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Abstract

Statistical graphics are often augmented by the use of color coding information contained
in some variable. When this involves the shading of areas (and not only points or lines)—
e.g., as in bar plots, pie charts, mosaic displays or heatmaps—it is important that the colors
are perceptually based and do not introduce optical illusions or systematic bias. Based on
the perceptually-based Hue-Chroma-Luminance (HCL) color space suitable color palettes are
derived for coding categorical data (qualitative palettes) and numerical variables (sequential
and diverging palettes).

Keywords: qualitative palette, sequential palette, diverging palette, HCL colors, HSV colors,
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1. Introduction

Color is an integral element of graphical displays in general, and many statistical graphics in
particular. It is easy to create color graphics with any statistical software package and color
images are therefore virtually omnipresent in electronic publications such as technical reports,
presentation slides, or the electronic version of journal articles (e.g., in Computational Statistics
& Data Analysis) and increasingly also in printed journals. However, more often than not, color
choice in such displays is sub-optimal because selecting colors is not a trivial task and there is
relatively little guidance about how to choose appropriate colors for a particular visualization.
When selecting colors for a statistical graphic, there are three main obstacles to overcome:
The colors should not be unappealing. It is not necessary for the colors in a statistical plot
to reflect fashion trends, but basic principles such as avoiding large areas of fully saturated colors
(Tufte 1990) should be adhered to. The requirement is not that the user should have a degree in
graphic design, but that the software should provide users with an intuitive way to select colors
and control their basic properties. Thus, it is necessary to employ a color model or color space
that describes colors in terms of their perceptual properties: hue, brightness, and colorfulness.
A color model typically supported by software packages involves the specification of colors as
Red-Green-Blue (RGB) triplets. However, this specification corresponds to color generation on a
computer screen (see Poynton 2000) rather than corresponding to human color perception. For
humans, it is virtually impossible to control the perceptual properties of a color in this color space
because there is no single dimension that corresponds to, e.g., the hue or the brightness of the
color. As a consequence, various perceptually-based color spaces have been suggested, where each
dimension of the color space can be matched with a perceptual property. One approach widely
implemented in software packages involves Hue-Saturation-Value (HSV) triplets (Smith 1978),
a simple transformation of RGB triplets (see Wikipedia 2007b). Unfortunately, the dimensions
in HSV space map poorly to perceptual properties and the use of HSV colors encourages the
use of highly saturated colors. A perceptually-based color model that mitigates these problems
involves Hue-Chroma-Luminance (HCL) triplets (see Ihaka 2003), resulting from a transformation
of CIELUV color space (see Wikipedia 2007a). This is the color space we advocate in this article.
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The colors in a statistical graphic should cooperate with each other. The typical purpose
of color in a statistical graphic is to distinguish between different areas or symbols in the plot—to
distinguish between different groups or between different levels of a variable. This means that
there will typically be several colors, or a palette of colors, used within a plot and that those colors
should be related to each other.
A natural solution for this task is to vary (at least) one perceptual property of the colors, e.g.,
the hue or the brightness, keeping other properties fixed. In a perceptually-based color space,
this corresponds to selecting colors by traversing paths through this space along its dimensions.
This approach is implemented in many color picker tools (Moretti and Lyons 2002; Meier et al.
2004), however, these are typically based on the HSV model. As argued above, the dimensions
in HSV space are not truly independent and hence it is not possible to vary just one perceptual
property while keeping the others fixed. This means that it is relatively difficult to select sets
of HSV coordinates that yield colors that are “in harmony” (see Munsell 1905). For statistical
graphics, this is important because it can introduce size distortions in the perception of shaded
areas and can produce optical illusions (Cleveland and McGill 1983). These problems can again
be addressed by employing the HCL color space. In addition to the earlier point that HCL space
is useful because it allows humans to understand where within the space a particular HCL triplet
is located, HCL also allows us to understand motion within the color space because distances
between colors have an intuitive and rational meaning.
The colors should work everywhere. The final issue to deal with is that, in an ideal situation,
colors should be selected so that they continue to work in any context. For example, different
areas of a plot should still be distinguishable when the graphic is displayed on an LCD projector
rather than a computer screen, or when it is printed on a grayscale printer, or when the person
viewing the graphic is color-blind. These goals cannot always be attained, but attention should
be paid to these issues and in many situations it is also possible to resolve any problems.
An example of this approach is ColorBrewer.org (Harrower and Brewer 2003), an online tool for
selecting color schemes for maps. It provides a collection of prefabricated palettes, information
about the suitability for printers or color-blind viewers, and guidance on how to choose a suitable
palette for coding various types of information. The drawback to this tool is that it only provides
a fixed set of colors for each palette and there is no way to extend the existing palettes.
Following Brewer (1999) and Harrower and Brewer (2003), we take a similar approach and dis-
tinguish three types of palettes: qualitative, sequential and diverging. The first is tailored for
coding categorical information and the latter two are aimed at numerical or ordinal variables.
Unlike ColorBrewer.org, we suggest a general principle for selecting colors by traversing paths
along perceptual axes in HCL color space. Consequently, the user can decide which path exactly
should be taken and how many colors should be selected. Furthermore, by matching the paths
with perceptual meaning, the suitability of a palette for color-blind viewers or grayscale printing
can be assessed.
The remainder of the paper is organized as follows: Section 2 provides some motivating examples,
showing how typical HSV-based graphics can be enhanced by using HCL-based palettes. Section 3
gives a brief introduction to the underlying HSV and HCL color spaces before Section 4 suggests
strategies for deriving HCL-based qualitative, sequential, and diverging palettes. Some more illus-
trations are presented in Section 5. Section 6 offers some general remarks on the implementation
in statistical software as well as some details on the implementation in the R system for statistical
computing (R Development Core Team 2008). Section 7 concludes the paper with a discussion.

2. Motivation

To show what can be gained by selecting appropriate color schemes, we present two examples for
typical color graphics, contrasting commonly-used HSV palettes with more suitable HCL palettes.
Both examples and all HSV palettes are taken from (the electronic version of) recent publications
in Computational Statistics & Data Analysis (Volume 51).
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Figure 1: Bivariate density estimation of duration (x-axis) and waiting time (y-axis) for Old
Faithful geyser eruptions. The palettes employed are (counterclockwise from top left) an HSV-
based rainbow, HSV-based heat colors, HCL-based heat colors and grayscales.

Our first illustration is a heatmap, a very popular display for visualizing a scalar function of two
arguments. Here, we use a bivariate kernel density estimate (for the Old Faithful geyser eruptions
data from Azzalini and Bowman 1990)—other typical applications include classification maps (as
in Tenenhaus et al. 2007, Figure 2), function surfaces (as in Harezlak et al. 2007, Figure 8), or
measurements on a spatial grid (as in Gelfand et al. 2007, Figure 3). Figure 1 shows a heatmap
bringing out the relationship between the duration of an eruption of the Old Faithful geyser
in Yellowstone National Park and the waiting time for this eruption. It reveals a multi-modal
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distribution: short waiting times (around 50 minutes) are typically followed by a long eruption
(around 4 minutes) whereas long waiting times (around 80 minutes) can be followed by either a
long or short eruption (around 2 minutes).
A simple and very effective palette for such a display is a set of gray colors as in the top right
panel of Figure 1. This is often (appropriately) used in printed papers when the journal does
not offer color graphics—however, in journals that support color graphics (or on presentation
slides and in interactive usage in statistical software packages), many users prefer to have colored
displays and most often use HSV palettes (as in the two left two panels). These palettes code the
variable of interest by varying hue in an HSV color wheel, yielding a “rainbow” of colors, as done
by Harezlak et al. (2007, Figure 8) or Tenenhaus et al. (2007, Figure 2). The palette in the upper
left panel codes increasing density by going from a blue to a red hue (via green and yellow)—a
similar strategy are the “heat colors” in the lower left panel that increase from yellow to red. The
latter works somewhat better than the former, however both palettes exhibit several drawbacks.
The modes in the map look much more like “rings” rather than a smoothly increasing/decreasing
density. The heatmap looks very flashy which—although good for drawing attention to a plot—
makes it hard to hold the attention of the viewer for a longer time because the large areas shaded
with saturated colors can be distracting and produce after-image effects (Ihaka 2003).
In contrast, the gray colors used in the top right panel do not exhibit the same disadvantages,
coding the variable of interest much better and without flashy colors. If, however, the user wants
to increase the contrast by adding some color to the plot, this could be done by using a better
balanced version of the heat colors (as shown in the bottom right panel). These colors also increase
from a yellow to a red hue while using the same brightness levels as in the grayscale palette (see
also Ware 1988; Levkowitz and Herman 1992, for similar approaches). Thus, when converted
to a grayscale or printed out on a grayscale printer (as in the printed version of Computational
Statistics & Data Analysis), the upper and lower right panel would look (virtually) identical. Both
palettes have in common that they give increasing perceptual emphasis to regions with increasing
density, resulting in a heatmap that highlights the (small) interesting high-density regions and not
to the large low-density regions surrounding them. By balancing the lower right panel with respect
to its brightness levels (i.e., light/dark contrasts), it is assured that the graphic is intelligible for
color-blind readers and that the same graphic works in colored electronic versions and printed
grayscale versions of a publication.
The second example is presented in Figure 2 (taken from Kneib 2006, Figure 5, left), depicting
posterior mode estimates for childhood mortality in different regions of Nigeria. Spatial variations
(not included in the model) in childhood mortality are brought out by shading a map according to
the corresponding model deviations, revealing decreased mortality in the south-west and increased
mortality in the north-east. Kneib (2006) uses an HSV-based palette coding the deviations by the
hue, going from green via yellow to red (see the upper left panel of Figure 2). Similar approaches
are used by Harezlak et al. (2007, Figure 8) and Tenenhaus et al. (2007, Figure 2). Our first HCL-
based palette in the middle left panel also employs green and red hues for negative and postive
deviations respectively, but codes neutral values (around 0) by a neutral light gray. Compared to
the HSV-based palette, this offers again a number of advantages: only the interesting areas are
highlighted by high-chroma colors; flashy colors are avoided making it easier to look at the display
for a longer time; positive and negative deviations with the same absolute size receive the same
perceptual weight by being balanced with respect to their brightness.
Another advantage of the HCL-based palette becomes apparent when we collapse the red-green
distinctions in the colors to emulate what a person with protanopia (a common red-green color
blindness) would see. The right panel of Figure 2 displays the respective palettes from the left
panel, but transformed for protanopic vision using the tools of Lumley (2006). In the upper right
panel, the low-mortality regions in the south-west just “disappear” because they are transformed
to virtually the same yellow as the average-mortality regions. In contrast, in the middle right
panel, regions with increased and decreased mortality remain clearly distinguishable. Only the
type and amount of color is changed (red turns gray, green turns yellow/brown) but regions with
large deviations are still easily indentifiable by being balanced towards darker grays. To avoid
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Figure 2: Posterior mode estimates for childhood mortality in Nigeria. The color palettes em-
ployed are (from top to bottom) an HSV-based rainbow and two HCL-based diverging palettes.
In the right panels red-green contrasts are collapsed to emulate protanopic vision.
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that one of the two “branches” of the palette is only gray in the protanopic version, we could also
employ a purple (rather than a red) hue for positive deviations. This is used in the lower panels
of Figure 2 showing that after collapsing red-green distinctions, a useful yellow/brown–gray–blue
palette remains from the original green–gray–purple palette. Thus, the lower left panel could be
used ensuring that it works for both normal and protanopic vision. Similar arguments hold for
deuteranopic vision.

3. Color spaces

For choosing color palettes, it is helpful to have a basic idea how human color vision works. It has
been hypothesized that it evolved in three distinct stages: 1. perception of light/dark contrasts
(monochrome only), 2. yellow/blue contrasts (usually associated with our notion of warm/cold
colors), 3. green/red contrasts (helpful for assessing the ripeness of fruit). See Kaiser and Boyn-
ton (1996), Knoblauch (2002), Ihaka (2003), and Lumley (2006) for more details and references.
Furthermore, physiological studies have shown that light is captured by three distinct receptors
(so-called cones) in the retina and hence coded in three dimensions by the human visual system.
The perception of this coding, i.e., the subjective experience of this light, is less well-understood;
however, current psychophysical theories all describe perception in terms of three dimensions
(Knoblauch 2002). Therefore, colors are typically described as locations in 3-dimensional spaces.
The three dimensions used by humans to describe colors are typically:

� hue (dominant wavelength),

� chroma (colorfulness, intensity of color as compared to gray),

� luminance (brightness, amount of gray).

Thus, they do not correspond to the axes described above, but rather to polar coordinates in the
color plane (yellow/blue vs. green/red) plus a third light/dark axis. Color models that attempt to
capture these perceptual axes are also called perceptually-based color spaces.
A popular implementation of such a color space, available in many graphics and statistics software
packages, are HSV colors. They are a simple transformation of RGB colors defined by a triplet
(H,S, V ) with H ∈ [0, 360] and S, V ∈ [0, 100]. Although simple to specify and easily available in
many computing environments, HSV colors have a fundamental drawback: its three dimensions
map to the three dimensions of human color perception very poorly. The three dimensions are
confounded: The brightness of colors is not uniform over hues and saturations (given value, see
Figure 3)—therefore, HSV colors are often not considered to be perceptually based.

Figure 3: HSV-based and HCL-based color wheel.
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To overcome these drawbacks, various color spaces have been suggested that more closely map to
the perception dimensions, the most prominent of which are the CIELUV and CIELAB spaces
developed by the Commission Internationale de l’Éclairage (2004). These color spaces are still not
perfect—such an ideal is never truly attainable because color perception will always differ between
individuals—but they facilitate color matching for humans (Zhang and Montag 2006) and offer a
significant improvement over HSV, as Figure 3 illustrates.
Ihaka (2003) argues that CIELUV colors are typically preferred for use with emissive technologies
such as computer screens which makes them an obvious candidate for implementation in statistical
software packages. By taking polar coordinates in the UV plane of CIELUV, HCL colors are
obtained, defined by a triplet (H,C, L) with H ∈ [0, 360] and C, L ∈ [0, 100]. Given a certain
luminance L, all colors resulting from different combinations of hue H and chroma C have the
same level of brightness, i.e., are balanced towards the same gray and thus look virtually identical
when converted to a gray scale. However, the admissible combinations of chroma and luminance
coordinates (within the space’s boundaries) depend on the hue chosen. The reason for this is that
some hues lead to light and others to dark colors, e.g., full chroma yellow is brighter (i.e., has
higher luminance) than full chroma blue.
The balancing of HCL colors gives us the opportunity to conveniently choose color palettes which
code categorical and/or numerical information by translating it to paths along the three perceptual
axes. However, some care is required for dealing with the irregular shape of the HCL space which
will be addressed in the following sections.

4. Color palettes

4.1. Qualitative palettes

Qualitative palettes are sets of colors for depicting different categories, i.e., for coding a categorical
variable. Usually, these should give the same perceptual weight to each category so that no group
is perceived to be larger or more important than any other one. Typical applications of qualitative
palettes in statistics would be bar plots (see Ihaka 2003), pie charts or highlighted mosaic displays
(see Section 5).
Ihaka (2003) describes a simple strategy for choosing such palettes: chroma and luminance are kept
fixed and only the hue is varied for obtaining different colors which are consequently all balanced
towards the same gray. This effect is illustrated in Figure 3 which shows a color wheel obtained by
varying the hue only in HSV coordinates (H, 100, 100) and HCL coordinates (H, 50, 70). Clearly,
not only the hue but also the amount of chroma and luminance varies for the HSV wheel.
Figure 4 (top panel) depicts how the HCL-based color wheel is constructed. It shows the hue/chroma
plane of HCL space given a luminance of L = 70. Not all combinations of hue and chroma are
admissible, however for a chroma of C = 50 a full color wheel can be obtained. For choosing the
hues in a certain palette, various strategies are conceivable. A simple and intuitive one is to use
colors as metaphors for categories (e.g., for political parties), another approach would be to use
segments from the color wheel corresponding to nearby or distant colors. The latter is shown in
Figure 4 (bottom panel) which depicts examples for generating qualitative sets of colors (H, 50, 70).
In the upper left panel colors from the full spectrum are used (H = 30, 120, 210, 300) creating a
‘dynamic’ set of colors. The upper right panel shows a ‘harmonic’ set with H = 60, 120, 180, 240.
Cold colors (from the blue/green part of the spectrum: H = 270, 230, 190, 150) and warm colors
(from the yellow/red part of the spectrum: H = 90, 50, 10, 330) are shown in the lower left and
right panel, respectively.
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dynamic [30, 300] harmonic [60, 240]

cold [270, 150] warm [90, −30]

Figure 4: Qualitative palettes: construction and examples. Top: Construction in the hue/chroma
plane for L = 70, the dashed circle correponds to a radius C = 50 with chosen angles H =
0, 120, 240. Bottom: Examples by varying hue in different intervals for given C = 50 and L = 70.

4.2. Sequential palettes

Sequential palettes are used for coding numerical information that ranges in a certain interval
where low values are considered to be uninteresting and high values are interesting. Suppose we
need to visualize an intensity or interestingness i which (without loss of generality) is scaled to
the unit interval. A typical application in statistics are heatmaps (see Figure 1).
The simplest solution to this task is to employ light/dark contrasts (Levkowitz and Herman 1992),
i.e., rely on the most basic perceptual axis. The interestingness can be coded by an increasing
amount of gray corresponding to decreasing luminance in HCL space:

(H, 0, 90− i · 60),

where the hue H used does not matter, chroma is set to 0 (i.e., no color), and luminance ranges in
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Figure 5: Sequential palettes: construction and examples. Top: Construction is shown in the
chroma/luminance plane for two hues H = 260 (left) and H = 120 (right). Colors are chosen
by varying either only luminance or both luminance and chroma. Bottom: Examples by varying
only luminance (first row), chroma and luminance (second row), and hue, chroma and luminance
(remaining rows).

[30, 90] avoiding the extreme colors white (L = 100) and black (L = 0). Instead of going linearly
from light to dark gray, luminance could also be increased nonlinearly, e.g., by some function
i′ = f(i) that controls whether luminance is increased quickly with intensity or not. We found
f(i) = ip to be a convenient transformation where the power p can be varied to achieve different
degrees of non-linearity.

Copyright© 2009 Elsevier B.V.
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Furthermore, the intensity i could additionally be coded by colorfulness (chroma), e.g.,

(H, 0 + i′ · Cmax, Lmax − i′ · (Lmax − Lmin)).

This strategy is depicted in the top left panel of Figure 5 for a blue hue H = 260 with Lmax = 90
and different combinations of maximal chroma (Cmax = 0, 80 and 100, respecitvely) and minimal
luminance (Lmin = 30, 30 and 50, respectively). The first two combinations are also shown in the
first two rows of the bottom panel in Figure 5. The top right panel of Figure 5 shows that the
exact same strategy is not possible for the green hue H = 120. While the gray colors without
chroma can be chosen in the same way, there is a stronger trade-off between using dark colors
(with low luminance) and colorful colors (with high chroma). Hence, the second path from light
gray to full green ends at a much lighter color with Lmin = 75.
To increase the contrast between the colors in the palette even further, the ideas from the previous
sequential palettes can also be combined with qualitative palettes by simultaneously varying the
hue as well:

(H2 − i · (H1 −H2), Cmax − i′ · (Cmax − Cmin), Lmax − i′′ · (Lmax − Lmin)).

One application is an HCL-based version of “heat colors” that increase from a light yellow (e.g.,
(90, 30, 90)) to a full red (e.g., (0, 100, 50)). To make the change in hue visible, the chroma needs to
increase rather quickly for low values of i and then only slowly for higher values of i. This can be
achieved by choosing an appropriate transformation i′ for chroma and a different transformation
i′′ for the luminance. Such a strategy is adopted for the palettes shown in the last three rows in
Figure 5 using different pairs of hues as well as different chroma and luminance contrasts.

4.3. Diverging palettes

Diverging palettes are also used for coding numerical information ranging in a certain interval—
however, this interval includes a neutral value. Examples for this include residuals or correlations
(both with the neutral value 0) or binary classification probabilities (with neutral value 0.5) that
could be visualized in mosaic plots (e.g., as in Zeileis et al. 2007, Figure 3), classification maps (e.g.,
as in Tenenhaus et al. 2007, Figure 2) or model-based shading in maps such as Figure 2. Analo-
gously to the previous section, we suppose that we want to visualize an intensity or interestingness
i from the interval [−1, 1] (without loss of generality).
Given useful sequential palettes, deriving diverging palettes is easy: two different hues are chosen
for adding color to the same amount of ‘gray’ at a given intensity |i|. Figure 6 (top panel)
shows the chroma/luminance plane back to back for the hues H = 0 and 260 with two different
paths—giving slightly different emphasis on luminance or chroma contrasts—from a full red over
a neutral gray to a full blue. As the top panels of Figure 5 illustrates, the pair of hues should
be chosen carefully because the admissible values in the chrome/luminance plane differ across
hues. Clearly, for deriving symmetric palettes, only colors from the intersection of the admissible
chroma/luminance planes can be used. The particular hues H = 0 and 260 used in Figure 6 (top
panel) were chosen because they correspond to similar geometric shapes in the chroma/luminance
plane, allowing for both large chroma and luminance contrasts. If potential viewers of the resulting
graphic might be color-blind, the pair of hues should be taken from the yellow/blue axis of the
color wheel rather than the green/red axis as contrasts on the latter axis are more difficult to
distinguish for color-blind people (Lumley 2006).
Figure 6 (bottom panel) shows various examples of conceivable combinations of hue, chroma and
luminance. The first palette uses a broader range on the luminance axis whereas the others mostly
rely on chroma contrasts.
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Figure 6: Diverging palettes: construction and examples. Top: Construction is shown in the
chroma/luminance plane for hues H = 0 and H = 260 (back to back). Colors are chosen by
simultaneously varying luminance and chroma. Bottom: Examples with different pairs of hues
and decreasing luminance contrasts.
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5. Illustrations

This section provides several more demonstrations of how HCL-based color palettes can be used to
produce statistical plots that are less “flashy” and more perceptually balanced, so that the viewer
can extract information from the plots more easily and more accurately.

Although problematic for many tasks, pie charts can be useful for visualizing whether a set of
pie segments constitutes a majority. A typical application is shown in the top row of Figure 7,
visualizing the distribution of seats in the German parliament “Bundestag” following the 2005
election. In this election, five parties were able to obtain enough votes to enter the Bundestag—
however, neither the governing coalition of SPD and Grüne nor the opposition of CDU/CSU and
FDP could assemble a majority. Given that no party would enter a coalition with the leftists “Die
Linke”, this lead to a big coalition of CDU/CSU and SPD. In graphical displays, the parties are
usually matched by using colors as metaphors: red for the social democrats SPD, black for the
conservative CDU/CSU, yellow for the liberal FDP, green for the green party “Die Grünen” and
purple for the leftist party “Die Linke”. The left panel shows fully saturated HSV colors as usually
found in the (German) media whereas the right panel uses less flashy HCL colors with the same
hues (except for the CDU/CSU where a blue hue instead of the extreme “color” black is used). The
advantage of the latter is again that they are easier to hold in focus for a longer time. Furthermore,
they are all balanced towards the same gray and have the same amount of color, resulting in a
perceptually balanced palette that does not introduce undesired graphical distractions. While it
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SPD CDU/CSU
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Figure 7: German election 2005 with HSV-based (left) and HCL-based (right) qualitative palette.
Top: Pie chart for seats in the parliament. Bottom: Mosaic display for votes by province.
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Figure 8: Further examples for HSV-based (left) and HCL-based (right) palettes. Top: Scatter
plot with three clusters and qualitative palette. Bottom: Extended mosaic display for hair and
eye color data with diverging palette.

could be argued that this pie chart is such a simple display that a well-balanced palette is not so
important and that flashy colors are to be preferred, the balancing properties of the HCL-based
palette are very important in more complex displays such as the mosaic display in the bottom row
of Figure 7. This re-uses the same colors and shows the distribution of votes in the 2005 election
stratified by province (Bundesland). The order of provinces is from north to south, first for the
10 western provinces (the former Federal Republic of Germany, FRG), then for the 6 eastern
provinces (the former German Democratic Republic, GDR). Clearly, the SPD performed better in
the north and the CDU/CSU better in the south; furthermore, Die Linke performed particularly
well in the eastern provinces and in Saarland.

Color choice is usually much more important in graphical displays with shaded areas compared
to displays with only points or lines. However, color choice becomes much more relevant also in
scatter plots when there are many points. As an example, the top row in Figure 8 depicts a scatter
plot with three clusters similar to the one shown in Celeux et al. (2000, Figure 3). To indicate
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cluster membership, three different colors (green, yellow, red) are employed. The HSV colors in
the left panel are again very flashy and differ strongly with respect to luminance: the yellow is
much lighter and hardly visible. In contrast, the HCL colors in the right panel use the same hues,
but are balanced with respect to chroma and luminance, i.e., the amount of color and gray.
As our final example, the bottom row in Figure 8 (taken from Friendly 2002, Figure 11, left/middle)
visualizes the cross-tabulation of hair end eye color of 592 students in a mosaic display. Clearly,
hair and eye color are not independent and the pattern of association is highlighted by means
of residual-based shading. Cells associated with Pearson residuals whose absolute value exceeds
(2 or) 4 are shaded (light) blue/red. This shows that there are significantly more students with
black hair and brown eyes, blond hair and blue eyes, red hair and green eyes than expected under
independence. Conversely, fewer students than expected have blond hair and brown/hazel eyes or
black hair and blue eyes. Comparing the HSV and HCL colors in the bottom row of Figure 8, it is
shown again that the HCL colors are better balanced (between the red and blue colors) and less
flashy. Even the cells associated with small residuals (below 2) are somewhat easier to read when
shaded in a light grey rather than white. More details and extensions to residual-based shadings
can be found in Zeileis et al. (2007).

6. Software

Implementing the different color palettes suggested in the previous section is extremely easy if the
software environment chosen already provides an implementation of HCL colors: from the formulas
provided above the HCL coordinates for a palette can be conveniently computed. Somewhat more
work is required if the software package does not yet provide an HCL implementation. In that
case, additional functionality is needed for translating HCL coordinates to the software package’s
color system which may vary between different packages, but standardized RGB (sRGB) is often
used. The typical way of coordinate conversion is to go first from HCL to CIELUV by simply
transforming the polar H and C coordinates back to the original U and V . Subsequently, CIELUV
is converted to CIEXYZ which in turn is converted to sRGB. The details of these conversions are
somewhat technical and tedious (and hence omitted here), however the conversion formulas are
still straightfoward to implement and can, for example, be found in Wikipedia (2007a) or Poynton
(2000).
The R system for statistical computing (R Development Core Team 2008) provides an open-
source implementation of HCL (and other color spaces) in the package colorspace, originally writ-
ten by Ross Ihaka. The coordinate transformations mentioned above are contained in C code
within colorspace that are easy to port to other statistical software systems. Version 1.0-0 of
colorspace (Ihaka et al. 2008) also includes an implementation of all palettes discussed above.
(Originally, the code for the palettes was in the vcd package, Meyer et al. 2006, but it was re-
cently moved to colorspace to be more easily acessible.) Qualitative palettes are provided by
rainbow_hcl() (named after the HSV-based function rainbow() in base R). Sequential palettes
based on a single hue are implemented in the function sequential_hcl() while heat_hcl()
offers sequential palettes based on a range of hues. Diverging palettes can be obtained by
diverge_hcl(). Technical documentation along with a large collection of example palettes is
available via help("rainbow_hcl", package = "colorspace"). Furthermore, R code for repro-
ducing the example palettes in Figures 4, 5 and 6 (and some illustrations) can be accessed via
vignette("hcl-colors", package = "colorspace").
The default color palettes in the ggplot2 package (Wickham 2008) are also based on HCL colors,
using similar ideas to those discussed in this article.

7. Discussion

Many statistical graphics—especially when displayed on a computer screen, e.g., as in interactive
usage, electronic papers or presentation slides—employ colors to code information about a certain

Copyright© 2009 Elsevier B.V.
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variable. Despite this omnipresence of color, there is often only little guidance in statistical software
packages on how to choose a palette appropriate for a particular visualization task—auspicious
tools such as ColorBrewer.org notwithstanding. We try to address this problem by suggesting
color schemes for coding categorical information (qualitative palettes) and numerical information
(sequential and diverging palettes) based on the perceptually-based HCL color space.

We provide paths through HCL space along perceptual axes of the human visual system so that
colors selected along these paths match human perceptual dimensions. This gives the users the
possibility to conveniently experiment with the HCL-based palettes by varying several simple and
intuitive graphical parameters. For qualitative palettes, these are the coordinates on the chroma
and luminance axis, respectively, controlling whether the colors are light or dark and how colorful
they are. For sequential and diverging palettes, the user can decide whether contrasts in the
chroma or luminance direction (or both) should be employed. In our experience (as illustrated in
Section 2), chroma contrasts work sufficiently well if a small set of colors is used. However, when
a larger set of colors is used (e.g., for heatmaps where extreme values should be identifiable) it is
much more important to have a big difference in luminance.

Based on these conceputal guidelines and the computational tools readily provided in the R system
for statistical computing (and easily implemented in other statistical software packages), users
can generate palettes varying these graphical parameters and thus adapting the colors to their
particular graphical display.
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