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Abstract

The supLM test for structural change is embedded into a permutation test framework
for a simple location model. The resulting conditional permutation distribution is com-
pared to the usual (unconditional) asymptotic distribution, showing that the power of
the test can be clearly improved in small samples. Furthermore, the permutation test is
embedded into a general framework that encompasses tools for binary and multivariate
dependent variables as well as model-based permutation testing for structural change. It
is also demonstrated that the methods can not only be employed for analyzing structural
changes in time series data but also for recursive partitioning of cross-section data. The
procedures suggested are illustrated using both artificial data and empirical applications
(number of youth homicides, employment discrimination data, carbon flux in tropical
forests, stock returns, and demand for economics journals).

Keywords: conditional inference, asymptotic distribution, exact distribution, maximally-selected
statistics.

1. Introduction

Methods for detecting structural changes in series of observations have been receiving in-
creased interest in the theoretical and applied literature, both in econometrics and statistics –
see, e.g., Stock and Watson (1996) for a discussion of their relevance to econometric practice.
Since the suggestion of the Quandt test (supremum of Chow statistics, see Chow 1960; Quandt
1960), several ideas for capturing structural instabilities in tests statistics have emerged. How-
ever, tracking the distribution of such test statistics (in the case of unknown timing of change)
turned out to be difficult so that the (asymptotic) distribution of the Quandt test remained
unknown for a long time. The breakthrough in deriving an asymptotic approximation for
structural change test statistics came with the discovery of suitable functional central limit
theorems, first for CUSUM statistics (Brown, Durbin, and Evans 1975, see also Krämer and
Sonnberger 1986 for an early overview), then for supF statistics (Andrews 1993) – a unifying
view on both types of tests is given in Zeileis (2005). Test procedures based on these asymp-
totic distributions are predominantly used in econometric practice, although some approaches
for finite samples also employ other approximations, e.g., based on simulation or bootstrap
sampling.

In this paper, we consider a different approach, namely conditional inference methods, also
known as permutation tests. This powerful general principle for deriving a suitable refer-
ence distribution for a test statistic was described almost 80 years ago by Fisher (1935); its
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2 A Toolbox of Permutation Tests for Structural Change

asymptotic properties have been investigated early, e.g., by Pitman (1938). The approach
has gained much popularity in the statistics literature in recent years (Ludbrook and Dudley
1998; Strasser and Weber 1999; Pesarin 2001; Ernst 2004). Permutation tests have been found
particularly useful because of their flexibility, distribution-free nature and intuitive formula-
tion, which makes it easy to communicate the general principles of such test procedures to
practitioners.

While permutation tests have become increasingly popular in various statistics communi-
ties, in particular for nonparametric inference in biostatistics, they are still less popular in
econometrics. However, several applications exist, see e.g., Kennedy (1995) for an overview
on how to employ permutation tests in econometrics. For the specific problem of struc-
tural change, permutation tests are not typically considered in econometrics, whereas in the
statistics literature they are used more frequently, especially in nonparametric tests based on
maximally selected rank statistics (Lausen and Schumacher 1992; Hothorn and Lausen 2003;
Boulesteix and Strobl 2007) and in mathematical statistics (Antoch and Hušková 2001; Kirch
and Steinebach 2006; Kirch 2007). Building on these ideas, we discuss in the following how
a wide class of permutation tests for structural change can be established, pointing out their
strengths and weaknesses. The tests are derived within the framework of Strasser and Weber
(1999) as discussed by Hothorn, Hornik, van de Wiel, and Zeileis (2006a), and using ideas of
Kennedy (1995). In Section 2, the permutation distribution of the supLM test of Andrews
(1993) is derived for the location-shift model and compared to the established (unconditional)
asymptotic distribution, both for artificial data and in an empirical application. In Section 3,
a general class of permutation tests for structural change is suggested and specific tests for
binary and multivariate observations are derived as well as model-based permutation tests.
It is demonstrated how the tests can not only be employed for assessing structural change in
time series data but also for recursive partitioning of cross-sectional data. All procedures are
illustrated using various empirical applications: the number of youth homicides in Boston,
a case of employment discrimination, carbon flux due to coarse woody debris in tropical
forests, Dow Jones industrial average stock returns, and the price elasticity of the demand for
economics journals. Section 4 concludes the paper with a brief discussion.

2. Structural changes in the mean

For comparing unconditional and conditional inference techniques in a structural change con-
text, we initially focus on the simple, yet important, special case of location shifts in a uni-
variate series of observations. First, we establish some general notation as well as the general
testing problem which is subsequently specialized to location shifts for which test statistics
and sampling distributions are derived. Further important special cases of the general testing
problem are considered in Section 3.

2.1. Test problem and statistics

Consider a sequence of n observations (or realizations) from random variables Yi (i = 1, . . . , n),
possibly vector-valued, which is ordered with respect to ti, usually corresponding to time (but
could also be some other ordering variable such as income etc.). In the following, we assume
that time t has been scaled to the unit interval such that it gives the fraction of observations
up to the current time (without loss of generality). In the simplest case of n totally ordered
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observations along i = 1, . . . , n, this is simply ti = i/n – in the more general case, there could
be ties in t (i.e., several observations were made at the same time t).

The structure of the sequence Yi is stable if the distribution of the observations Yi ∼ Fti
does not depend on the time ti. Thus, structural change tests are concerned with testing the
hypothesis

H0 : Ft = F (t ∈ [0, 1]) (1)

against the alternative that the distribution Ft does depend on t in some way. As it is
not possible (nor desired, typically) to derive tests that have good power properties under
arbitrary alternatives (because there are infinitely many different ways how Ft can depend
on t), specific test statistics are typically derived for certain patterns of deviation from the
null hypothesis. The alternative most commonly of interest in this context is the single
shift alternative, where the distribution remains constant up to an unknown breakpoint t∗

and shifts to a different distribution afterwards. Test statistics derived for this particular
alternative will, of course, also be able to pick up other structural changes albeit with less
power. However, the loss in power is usually small if the true alternative can be described
sufficiently well by a single shift.

Even a single shift alternative, however, is still too general if it is not specified which aspects
of F are subject to change at t∗. To illustrate the basic approach and focus on the derivation
of the conditional distribution of the test statistic, we consider in the remainder of this section
the simplest case: only the first moment of F changes at t∗ – more general types of changes
in F are discussed in Section 3. In the case of location shifts, the model can be formulated
more conveniently as

Yi = µti + εi, (2)

where εi is a zero mean disturbance term. The null hypothesis and alternative can then be
written as:

H0 : µt = µ (t ∈ [0, 1])

HA : µt = µ (t ≤ t∗) (3)

µt = µ+ δ (t > t∗)

To test for single shift alternatives, the supF tests of Andrews (1993) are probably the tests
employed most often in practice. In a mean shift model and using Lagrange multiplier (LM)
statistics, the supF test is based on the statistics

Fπ = n ·R2
π = n ·

(
1− RSSπ

RSS 0

)
, (4)

where RSS 0 =
∑n
i=1(Yi − Ȳ )2 is the residual sum of squares (RSS) under the null hypothesis

and RSSπ is the RSS if the mean of the observations up to π is estimated by Ȳ1,π and the

mean of the observations afterwards by Ȳ2,π. More precisely, RSSπ =
∑bnπc
i=1 (Yi − Ȳ1,π)2 +∑n

i=bnπc+1(Yi − Ȳ2,π)2 with b·c denoting the integer part. Then, the R2 of a model with a

single shift at breakpoint π is R2
π = 1− RSSπ/RSS 0.

The supF test is then carried out by computing the sequence of LM statistics Fπ (π ∈ Π)
for each conceivable breakpoint π ∈ Π = [π, π] ⊂ [0, 1] and the overall null hypothesis is
rejected if their supremum supπ∈Π Fπ is too large. The interval Π is typically derived using
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some trimming (see also Section 2.2), e.g., Π = [0.1, 0.9], which we use in our simulations and
applications below.

For deriving the asymptotic conditional distribution in the following subsection, it will be
useful to transform the LM statistics from their usual “F type” to a “t type”, essentially by
taking the square root. The statistic Fπ can be rewritten as follows

Fπ =
RSS 0 − RSSπ

RSS 0/n
(5)

=
n1,πn2,π

n

(Ȳ1,π − Ȳ2,π)2

RSS 0/n

where n1,π and n2,π are the numbers of observations up to π and after π, respectively. There-
fore, the supLM test can also be carried out by rejecting the null hypothesis if supπ∈Π |Zπ| is
too large, where

Zπ =

√
n1,πn2,π

n

Ȳ1,π − Ȳ2,π√
RSS 0/(n− 1)

. (6)

We have slightly rescaled Zπ by using n− 1 instead of n for standardization. The reason for
this is the derivation of the asymptotic conditional distribution and will be explained in more
detail below. For notational convenience, we will sometimes replace the supremum by the
maximum in the formulation of the test statistic maxπ∈Π |Zπ| – in these cases, Π is taken to
be the elements of [π, π] observed in the sample, i.e., Π = {ti |π ≤ ti ≤ π} = {π1, . . . , πm}.

2.2. Distribution of the test statistic

In the previous subsection, two equivalent formulations of the supLM test have been estab-
lished: reject the null hypothesis if maxπ∈Π Fπ or maxπ∈Π |Zπ| becomes “too large”. To render
this test useful, the distribution D (or at least an approximation thereof) of the test statistic
under the null hypothesis is required to compute critical values or equivalently p values. In
general, unfortunately, the distribution D = DF depends on the unknown distribution F and
is therefore unknown as well. However, there are several strategies to dispose of this depen-
dency by using a suitable approximation of D. The most popular strategy in classical statistics
and econometrics is to use the (unconditional) asymptotic distribution D∞, i.e., to derive the
limit of DF for n→∞ analytically under some (typically mild) regularity conditions.

In the case of the supLM test, this problem was solved in the seminal paper of Andrews
(1993) who showed that a functional central limit theorem holds for the sequence of LM
statistics Fπ which converge to a squared standardized tied-down Bessel process under fairly
general regularity conditions. Thus, the unconditional limiting distribution D∞ is given by
supπ∈Π(π(1 − π))−1B2(π), where B(t) (t ∈ [0, 1]) is a standard Brownian bridge. For this
distribution efficient numerical algorithms for computing approximate p values from this dis-
tribution have been derived by Hansen (1997).

A fundamentally different strategy is to replace the unknown null distribution by the con-
ditional null distribution, i.e., the distribution of the test statistic given the observed data.
This approach leads to permutation tests, rendered computationally feasible by modern com-
puters and therefore studied intensively today, see Ludbrook and Dudley (1998); Strasser and
Weber (1999); Pesarin (2001); Ernst (2004), among others. In econometrics, the interest in
permutation or randomization tests has also increased (see e.g., Kennedy 1995; Luger 2006)
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but less so compared to the statistics community. An introduction to permutation tests in
econometrics – highlighting both advantages and problems – is given by Kennedy (1995).
Conceptually, carrying out a permutation test for structural change is easy: If the distribu-
tion of the Yi does not depend on the time ti, the Yi can be permuted on the ti, breaking
up the original ordering. The main idea behind these mechanics is to compute the reference
distribution of a certain test statistic directly from the data without imposing any distribu-
tional assumptions on (Y1, . . . , Yn). Thus, the exact conditional distribution Dσ|Y of the test
statistic can then be derived by computing the test statistic for each permutation σ ∈ S of
the observations Yi. As the size of S is n!, it is only feasible for very small n to actually com-
pute all permutations. Otherwise, either specialized algorithms are required for computing
the exact distribution (which are only available in certain special cases) or it can be always
approximated arbitrarily precisely by drawing a sufficiently large number of permutations P
from S. In the following, we always draw P = 10, 000 permutations to approximate the exact
conditional distribution Dσ|Y (except in one application where n = 7 and the computation
of the exact distribution is feasible). See the appendix in Kennedy (1995) for a discussion of
some practical considerations concerning the number of permutations.

Instead of drawing a large number of permutations P , there also exists another approximation
to the conditional distribution: its limiting counterpart. Thus, we can employ the conditional
asymptotic distribution D∞|Y which is obtained from Dσ|Y for n → ∞. For the supLM
test, the joint asymptotic conditional distribution of the vector of standardized statistics
Z = (Zπ1 , . . . , Zπm)> is multivariate normal. Therefore, it is relatively easy to compute D∞|Y
because efficient numerical algorithms are available for computing p values for the maximum
of a multivariate normal statistic Z (Genz 1992). Thus, it is computationally cheap (for small
to moderate m) to compute the asymptotic conditional distribution D∞|Y while the advantage
of the somewhat more costly computation of Dσ|Y is that the quality of this approximation
can be controlled by choosing a sufficiently large P . In a permutation context, it seems more
natural to treat the breakpoints π as fixed, however, it is also possible to let the number
of breakpoints π grow with n (see Hothorn and Zeileis 2008, for theoretical and practical
consequences).

The asymptotic normality of Z stated in the previous paragraph still needs to be stated more
precisely and, of course, proved. It can be shown that expection, variance and covariance of
Z under H0 and given all permutations σ ∈ S is:

Eσ[Zπ] = 0 (π ∈ Π)

VARσ[Zπ] = 1 (π ∈ Π)

COVσ[Zπ, Zτ ] =
n1,πn2,τ√

n1,πn2,πn1,τn2,τ
(π < τ)

Collecting the variances and covariances in the matrix Σ, the multivariate normality of Z
can be compactly stated as Z ∼ N (0,Σ). A formal proof is given in the appendix which is
obtained by embedding the test statistics Zπ and maxπ∈Π |Zπ| into the framework of Strasser
and Weber (1999) who establish asymptotic normality for a general class of permutation tests.
This is also the reason for using n − 1 rather than n in the standardization of Zπ. Here, we
follow the formulation of Strasser and Weber (1999), whereas for Fπ we use the standard
n in the LM statistic. Note that this only influences the p values computed from the two
asymptotic distributions D∞ and D∞|Y , whereas the p values from Dσ|Y remain unaffected.
Furthermore, the difference in standardization only has an influence for small n and will lead
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6 A Toolbox of Permutation Tests for Structural Change

to slightly smaller p values for the unconditional asymptotic distribution D∞ (but as we will
see below, this does not make any difference in practice).

The assumptions under which the unconditional and conditional distributions are valid ref-
erence distributions for the test statistic are as different as the underlying conceptual frame-
works. The unconditional asymptotics can be established under different sets of assumptions
such as those given in Andrews (1993) or Krämer, Ploberger, and Alt (1988), typically requir-
ing some weak dependence of the series Yi (i = 1, . . . , n) and certain regularity assumptions
for the estimators employed. The assumptions for the conditional permutation tests, on the
other hand, are simpler but in a time series setup somewhat more restrictive: they require
exchangeability of the observations Yi under H0, i.e., the joint distribution of (Y1, . . . , Yn) is
required to be invariant with respect to the group of permutations S. In the model-based
view, this is equivalent to exchangeability of the errors εi, respectively. The issues are also
discussed in Remark 2.4 of Strasser and Weber (1999) and the discussion in Kennedy (1995).

Finally, extreme value asymptotics can be employed to obtain the limiting distribution when
no trimming is applied and all conceivable changepoints are considered. More precisely,
Antoch and Hušková (2001) show that the untrimmed test statistic supπ∈(0,1) |Zπ| – i.e.,

with Π = (0, 1) – has an extreme value distribution that is denoted D0
∞|Y in the following.

Analogously to the ideas above, the corresponding exact conditional distribution D0
σ|Y can

again be approximated by P draws from the permutation distribution of the untrimmed
statistic.

2.3. Finite sample performance

To illustrate the quality of the reference distributions D for the test statistic in scenarios with
small sample size n, a Monte Carlo study of a local alternative model is conducted:

Yi = 0 + n−1/2δ · 1(t∗,1](ti) + εi

where 1I is the indicator function for the interval I, δ controls the intensity and t∗ the timing
of the shift. Thus, the mean of Yi jumps from 0 to n−1/2δ after time t∗. The standardized
time is simply ti = i/n and the disturbances εi are standard normal and independent.

To study the influence of the various parameters of the model, the number of observations n
is set to 10, 20 and 50, respectively, t∗ = 0.2, 0.35, 0.5 and δ = 0, 5, 10, 15. The earliest shift
is t∗ = 0.2 so that for the smallest sample size n = 10 there are two observations in the first
regime. For comparing the performance of the distributions D, power curves (at significance
level 5%) are estimated from 10, 000 replications for each parameter combination. The values
for the shift intensity δ also include 0 to analyze size as well as power of the tests. This
setup corresponds to power/size “conditional on assignment” (in the terminology of Kennedy
1995) allowing for a fair comparison between the unconditional and conditional version of the
supLM test.

The results from the Monte Carlo experiment are summarized both in Table 1 and Figure 1.
These clearly indicate that the (approximated) exact conditional distribution Dσ|Y performs
best, both in terms of power and size, independent of the timing of the shift. Among the
asymptotic distributions, the conditional asymptotic distribution D∞|Y outperforms the un-
conditional asymptotic distribution D∞. However, the differences are only large for very
small sample sizes n and diminish with increasing n: for n = 50 the power curves are already
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n D t∗ = 0.2 t∗ = 0.35 t∗ = 0.5
δ = 0 5 10 15 0 5 10 15 0 5 10 15

10 D∞ 0.0 0.1 2.3 15.7 0.0 0.3 4.7 25.8 0.0 0.5 7.2 35.3
D∞|Y 0.6 3.4 25.5 71.0 0.6 5.6 39.5 85.5 0.7 7.9 50.8 92.0

D0
∞|Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Dσ|Y 3.4 13.9 50.1 85.1 3.6 25.1 77.5 97.8 3.5 35.0 90.5 99.7

D0
σ|Y 3.4 13.8 50.0 85.0 3.6 25.2 77.4 97.8 3.5 35.0 90.5 99.7

20 D∞ 1.4 12.7 64.2 97.4 1.2 20.6 85.1 99.8 1.4 23.6 89.5 100.0
D∞|Y 3.2 20.3 76.2 99.1 2.9 30.8 92.2 100.0 2.9 35.0 94.8 100.0

D0
∞|Y 0.0 0.7 13.0 61.7 0.0 1.5 30.4 87.6 0.0 2.0 36.7 91.6

Dσ|Y 5.0 27.9 83.6 99.6 4.8 39.4 95.4 100.0 5.0 44.3 97.0 100.0

D0
σ|Y 4.8 27.0 82.2 99.3 4.6 38.8 95.2 100.0 4.8 43.8 96.9 100.0

50 D∞ 2.8 23.9 84.9 99.8 2.7 35.6 96.0 100.0 2.8 40.9 97.5 100.0
D∞|Y 4.3 29.0 88.6 99.9 3.8 41.8 97.1 100.0 4.2 47.3 98.3 100.0

D0
∞|Y 0.3 6.2 56.2 97.1 0.4 11.5 80.2 99.8 0.4 14.3 86.0 100.0

Dσ|Y 5.2 31.4 90.0 99.9 4.4 44.6 97.5 100.0 4.9 50.0 98.6 100.0

D0
σ|Y 5.0 28.6 87.4 99.8 4.5 40.4 96.6 100.0 4.8 45.7 97.9 100.0

Table 1: Simulated power (in %) of the supLM tests.

almost indistinguishable. This justifies the usage of the unconditional limiting distribution
D∞ (typically computed using the algorithm of Hansen 1997) in moderate to large samples.
For small samples, however, the conditional inference approach using permutation tests for
structural change proves to be a more powerful strategy.

The untrimmed tests are always outperformed by the corresponding trimmed tests. This
is, of course, not surprising given that no changes were simulated to be in the trimmed
regions. However, it is noteworthy that while the untrimmed (approximated) exact conditional
distribution D0

σ|Y is very close to its trimmed counterpart Dσ|Y (and hence not shown in

Figure 1), the asymptotic conditional distribution without trimming D0
∞|Y performs even

worse compared to its trimmed counterpart D∞|Y . Apparently, the extreme value asymptotics
require somewhat larger sample sizes to be useful as an approximation for finite sample.

In summary, this suggests that (a) the (approximated) conditional distribution is worth the
computational effort in very small samples, (b) asymptotic distributions perform similarly
already for moderately large samples, and (c) the conditional asymptotic distributions (keep-
ing the number of potential changepoints fixed as n → ∞) work very well for sample sizes
in between. This also confirms and complements previous findings, e.g., in the context of
maximally selected statistics (see Hothorn and Lausen 2003; Hothorn and Zeileis 2008).

2.4. An illustration

To illustrate the different approximations of the reference distribution D in an empirical
application, we reanalyze a time series giving the number of youth homicides in Boston,
USA. To address the problem of high youth homicide rates in Boston, a policy initiative
called the “Boston Gun Project” was launched in early 1995, implementing in particular an
intervention called“Operation Ceasefire”in the late spring of 1996. As a single shift alternative
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Figure 1: Simulated power of the supLM tests using reference distributions: approximated
conditional Dσ|Y (solid, solid circles), asymptotic conditional D∞|Y (dotted, hollow circles),
asymptotic unconditional D∞ (dashed, hollow squares), asymptotic conditional without trim-
ming D0

∞|Y (dash-dotted, hollow triangles).

seems plausible but the precise start of the intervention cannot be determined, Piehl, Cooper,
Braga, and Kennedy (2003) chose to model the number of youth homicides in Boston using
modifications of the F tests for structural change of Andrews (1993) based on monthly data
(n = 77 observations) from 1992(1) to 1998(5) (see Figure 2) and assessing the significance
via Monte Carlo results instead of the standard reference distribution D∞.

Here, we take a similar approach and test whether the number of homicides (in continuity-
corrected logarithms, Y = log(homicides + 0.5)) changes over time using the supLM test of
Andrews (1993) and compare the outcome of all three reference distributions D: The test
statistic is maxπ∈Π |Zπ| = 5.374 (or equivalently maxπ∈Π Fπ = 29.261) with the standard
asymptotic unconditional distribution D∞ yielding a p value of 2.55 · 10−6, the asymptotic
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1992 1993 1994 1995 1996 1997 1998

Monthly 2 1 1 5 1 4 2 5 6 3 4 2 4 2 1 1 3 1 1 1 0
1 3 3 2 7 3 1 1 6 1 2 3 3 4 2 0 2 3 0 2
3 5 4 4 5 7 3 3 3 7 3 10 3 1 2 0 1 0
7 2 5 2 4 4 4 3 1 5 3 3 0 1 2 1 0 3

Annual 3.083 4.000 3.167 3.833 2.083 1.250 0.800

Table 2: Number of youth homicides in Boston: monthly counts and annual averages.
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Figure 2: Number of youth homicides in Boston: monthly counts (gray), annual averages
(black).

conditional distribution D∞|Y a p value of 1.01 · 10−6, and the approximated conditional
distribution Dσ|Y a p value of 1 · 10−4 (i.e., not a single of the 10, 000 permutations produced
a greater test statistic). Thus, all three p values are very similar and lead to practically
equivalent solutions, providing firm evidence for a change in the number of homicides. The
maximal LM statistic is assumed in 1996(7) (an estimate for the timing of the shift t∗) at
about the time the Operation Ceasefire was implemented.

So far, we essentially confirmed the findings of Piehl et al. (2003) and also the impression from
our simulation study that already for moderately sized n all three reference distributions D
lead to virtually identical results. However, imagine that we would not have been provided
with such detailed monthly observations but with annual averages instead (see Table 2 and
Figure 2). Then, with only n = 7 observations, would we still be able to show that the policy
intervention had an effect on the number of homicides? Using the raw means (instead of logs
because we already averaged) leads to a test statistic of maxπ∈Π |Zπ| = 2.246 (or equivalently
maxπ∈Π Fπ = 5.885). This corresponds to a p value of 20.25% computed from the standard
asymptotic unconditional distribution D∞, 10.62% for the asymptotic conditional distribution
D∞|Y , and 5.71% for the exact conditional distribution Dσ|Y . Thus, we observe a similar
phenomenon as in the simulation study: the standard D∞ lacks power and results in a clearly
nonsignificant p value, whereas the conditional p values are considerably smaller. The exact
p value is statistically significant at the 10% level (and on the verge of being significant at
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10 A Toolbox of Permutation Tests for Structural Change

5% level) and in fact there was not a single permutation yielding a greater test statistic, all
5.71% permutations are ties with the observed maximal test statistic (which is assumed for
the year 1995).

3. Extensions

In the previous section, we discussed how the conditional distributions Dσ|Y and D∞|Y can be
established by embedding the supLM test of Andrews (1993) into the framework of Strasser
and Weber (1999) for the location model (2). Here, we discuss how this general framework
can be employed more generally in a structural change setup.

Strasser and Weber (1999) provide a very general approach for assessing the dependence of
a sequence of possibly multivariate observations Yi on another variable ti by employing test
statistics of the form

T = vec

(
n∑
i=1

g(ti)h(Yi, (Y1, . . . , Yn))>
)
, (7)

where g(·) and h(·) are possibly vector-valued transformations of ti and Yi, respectively. They
are also called regression function and influence function, respectively. The influence function
h(Yi) = h(Yi, (Y1, . . . , Yn)) may depend on the full vector of observations (Y1, . . . , Yn), however
only in a permutation symmetric way, i.e., the value of the function must not depend on the
order in which Y1, . . . , Yn appear. Given exchangeability of the observations, the asymptotic
conditional multivariate normality of T under the null hypothesis of independence of Yi and
ti is derived by Strasser and Weber (1999).

The choice of g(·) and h(·) determines against which types of dependence of Yi on ti tests based
on T have good power. For a single shift alternative with unknown breakpoint as in (3), it is
straightforward to use a multivariate regression function constructed from indicator functions
for all potential breakpoints g(t) = (1[0,π1](t), . . . ,1[0,πm](t))

>. While g(·) reflects the type
of time dependence, the choice of h determines what types of changes in the distribution Ft
can be captured (well): For shifts in location using the identity h(Y ) = Y is suitable. To
aggregate the multivariate statistic T to a single scalar test statistic, typically the maximum
of the standardized T is used

max

∣∣∣∣∣ T − Eσ[T ]√
diag(VARσ[T ])

∣∣∣∣∣
which corresponds to taking the maximum over the components of g(·) (i.e., the various
potential breakpoints) and of h(·) (if it is multivariate). For the location model, more details
are given in the appendix.

In the following, other choices of h(·) are discussed which are suitable for assessing changes
in binary observations Yi, multivariate series, stratified data (including certain types of panel
data) and parametric models, respectively. In all illustrations, the exact conditional dis-
tribution Dσ|Y is used for computing p values and approximated by drawing P = 10, 000
permutations. The section is concluded by some remarks concerning the applicability of the
tests to dependent observations.
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Year 1991 1992 1993 1994 1995 1996

Female hires 2 0 0 0 5 14
Male hires 427 86 104 180 111 59

Table 3: Annual hiring data of employment discrimination case.

3.1. Structural changes in binary variables

For binary observations Yi, the distribution Fti is binomial with a certain success probability
µti which could depend on the time ti. The null hypothesis of structural stability can again be
written as in (3) corresponding to constancy of the success probability. A test statistic T that
compares empirical proportions from two subsamples defined by a set of potential break points
π1, . . . , πm can simply be obtained by using a dummy coding for Yi. This corresponds to using
the influence function h(Y ) = 1{success}(Y ) while the remaining ingredients of the test remain
the same and can be applied out of the box. As an illustration we use the data provided in
Table 3 from an employment discrimination case described in Freidlin and Gastwirth (2000).
The issue in the case was whether the hiring policy was gender neutral and a charge was filed
in May 1994. Freidlin and Gastwirth (2000) supported the court’s decision that there was
evidence that the employer switched from under-hiring of females (compared to a fraction of
3.43% in the qualified labor force in the labor market) to over-hiring after the charge was
filed. Employers can use such strategies to obscure discriminations in data aggregated over
time (using both pre- and post-charge periods). Here, we reanalyze the data set in a simple
structural change setup, i.e., without employing the additional knowledge of the fraction of
females in the qualified labor force. Using the test procedure described above, we show that
the fraction of hired females changed significantly over the years. Although there are n = 988
observations, there are only m = 5 potential breakpoints (in 1991, . . . , 1995) as the data is
reported annually. Thus, the regression function is g(t) = (1[1991,1991](t), . . . ,1[1991,1995](t))

>

and h(Y ) = 1{female}(Y ) yielding a 5-dimensional statistic T . The maximum of the stan-
dardized statistics is 10.49 assumed in 1995, corresponding to a p value of 10−4 (i.e., not a
single permutation yielded a greater test statistic) conforming with the findings of Freidlin
and Gastwirth (2000).

3.2. Structural changes in multivariate series

If the observations Yi are vector-valued, several scenarios are conceivable: all components
correspond to dependent variables, or some might also correspond to independent variables,
or there might be one stratifying variable. The latter two scenarios are dealt with in the next
paragraphs, here we focus on the case of a multivariate dependent series of observations Yi.
Typically, a multivariate influence function h(·) is used which is obtained by applying a suit-
able univariate influence function to each component of Yi. Thus, a sequence of standardized
statistics (over potential breakpoints) is computed for each component and the test rejects
the null hypothesis of stability if there is evidence for structural change in any of the com-
ponents. By using the joint distribution of all standardized statistics, this procedure corrects
appropriately for multiple testing via incorporation of the full correlation structure over time
and components. This allows not only for identification of the timing of the shift (as in the
previous illustrations) but also of the component of Yi affected by it.

To demonstrate this approach in an empirical application, the following environmetric task
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Figure 3: CO2 reflux in coarse woody debris for six pieces of wood.

Time

Te
st

 s
ta

tis
tic

s

−3

−2

−1

0

1

2

3

● ● ●
●

● ● ●

●

●

●

1

Aug 01 Sep 01 Oct 01

● ●

● ●
●

●

● ●
●

●

2

●

●

●

●
● ● ● ● ● ●

3

Aug 01 Sep 01 Oct 01

● ● ●

● ●

●

●

●
●

●

4

●

●
●

●

●
●

●

●

●

●

5

Aug 01 Sep 01 Oct 01

−3

−2

−1

0

1

2

3

●
●

●
● ● ● ●

● ●

●

6

Figure 4: Test statistics for carbon reflux data.
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is considered: Coarse woody debris (CWD, dead wood ≥ 10 cm diameter) is a large stock of
carbon in tropical forests, yet the flux of carbon out of this pool, via respiration, is poorly
resolved (Chambers, Schimel, and Nobre 2001). The heterotrophic process involved in CWD
respiration should respond to reductions in moisture availability, which occurs during dry
season (Chambers et al. 2001). CWD respiration measurements were taken in a tropical
forest in west French Guiana, which experiences extreme contrasts in wet and dry season
(Bonal et al. 2008). An infrared gas analyzer and a clear chamber sealed to the wood surface
were used to measure the flux of carbon out of the wood (Stahl, Burban, Goret, and Bonal
2011). Measurements were repeated on six pieces of wood 13 times from July to November
2011, during the transition into and out of the dry season. The aim is to assess if there
were shifts in the CWD respiration of any of the pieces in response to the transition into
(early August) and out of (late October) the dry season. The six time series are displayed in
Figure 3.

We investigate the six-variate series of CO2 reflux aiming to find out whether the CO2 reflux
has changed over sampling period in at least one of the six wood pieces. As the observations
Yi are numeric, we employ the identity transformation as the influence function h(Y ) = Y
(which is consequently six-variate here) and the regression function g(t) corresponds tom = 10
potential breakpoints (with a trimming of 10%) yielding a statistic T of dimension 10×6. The
maximum of the standardized statistics is 3.08 corresponding to a p value of 83.9 · 10−4. This
maximal statistic is assumed on 2011-10-06 for the sixth series. Only the statistics for the
sixth wood sample exceeds the 5% critical value of 2.86, thus signalling a significant change
in that piece of wood only (see also Figure 4).

3.3. Structural changes in stratified observations

If one of the components of a multivariate sequence Yi stratifies the observations into inde-
pendent blocks, the following simple strategy can be used: Compute the statistic T and its
association expectation and covariance (given σ ∈ S) for each block and aggregate the block-
wise statistics by taking their sum. Due to independence of the blocks the expectation and
covariance of the aggregated statistic is also obtained by taking sums. In addition to inde-
pendence the (hypothesized) block-wise breakpoints should be identical (or at least similar)
for the test to have good power. In econometric applications, such situations occur less often
compared to planned experiments in statistical applications – however, some situations are
conceivable (e.g., panel data from independent companies). Another application would be to
use a multivariate influence function h(·) and treat its components as blocks. This is useful
for model-based tests (see below) when decorrelated score functions for different parameters
are used for h(·).

3.4. Structural changes in parametric models

To assess changes in certain aspects of the distribution Ft a parametric model could be useful,
in particular if the observations can be split up into dependent and explanatory variables
Yi = (yi, xi)

>. As the influence function may depend on the full set of observations (in a
permutation symmetric way), the model and its corresponding parameter estimate can be
easily incorporated into h(·). As the most important special case, we first consider some
options for the linear regression model

yi = x>i θ + εi, (8)
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Figure 5: Dow Jones industrial average returns (in %).

where the assumption of exchangeability now has to be fulfilled for the disturbances εi (under
the null hypothesis) to render the permutation approach valid. Then, structural changes in
the conditional mean of the yi can be easily assessed by using the usual ordinary least squares
(OLS) residuals in the influence function h(Yi) = ε̂i = yi − ŷi. For univariate observations
Yi = yi this is equivalent to the supLM test described in Section 2. Analogously, changes in
the variance of the disturbances can be captured by basing the test on the squared residuals
h(Yi) = ε̂2

i . Moreover, changes in any component of the vector of regression coefficients θ can
be tested by using the full OLS model scores h(Yi) = ε̂ixi.

Similar to the vector-valued influence function for multivariate series, this leads again to a
statistic for each combination of potential breakpoint and parameter component. The same
ideas apply not only to linear regression models, but to more general parametric models as
long as the exchangeability assumption can be assured. Adopting a permutation approach
for h((yi, xi)

>) is similar in spirit to the fixed regressor bootstrap of Hansen (2000), in the
sense that it also permutes fixed couples of dependent and regressor variables.

More formally, we could consider a model for univariate or multivariate observations Y ∼
F (under the null hypothesis) that are modelled by a parametric distribution G(θ) (which
might or might not include the true distribution F). Then, some model scores or moment
conditions derived from the model G(θ), ψθ(Y ) = const say, could be used for testing the
model stability via the influence function h(Y ) = ψθ̂(Y ). This uses the same ideas as score-
based fluctuation tests, see Zeileis (2005) for a unified approach discussing different score
functions ψθ(Y ). Here, we use these ideas to investigate the stability of the distribution of
Dow Jones industrial average stock returns based on weekly closing prices from 1971-07-02 to
1974-08-02. The series of prices is provided in Hsu (1979) and the corresponding log-difference
returns (×100) are depicted in Figure 5. Following Hsu (1979), we model the returns Yi as
approximately normally distributed with mean and variance θ = (µ, σ2)> leading to the
maximum likelihood scores ψθ(Y ) = (Y − µ, (Y − µ)2 − σ2)> corresponding to the usual
moment conditions. For assessing the stability of both mean and variance of the returns, we
employ the empirical model scores as the influence function h(Y ) = ψθ̂(Y ) (note that using
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the simpler h(Y ) = (Y, (Y − µ̂)2)> would lead to identical results) and again a 10% trimming
for deriving g(t). This yields a maximal standardized statistic of 4.96 assumed on 1973-03-16
for the variance, corresponding to a p value of 2 · 10−4 – the maximal statistic for the mean,
on the other hand, is considerably smaller with 1.89, remaining clearly below the 5% critical
value of 3.19. Thus, there is evidence for a clear shift in the variances in mid-March 1973
(matching the break found by Hsu 1979) while the mean remains constant throughout the
sample period.

Note that exchangeability does not appear to be too strong an assumption for this data,
although one might expect GARCH (generalized autoregressive conditional heteroskedsticity)
effects to be present. However, the first order autocorrelations of both the levels and its
squares are modest: Up to mid-March 1973 the autocorrelation in the levels is 0.220 and
only −0.144 in the squares. After the detected break, the autocorrelations are −0.158 and
−0.072, respectively. None of these would be picked up as significant by Box-type tests
for autocorrelation. Furthermore, Jarque-Bera tests detect no significant departure from
normality in the two segments of the series with p values of 0.308 and 0.317, respectively.

3.5. Recursive partitioning of cross-section data

While the assumption of exchangeability may be questionable for time series data – as it may
(illustrated in Section 3.4) or may not hold (see Section 3.6 for a brief discussion) – it is
typically far less critical for cross-section data. And although one might think that there are
not many structural change questions for cross-section data, this is in fact not the case.

There is a close connection between testing/estimating structural changes and estimating re-
gression/classification trees (also known as recursive partitioning, see e.g., Hastie, Tibshirani,
and Friedman 2009 for an overview). To capture the relationship between some dependent

variable Yi and a set of ` regressors t
(1)
i , . . . , t

(`)
i , trees recursively assess whether the distribu-

tion of Yi changes across any of the t
(j)
i . If there is some change, it is captured by splitting

the data, i.e., estimating a breakpoint (or several breaks) with respect to the most relevant

variable t
(j)
i , and then recursively repeating the procedure. While traditional tree methods

solve this problem by greedy forward search algorithms, modern tree methods employ signifi-
cance tests for determining in each step which variable is split next. In the latter class of tree
methods, some authors employ general association tests (e.g., Hothorn, Hornik, and Zeileis
2006b), others use maximally-selected statistics (e.g., Strobl, Boulesteix, and Augustin 2007),
but also structural change tests have already been suggested (Zeileis, Hothorn, and Hornik
2008).

Here, we note that the framework of maximally-selected permutation tests for structural
change – as discussed in this manuscript – is a natural candidate for the basis of recursive
partitioning methods. In fact, this is a special case of the conditional inference trees frame-
work suggested by Hothorn et al. (2006b) with appropriately chosen influence and regression
functions h(·) and g(·), respectively. In particular, the vector of indicators for all conceivable

splits in a particular variable t
(j)
i can again be used for the regression function g(·), whereas

h(·) will again depend on the type of response as discussed above.

To demonstrate the flexibility of this approach is, we recursively partition a linear regression
model yi = x>i θ + εi using the associated OLS model scores h(Yi) = ε̂xi as the influence
function (see Section 3.4). For illustration, we reanalyze economic data previously considered
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Subsample Regression variables Partitioning variables
Intercept Slope Society Pages Characters Age

All 4.766 −0.533 1.118 2.958 2.426 5.736
(n = 180) 0.056 0.036 0.892 0.291 0.747 < 0.001
Age ≤ 18 4.353 −0.605 0.295 1.228 1.216 2.252
(n = 53) 0.117 0.075 0.999 1.000 1.000 0.605
Age > 18 5.011 −0.403 0.745 2.254 1.510 2.149
(n = 127) 0.060 0.038 0.991 0.884 1.000 0.884

Table 4: Recursive partitioning of journals data. For the regression, the coefficient estimates
and corresponding standard errors are provided. For the partitioning variables, the maximum
test statistics with associated Bonferroni-corrected p values are provided.

by Zeileis et al. (2008), but instead of using their fully parametric model-based recursive
partitiong approach (based on supLM tests), we employ a semi-parametric approach (based
on permutation tests).

The data set considered is related to journal pricing, a topic that has received considerable
attention in the economics literature in recent years, see Bergstrom (2001) and his journal
pricing web page http://www.econ.ucsb.edu/~tedb/Journals/jpricing.html for further
information. Using data collected by T. Bergstrom for n = 180 economics journals, Stock and
Watson (2007) fit a demand equation by OLS for the number of library subscriptions explained
by the price per citation (both in logs). Their analysis suggests price elasticity depends on
the age but it is not clear in which form. Zeileis et al. (2008) show in their analysis that
using separate elasticities for young and old journals, respectively, captures the relationship
very well. Here, we reconsider their analysis using permutation tests. Thus, we use a linear
regression model for yi = log(subscriptions i) explained by xi = (1, log(pricei/citations i))

>

using ` = 4 variables t
(j)
i for partitioning: a binary indicator whether the journal is published

by a society or not, the number of pages, the characters per page, and the age of the journal
(in years in 2000).

To gain some more insight into the partitioning of the full sample, Figure 6 shows the sequence
of standardized Z statistics with respect to all possible splits in age. This yields a maximal
standardized statistic of 5.74 assumed at an age of 17 for the intercept and of 4.79 assumed
at an age of 11 for the slope, both clearly exceeding the 5% critical value of 3.43 (which
was Bonferroni-adjusted to account for testing along four different partitioning variables).
Note that the maximal statistic occurs very closely to the best breakpoint (in the sense of
minimizing the residual sum of squares).

Table 4 shows the fitted regression coefficients along with their associated standard errors in
the middle column and the results of the permutation tests (statistic and Bonferroni-adjusted
p value) for all four partitioning variables. First, the model is estimated for all observations,
leading to a rather low price-elasticity of the demand for journals of only −0.533. Then
the model’s stability is assessed through permutation tests for structural change, showing a
highly significant instability with respect to the journal’s age. Minimizing the residual sum
of squares of a linear regression with a single break leads to a split at an age of 18 years. For
the older more established journals the price elasticity is even lower than in the full sample
(−0.403) while for the younger journals the price elasticity is somewhat larger (−0.605). No
significant instabilities remain as all the structural change tests in the two subsamples are
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Figure 6: Test statistics for journals data with Bonferroni-corrected 5% critical value.
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18 A Toolbox of Permutation Tests for Structural Change

nonsignificant and hence the recursive partitioning stops. The fitted partitioned model is also
visualized in Figure 7.

In summary, the partitioned model is exactly the same as the one estimated by Zeileis et al.
(2008) but we confirmed that no further splits in the model are necessary. Due to the mod-
erately large subsample sizes, the permutation test approaches can be expected to be more
powerful but still all p values are clearly nonsignificant.

3.6. Dependent observations

A crucial assumption of the permutation test approach is the exchangeability of the observa-
tions (or the disturbances in the model-based view) which is typically violated with dependent
observations (Kennedy 1995; McCullagh 2005; Luger 2006). If such a violation of the assump-
tions is ignored, the permutation test will become liberal and not keep its size (see also Table 5
in the appendix). This is also a well-known problem for the unconditional test which is often
addressed by either using a robust HAC estimate (Andrews 1991) in the computation of the
supLM statistic or by computing the usual test statistic from residuals of an autoregressive
(AR) model (instead of the original observations). The former strategy is not possible for
permutation tests because the test is invariant to rescaling of the observations. However,
the latter strategy – using residuals from an AR model – is possible (and can be regarded
as a special type of influence function h(·)). Simulations show that this version of the test
keeps its size under autocorrelation and has somewhat higher power compared to the corre-
sponding unconditional test (see Table 5 in the appendix). Another approach would be to
adopt a different rerandomization scheme than the standard permutation procedure: Kirch
and Steinebach (2006) and Kirch (2007) discuss refined permutation principles such as block
permutations suitable for testing autoregressive series. Further strategies for dealing with
dependent observations are available for special types of regression models (as in McCullagh
2005), but not for all models potentially of interest.

4. Conclusions

The supLM test for structural change of Andrews (1993) is embedded into a permutation test
framework for the location-shift model. This yields the conditional permutation distribution
of the test statistic (and its asymptotic counterpart) which can be used for inference instead
of the usual unconditional asymptotic distribution. Comparing the size and power of the test
procedures based on different versions of the reference distribution shows that (unconditional)
asymptotics work well already for moderately large samples. In small samples, however, per-
formance can be improved significantly by employing the conditional approach, in particular
by computing/approximating the exact conditional distribution.

Permutation tests for structural change from the framework of Strasser and Weber (1999)
can, in fact, not only be derived for the simple location model: The flexible class of tests
considered includes both nonparametric and parametric (model-based) permutation tests.
However, the results have to be taken with a grain of salt: Exchangeability of the errors
might be a too strong assumption in time series applications where the dependence structure
of the observations can not be fully captured within the model. Although there are time
series applications where the errors are not correlated (and exchangeability is fulfilled as in
the illustrations presented above), this assumption impedes the application of permutation

Copyright© 2013 Springer-Verlag



Achim Zeileis, Torsten Hothorn 19

methods to many other models of interest. However, the exchangeability assumption is less
critical in cross-section data where the suggested tests are of interest as a building block in
recursive partitioning methods.

Computational details

The results in this paper were obtained with R system for statistical computing (R Devel-
opment Core Team 2012), version 2.15.0 using the packages coin 1.0-21 (Hothorn, Hornik,
van de Wiel, and Zeileis 2008) and strucchange 1.4-7 (Zeileis, Leisch, Hornik, and Kleiber
2002). Both, R itself and the packages, are freely available at no cost under the terms of
the GNU General Public Licence (GPL) from the Comprehensive R Archive Network at
http://CRAN.R-project.org/.
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A. Proofs

The (asymptotic) distribution of the multivariate statistic Z = (Zπ1 , . . . , Zπm)> is derived
by embedding the statistic into the framework of Strasser and Weber (1999), as discussed in
Hothorn et al. (2006a). More precisely, the test statistic maxπ∈Π Zπ considered above is the
maximum-type statistic cmax of Hothorn et al. (2006a) if the influence function h(Y ) = Y
is used for the observations Yi and the transformation g(t) = (1[0,π1](t), . . . ,1[0,πm](t))

> is
used for the associated timings ti. The transformation g used the indicator function 1I of the
interval I and thus corresponds to a vector of indicators for the time up to the timings πj
(j = 1, . . . , k).

Using these transformations h(·) and g(·), the unstandardized test statistic T is in the notation
of Hothorn et al. (2006a)

T = vec

(
n∑
i=1

g(ti)h(Yi)
>
)

=
(
n1,π1 Ȳ1,π1 , . . . , n1,πm Ȳ1,πm

)>
. (9)

Under H0, given all permutations σ ∈ S of the observations Y1, . . . , Yn, the unstandardized
statistic has expectation

Eσ[T ] = vec

((
n∑
i=1

g(ti)

)
n−1

n∑
i=1

h(Yi)
>
)

= (n1,π1 , . . . , n1,πm)> Ȳ (10)

and each unstandardized statistic has variance

VARσ[Tπ] =

(
n1,π −

n2
1,π

n

)
RSS0
n− 1

=
n1,πn2,π

n

RSS0
n− 1

, (11)

where the residual sum of squares is RSS 0 =
∑n
i=1(Yi − Ȳ )2. The equations directly follow

from Equation 7 in Strasser and Weber (1999).

Standardizing the vector of raw statistics T = (Tπ1 , . . . , Tπm)> by their respective mean and
standard deviation yields the vector of statistics Z = (Zπ1 , . . . , Zπm)>:

Zπ =
Tπ − Eσ[Tπ]√
VARσ[Tπ]
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=
n1,πȲ1,π − n1,πȲ√

n1,πn2,π

n
RSS0
n−1

=

√
n1,πn2,π

n

Ȳ1,π − Ȳ2,π√
RSS 0/(n− 1)

,

because of the following simple relationship between Ȳ1,π, Ȳ2,π and Ȳ :

Ȳ =
n1,πȲ1,π + n2,πȲ2,π

n
.

Consequently, Z has zero mean and unit variance given all permutations σ ∈ S. Similarly,
the covariance between two elements of Z, Zπ and Zτ say, is

RSS 0

n− 1

(
n∑
i=1

1[0,π](ti)1[0,τ ](ti)

)
− 1

n

RSS 0

n− 1

(
n∑
i=1

1[0,π](ti)

)(
n∑
i=1

1[0,τ ](ti)

)

=
nmin(n1,π, n1,τ )− n1,πn1,τ

n

RSS 0

n− 1
.

Assuming that π < τ and using the variance computed above, the correlation is thus

n1,πn2,τ√
n1,πn2,πn1,τn2,τ

.

Given that we derived the first two moments of Z by embedding the statistic into the frame-
work of Strasser and Weber (1999), the asymptotic normality of Z follows by application of
their Theorem 2.3.

B. Power and size for autocorrelated series

To study the performance of the tests with dependent data, we use a simulation setup as
in Section 2.3. The only difference is that the errors are now autocorrelated with % =
0, 0.1, 0.2, 0.3, 0.5, 0.9. The length of the time series considered is either very short (n = 10)
or moderate (n = 50) and either there is no change (δ = 0) or a large shift in the mean
(δ = 15). Five different versions of the tests are assessed: the unconditional and conditional
test (D∞ and Dσ|Y , respectively) on the original data (as in Section 2.3), the unconditional
test computed with a robust HAC covariance estimate and the unconditional and conditional
test computed on the residuals of an AR(1) model (fitted by OLS).

Using the uncorrected tests on the original data (D∞ and Dσ|Y , respectively), it can be seen
that size distortions occur for % > 0 even if there is no change (δ = 0). For % up to 0.2
these are still moderate but become very large afterwards and are even more pronounced for
the conditional version of the test. However, in moderately large time series (n = 50), the
problem can be remedied by either using a HAC correction or applying the tests to the AR(1)
residuals. These three tests keep their size and have reasonable power with the conditional
test having the highest power. However, none of the tests is able to distinguish between
autocorrelation and a shift in the mean (with δ = 15) if the time series is very short (n = 10)
or if the autocorrelation is very high (% ≥ 0.7) and the length only moderate (n = 50).
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δ n Test Autocorrelation %
0 0.1 0.2 0.3 0.5 0.7 0.9

0 10 D∞ (orig.) 0.0 0.0 0.1 0.1 0.3 0.6 1.3
Dσ|Y (orig.) 3.6 5.8 8.4 10.6 18.8 29.1 42.9

D∞ (orig. + HAC) 9.4 7.6 5.8 5.3 3.2 2.4 2.8
D∞ (AR res.) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dσ|Y (AR res.) 1.3 1.2 1.2 1.5 1.9 2.2 3.3

0 50 D∞ (orig.) 2.9 6.2 10.3 16.6 36.9 63.4 89.3
Dσ|Y (orig.) 4.8 9.3 15.0 23.0 44.6 70.6 92.2

D∞ (orig. + HAC) 2.3 1.7 1.4 1.0 0.4 0.1 0.0
D∞ (AR res.) 2.0 1.8 1.8 1.5 1.1 0.8 1.9
Dσ|Y (AR res.) 4.0 3.9 3.8 3.2 2.5 2.3 3.8

15 10 D∞ (orig.) 36.3 38.1 41.1 42.4 46.0 47.9 49.1
Dσ|Y (orig.) 99.8 99.8 99.7 99.7 98.7 97.6 93.8

D∞ (orig. + HAC) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
D∞ (AR res.) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dσ|Y (AR res.) 0.8 0.7 0.8 0.8 0.9 1.3 2.4

15 50 D∞ (orig.) 100.0 100.0 100.0 99.9 99.0 95.0 92.6
Dσ|Y (orig.) 100.0 100.0 100.0 99.9 99.4 96.2 94.4

D∞ (orig. + HAC) 75.9 55.4 32.6 16.2 2.3 0.2 0.0
D∞ (AR res.) 69.0 48.5 28.2 13.6 2.2 0.4 1.0
Dσ|Y (AR res.) 87.6 73.9 53.6 33.0 8.4 1.7 2.2

Table 5: Simulated power (in %) for different versions of the test in the presence of autocor-
relation.
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Hirschengraben 84
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