end-of-
sample instability tests.
The determination of optimal asymptotic boundaries, in the sense of minimal detection delay,
deserves further study.

2Lucent Technologies was chosen because the language S which is implemented in the R system was developed
at Bell Labs/Lucent Technologies.
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Figure 11: OLS-based CUSUM and MOSUM process for Lucent Technologies
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Figure 12: OLS-based CUSUM and MOSUM process for Delta Air Lines
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Lütkepohl H, Teräsvirta T, Wolters J. 1999. Investigating stability and linearity of a German M1
money demand function. Journal of Applied Econometrics 14: 511–525.
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