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SUMMARY

In a recent article, Bai and Perron (2003, Journal of Applied Econometrics) present a
comprehensive discussion of computational aspects of multiple structural change models along
with several empirical examples. Here, we report on the results of a replication study using
the R statistical software package. We are able to verify most of their findings; however, some
confidence intervals associated with breakpoints cannot be reproduced. These confidence
intervals require computation of the quantiles of a nonstandard distribution, the distribution
of the argmax functional of a certain stochastic process. Interestingly, the difficulties appear
to be due to numerical problems in GAUSS, the software package used by Bai and Perron.

1. INTRODUCTION

Time series with multiple structural changes have recently attracted considerable attention in
theoretical and applied econometric literature. Bai (1997) and Bai and Perron (1998) present
asymptotic theory for inference on multiple breakpoints, in a companion paper (Bai and Perron,
2003) they provide a comprehensive and detailed discussion of computational aspects as well as
several empirical examples.
The present paper aims at replicating the results from Bai and Perron (2003) using the R sta-
tistical software package (R Development Core Team, 2004, see http://www.R-project.org/).
Specifically, we employ the R package strucchange (Zeileis, Leisch, Hornik and Kleiber, 2002),
which implements a large collection of methods for the analysis of structural change.

2. REPLICATION

The model considered here is the multiple linear regression model with m breaks (or, equivalently,
m + 1 regimes)

yt = x>t δj + ut, t = Tj−1 + 1, . . . , Tj , j = 1, . . . ,m + 1, (1)

where T0 = 0 and Tm+1 = T (= sample size) by convention. The goal of the analysis is to
determine the number m and locations Tj (j = 1, . . . ,m) of the breakpoints. In practice, a search
over m is conducted, for m ≤ m∗, where m∗ is fixed by the researcher. More importantly, a further
parameter is at the researcher’s disposal, the minimum number of observations per segment, h. Bai
and Perron consider a slightly more general setup allowing for partial structural changes, in which
only some of the regression coefficients are subject to shifts. The current version of strucchange
does not support partial structural change models. However, this additional feature is not required
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for two of the three Bai and Perron examples; for the third, estimates of the breakpoints—the
parameters of main interest—remain unaffected.
Due to space restrictions, we confine ourselves to the first Bai and Perron example. In an extended
version of the present paper (Zeileis and Kleiber, 2004), we provide further details on this and the
remaining two data sets. For an AR(1) model of the UK inflation rate, most results are confirmed
if the same bandwidth h is used. However, small changes in h lead to a competing model with
different results. For a Phillips curve equation, our results are consistent with those of Bai and
Perron.
In the following, we discuss the US ex-post real interest rate series for the period 1961(1)–1986(3),
defined as the three-month treasury bill rate deflated by the CPI inflation rate. It is modelled
by only a constant as regressor, utilizing a minimum segment size of h = 15 observations. This
amounts to allowing for up to m∗ = 5 breaks. Bai and Perron discuss this series in considerable
detail, and their script for the analysis of this data set, break.prg, is available from the JAE data
archive along with brcode.src, a collection of GAUSS functions upon which break.prg relies. This
greatly facilitates our task. Following Bai and Perron, we consider a three-break model below.
The coefficient estimates (with standard errors in parentheses) and the corresponding confidence
intervals at the 95% level are given in Table I. The standard errors are estimated utilizing a
kernel HAC estimator with a quadratic spectral kernel, prewhitening using a VAR(1) model and
an AR(1) approximation for the automatic bandwidth selection. The estimated breakpoints,
1966(4), 1972(3) and 1980(3), as well as the regression coefficients agree with those obtained by
Bai and Perron, there are minor differences regarding the estimated standard errors. Overall, this
part of the replication must be considered a success. However, there are considerable differences in
the confidence intervals corresponding to the break dates, which cannot be explained by rounding
errors in different computing environments. Specifically, the second confidence interval (1969(1)–
1972(4)) extends much further to the left than the one reported by Bai and Perron (1970(3)–
1972(4)). With some effort, we were able to track down the source of the problem, a so-called
underflow for which there does not appear to be an easy workaround in GAUSS.

Table I: US ex post real interest rate (1961(1)–1986(3))
Coefficient estimates with three breaks (h = 15)
δ̂1 δ̂2 δ̂3 δ̂4

1.82 0.87 -1.80 5.64
(0.19) (0.15) (0.50) (0.59)

Corresponding breakpoint estimates
T̂1 T̂2 T̂3

1966(4) 1972(3) 1980(3)
1965(2)–1969(3) 1969(1)–1972(4) 1980(1)–1981(1)

The confidence intervals are derived from the distribution of the argmax functional of a process
composed of two independent Brownian motions with different linear drifts and scales; see Bai
(1997) for further details on this nonstandard distribution. This cumulative distribution function
(CDF) depends on three parameters which are here associated with ratios of quadratic forms in
the magnitude of the shifts and weighting matrices defined as segment-wise covariance matrices.
The CDF contains terms of the type exp(ax) ·Φ(−b

√
x), where Φ denotes the CDF of the standard

normal distribution, a and b are functions of the residual standard errors pertaining to adjacent
segments. For the confidence interval corresponding to the second breakpoint, a is approximately
equal to 8.314 while b is approximately equal to 4.08, and the term must be evaluated for x ∈
[−10, 300] (approximately). Numerically, for x in the vicinity of 300, the term exp(ax) ·Φ(−b

√
x)

is the product of a rather large, exp(ax), and a rather small, Φ(−b
√

x), number and it depends on
the implementation as well as the routines used by the software package what the latter returns.
We looked into this problem utilizing GAUSS v3.2.38, a good proxy for GAUSS v3.2.32, the version
used by Bai and Perron.1 Using their program brcode.src, GAUSS v3.2.38 returns values of the

1We thank Pierre Perron for providing this information.
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CDF up to approximately 0.95 (in fact, only values up to 0.9 are reliable—for larger values the
computations cannot yield correct results on a PC as we shall see below), proceeds with some
values in excess of 1 (!), and returns infinitely large function values thereafter. This results in
a spurious kink in the CDF and in a bisection search (employed for computing the required
quantile) stopping near this kink, yielding a 97.5% quantile in the vicinity of 86 and implying that
the confidence interval reported by Bai and Perron is not valid. Our R package strucchange does
not produce this spurious kink and returns a 97.5% quantile of 186.45. What is going on here? At
first, this looks like a small programming error that is easy to correct: coding exp(ax) · Φ(−b

√
x)

term by term is not a numerically efficient way to handle this quantity. For large x, Φ(−4.08
√

x)
is tiny; in fact, for x ≥ 85 it is smaller than the smallest positive number representable on a
PC with 32-bit arithmetic. Columns 2 and 3 of Table II show how GAUSS and R deal with
this underflow: R rounds the probability to the nearest number it can represent—as computers
have to do for any real number—which in this case is 0. GAUSS, on the other hand, argues (as
documented on the manual page for cdfn) that the CDF of the standard normal distribution is
always greater than 0 and returns 2.225 · 10−308, the smallest positive number it can work with.
Evidently, neither approximation of the true probability is satisfactory in this situation and the
term exp(ax) · Φ(−b

√
x) must not be computed via Φ(x) for large x.

A natural solution would be to code the offending term in the form exp(ax+log(Φ(−b
√

x))). Many
software packages for statistics and econometrics, including GAUSS and R, provide a separate func-
tion for computing normal log-probabilities, log(Φ(·)), directly. This is used in the implementation
of the CDF in strucchange which allows us to compute the required 97.5% quantile. (Of course, we
do not know what the true quantile is, since there is no benchmark for this nonstandard distribu-
tion. All we can say is that we have no reason to doubt that R returns a reasonable approximation
to the truth.) However, in GAUSS the problem turns out to be more serious. While the spurious
kink in the CDF disappears, GAUSS v3.2.38 is unable to go beyond the 90.7% quantile (it returns
missing values thereafter). Clearly, for two-sided confidence intervals corresponding to conven-
tional confidence levels, at least the 95% and preferably also the 97.5% and 99.5% quantiles are
required. Columns 4 and 5 of Table III exhibit what GAUSS and R return for log(Φ(−4.08

√
x)),

x ∈ [80, 90], utilizing the GAUSS function lncdfn and its R counterpart pnorm with option log.p
= TRUE. Evidently, lncdfn does not improve much upon cdfn: despite the log-probabilities hav-
ing numerically non-critical values around -750, lncdfn returns −∞ for x ≥ 89. In contrast, R
returns finite values for much larger arguments. Lacking access to the internals of GAUSS, we
can only speculate that either an inaccurate expansion for log(Φ) or a coding error is responsible
for these results. A look at the documentation and the code of R reveals that pnorm utilizes an
approximation to Φ outlined by Cody (1969), while log(Φ) is handled via an asymptotic expansion
(Abramowitz and Stegun, 1964, formula 26.2.13). In order to verify our findings we also asked a
few colleagues to run our GAUSS programs in more recent versions of GAUSS, it emerges that the
problems persist in GAUSS v5.0.22, v5.0.25, and v6.0.8.

Table II: Computation of Φ(y) and log(Φ(y)) with y = −4.08
√

x in GAUSS and R

GAUSS R GAUSS R
x cdfn(y) pnorm(y) lncdfn(y) pnorm(y, log.p = TRUE)
84.0 2.462e-306 2.462e-306 -703.690 -703.690
85.0 2.225e-308 0 -712.019 -712.019
86.0 2.225e-308 0 -720.348 -720.348
87.0 2.225e-308 0 -728.677 -728.677
88.0 2.225e-308 0 -737.006 -737.006
89.0 2.225e-308 0 −∞ -745.335

Lacking an accurate function for evaluation of log(Φ), GAUSS users may nonetheless obtain an
approximate solution. We suggest using the elementary approximation (Feller, 1968, p. 175)

Φ(−x) = 1− Φ(x) ≈ 1
x
√

2π
exp

{
−x2

2

}
(x > 0). (2)
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(In fact, (2) represents an upper bound that is fairly tight in the tails.) Utilizing log(Φ(−x)) ≈
−x2/2 − log(

√
2π) − log(x), x > 0, in brcode.src, we find q0.975 = 183.95 for the distribution

required in connection with the second breakpoint. This agrees with the value obtained in R
based on more refined methods. (The difference to the quantile 186.45 reported above is due to
slightly different HAC estimates of residual variances in GAUSS and R and not to the bound (2).)
In practical terms, using this quantile for computation of the confidence intervals it emerges that
the intervals for the first and second break overlap (by three periods, see Table I), hence there
appears to be considerable uncertainty as to the location of the first break.
Apart from the numerical problem mentioned above, there are further small differences between
our results and those of Bai and Perron. Specifically, the lower limits of the remaining two
confidence intervals differ by one observation from the results obtained utilizing brcode.src. As
noted by Bai and Perron, the confidence intervals should be integer-valued like the breakpoints
themselves. Therefore, instead of the interval [a, b] computed from the asymptotic distribution the
interval [floor(a), ceiling(b)] should be returned. However, brcode.src computes the lower limit as
floor(a)− 1 which is responsible for the difference of results. After shifting the lower limit to the
right by one observation, R and GAUSS agree.

3. CONCLUSION

When the JAE started its Replication Section in early 2003, in the same issue in which the Bai
and Perron paper was published, we felt that this paper provided an ideal opportunity to try out
our R package strucchange on other authors’ data. However, the task turned out to be rather
difficult when we attempted to validate the confidence intervals. With some effort, we were able
to trace these problems to an underflow problem that is not easily overcome in GAUSS. Lessons
are threefold:
Evidently, numerical accuracy is important. Naturally, problems of this type are bound to occur
in all software environments, and only further replication studies will bring them to the attention
of researchers and software developers. When this paper was under review, P. Perron informed us
that an improved version of brcode.src is now available from his Web page. In addition, Aptech,
the makers of GAUSS, announced a fix of lncdfn.
We second McCullough and Vinod (2003) in suggesting journal archives with mandatory data and
code. At present, the JAE only requires data, more often than not the corresponding code is not
available. We are therefore grateful to Professors Bai and Perron for making their code publicly
available without being obliged to. Without their code, this replication project would have had
to stop halfway: GAUSS returns this, R returns that, and it would have been much harder to
determine the source of the observed differences. With their code, we can confidently say that
numerical problems in GAUSS are responsible for most of the differences.
Finally, as pointed out by McCullough and Vinod (2003), even data and code together will not
be sufficient. In addition, anybody trying to replicate the results of some paper will require
information on the software package including the version, the operating system and preferably
the exact function calls to the package used in the analysis. Fortunately, there is a convenient
way to achieve this (and more), at least for the combination of computing environment and text
processor used by the authors of this paper, R and LATEX. R provides the function Sweave (in the
utils package) which is able to perform computations on integrated text documents that mix code
(in R) and corresponding documentation (in LATEX). See Leisch and Rossini (2003) for its use in
connection with reviewing and replicating statistical research.

Computational details

Our results were obtained using R 2.1.1—with the packages strucchange 1.2–10, sandwich 1.0–1
and zoo 1.0–0—and were identical on various platforms including PCs running Debian GNU/Linux
(with a 2.6.6 kernel) and Windows XP Professional, version 2002. GAUSS v3.2.38 was run under
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Windows XP Professional, version 2002, on a 1.67 GHz AMD Athlon XP 2000+ processor. The
full R and GAUSS code reproducing our analysis of all three models is available from the JAE data
archive.
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