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Abstract

In multinomial processing tree (MPT) models, individual differences between the par-
ticipants in a study can lead to heterogeneity of the model parameters. While subject
covariates may explain these differences, it is often unknown in advance how the parame-
ters depend on the available covariates, that is, which variables play a role at all, interact,
or have a nonlinear influence, etc. Therefore, a new approach for capturing parameter
heterogeneity in MPT models is proposed based on the machine learning method MOB
for model-based recursive partitioning. This recursively partitions the covariate space,
leading to an MPT tree with subgroups that are directly interpretable in terms of effects
and interactions of the covariates. The pros and cons of MPT trees as a means of analyz-
ing the effects of covariates in MPT model parameters are discussed based on a simulation
experiment as well as on two empirical applications from memory research. Software that
implements MPT trees is provided via the mpttree function in the psychotree package
in R.

Keywords: multinomial processing tree models, model-based recursive partitioning, parameter
heterogeneity.

1. Introduction

Multinomial processing tree (MPT) models are a class of statistical models for categorical
data. These models are associated with a graph resembling a probability tree, the links being
the parameters, the leaves being the response categories. The path from the root to one of
the leaves represents the latent cognitive processing steps a participant executes to arrive at a
given response. Since they were introduced in a seminal article (Riefer and Batchelder 1988),
MPT models have been applied in numerous ways in cognitive psychology and in related
fields (Batchelder and Riefer 1999; Erdfelder, Auer, Hilbig, Aßfalg, Moshagen, and Nadarevic
2009).
As an example, consider an experimental paradigm prevalent in memory research for investi-
gating recognition memory. A recognition-memory experiment consists of two phases: In the
learning phase, participants are presented with a list of items to be memorized. In the test
phase, old items are presented intermixed with new distractor items, and participants have to
classify them as either old or new. Figure 1 displays the structure of the one-high-threshold
(1HT) model of recognition (Blackwell 1963; Swets 1961), possibly one of the simplest MPT
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Figure 1: Graph of the one-high-threshold model for recognition memory (Blackwell 1963;
Swets 1961). Latent cognitive processes are recognition of an old item (r) and guessing that
a not recognized item is old (b).

models. According to this model, an old item is recognized as old with probability r, or, if
not recognized, it is guessed that it is old with probability b. Therefore, on the left-hand
side of the figure, there are two paths leading from the root of the tree to an old response.
Alternatively, displayed on the right-hand side of the figure, a new item can only be guessed
as being old with probability b since, according to the model assumptions, such an item never
exceeds the recognition threshold.
Frequently, it is the goal of a study to investigate the effects of explanatory variables on
the parameters of an MPT model. Such variables may include experimentally manipulated
variables, observed predictor variables, or nuisance variables. In the remainder, we do not
distinguish among these and refer to them jointly as covariates. In order to include such
covariates, the classical approach is to apply the model to multiple groups defined by these
variables and to test for effects (see, e. g., Riefer and Batchelder 1991, who study age effects on
memory processes). More recently, various approaches to account for parameter heterogeneity
have been developed; these include latent-class (Klauer 2006) and hierarchical MPT models
(Klauer 2010; Smith and Batchelder 2010; Matzke, Dolan, Batchelder, and Wagenmakers
2015). The latter may be employed to study covariate effects: When the influence of the
covariates is linear, they can be directly included in a hierarchical model via specific link
functions (Coolin, Erdfelder, Bernstein, Thornton, and Thornton 2015; Michalkiewicz, Coolin,
and Erdfelder 2013; Oravecz, Anders, and Batchelder 2015). More broadly, covariate effects
represent a form of parameter heterogeneity: Different settings of covariates may lead to a
change in model parameters. The automatic detection of such changes is at the heart of our
method.
In this paper, we introduce MPT trees, a novel approach to incorporating covariates into
MPT models. The main difference of our approach and other existing methods for including
covariates is that with MPT trees, the relationship between groups and covariates does not
have to be fully specified but is “learned” from the data. The core of this approach is model-
based recursive partitioning (Zeileis, Hothorn, and Hornik 2008), a tree-based computational
method from machine learning for detecting parameter heterogeneity across covariates in a
data-driven way. The result is a tree-based classification of all individuals into groups where
the MPT model parameters are homogeneous within each group but heterogeneous across
groups. Thus, not only do MPT trees test for the presence of parameter heterogeneity, but
they also capture it (if any) in interpretable groups without the need for pre-specification
of the relevant covariates or their interactions. Some patterns of heterogeneity are easier to
detect than others for MPT trees, and we will address their strengths and limitations by
simulation studies and in the discussion section.
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Figure 2: Tree structure for the artificial data. Two covariates (x1, x2) along with their binary
cutoffs (ν1, ν2) define three groups with specific r parameters of the one-high-threshold model.

For illustration, Figure 2 depicts an artificial data set following such a tree. In this data
set, the responses of all participants are represented by the 1HT model from Figure 1, but
the model parameters vary between three groups that are defined in terms of two covariates,
x1 and x2. A conceivable situation would be a recognition experiment where x1 could be
an IQ test score (e. g., Fagan 1984) and x2 could be the amount of training with the task.
The interpretation would then be: The recognition probability r is lowest for participants
with lowest IQ scores as measured in x1 (below some threshold or cutoff ν1), whereas those
with higher IQ scores have a higher recognition probability r, which even increases further
with sufficient training x2 above some threshold ν2. In this artificial data set, the guessing
probability b is the same across all groups.
Note that this MPT tree combines two levels of trees. The first level is the tree of the MPT
model (Figure 1). Its tree structure has to be specified in advance and is assumed to be
constant in the entire population; the parameters (r and b) associated with its links, however,
are allowed to vary and need to be estimated. The second level is the recursive partitioning
based on the subject covariates (Figure 2). It does not have to be specified in advance but is
learned based on the available data. Specifically, neither the correct order of the variables x1
and x2 nor their cutoffs ν1 and ν2 have to be pre-specified but are estimated from the data
by model-based recursive partitioning.
The remainder of this paper is organized as follows: First, the steps of the model-based
recursive partitioning algorithm for MPT models are outlined. Next, the performance of the
method is investigated in a simulation study based on the artificial scenario from Figure 2.
In a second simulation study, we assess how MPT trees compare to latent-class (mixture)
models that are based on the same MPT model. Then, the use of recursive partitioning
for investigating effects of covariates on cognitive processes is illustrated with two examples
from memory research. Finally, our approach is discussed in the context of other methods
for incorporating covariates or for detecting parameter heterogeneity in MPT models. We
conclude by briefly describing the software that estimates MPT trees.

2. Recursive partitioning based on MPT models
Model-based recursive partitioning (MOB; Zeileis et al. 2008) is a general approach to account
for heterogeneity in parametric models. The basic idea of MOB is that the fit of a model may
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be improved by splitting the sample and fitting the model to subgroups. These subgroups
are formed automatically: The algorithm learns the optimal partitions using the covariates
available. Thus, by recursively partitioning the sample, MOB seeks to explain parameter
heterogeneity, which is also called parameter instability in the machine-learning context, by
means of main effects and interactions of subject covariates.
There already exist adaptations of the MOB algorithm to (multivariate) linear and generalized
linear models (Zeileis et al. 2008), to the Bradley-Terry-Luce choice model (Strobl, Wickel-
maier, and Zeileis 2011), and to the Rasch model and other psychometric models from item
response theory (Komboz, Strobl, and Zeileis 2016; Strobl, Kopf, and Zeileis 2015). Common
to these adaptations are the general steps of the MOB algorithm, which are, in summary, as
follows:

1. Fit a parametric model to the current (sub-)sample, starting with the full sample, by
estimating its parameters via maximum likelihood.

2. Assess the stability of the model parameters with respect to each available covariate.
This is done using a parameter instability test based on the maximum likelihood scores.

3. If there is significant instability, select the covariate associated with the strongest in-
stability. Compute the cutpoint that leads to the greatest improvement in the model’s
likelihood. Split the sample.

4. Repeat steps 1 to 3 until there is no more significant parameter instability or until the
minimum sample size is reached.

Thus, all steps are based on the model’s likelihood, and the size of the resulting tree is
controlled by significance tests. An optional final step, especially for large data sets, is
pruning: Splits that do not improve the model fit according to information criteria such as
AIC (Akaike 1974) or BIC (Schwarz 1978) are omitted from the tree.
In this paper, we will introduce MPT trees, an adaptation of model-based recursive partition-
ing to MPT models. In the following, the steps of the algorithm specific to MPT models are
explained. For the general procedure of model-based recursive partitioning we refer to Zeileis
et al. (2008).

2.1. Likelihood of MPT models

The data consist of the response frequencies for each of i = 1, . . . , n participants in each of
j = 1, . . . , J response categories. Let yi = (yij) be the vector of observed frequencies for
participant i in the response categories. Let Θ = (ϑk), k = 1, . . . ,K, Θ ∈ [0, 1]K , be the
vector of MPT model parameters. The MPT model defines the probability of a response in
each category, pj = pj(Θ), as a function of the parameters. Assuming independence of the
responses, the data follow a multinomial distribution. The joint likelihood becomes

L(Θ; y1, . . . , yn) =
n∏
i=1

yi+!
J∏
j=1

pj(Θ)yij

yij !

 , (1)

where yi+ =
∑J
j=1 yij , and it only depends on the MPT model parameters Θ. The kernel of
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the log-likelihood is proportional to

logL(Θ; y1, . . . , yn) ∝
n∑
i=1

J∑
j=1

yij log pj(Θ) =
n∑
i=1

`(Θ; yi), (2)

where `(Θ; yi) denotes the log-likelihood contribution of the i-th person.
For example, in the recognition-memory experiment introduced above, items are either old
or new, and participants have to classify them as old or new in a recognition test. Therefore,
the responses of an individual fall into one of J = 4 categories, resulting in a two-by-two table
of response frequencies:

Response
old new

Item old yi1 yi2
new yi3 yi4

The 1HT model (Figure 1) has two parameters, Θ = (r, b), and the predicted probabilities
for each response category are

p1(Θ) = r + (1− r)b p2(Θ) = (1− r)(1− b)
p3(Θ) = b p4(Θ) = 1− b.

(3)

Thus, the log-likelihood contribution of the i-th person becomes

`(Θ; yi) = yi1 log(r + (1− r)b) + yi2 log((1− r)(1− b)) + yi3 log b+ yi4 log(1− b). (4)

The sum over all persons’ log-likelihood contributions amounts to the kernel of the joint
log-likelihood in Equation 2.
Many prevalent MPT models consist of multiple category systems, or subtrees. For example,
the 1HT model has two response categories for old items and two for new items. Thus,
technically, the corresponding likelihood is product (or joint) multinomial. For parameter
estimation and for the instability tests presented below, however, this distinction is irrelevant,
so we keep the simplified notation of J categories in total.

2.2. Maximum likelihood estimation

Maximum likelihood estimates of MPT model parameters are obtained by maximizing Equa-
tion 2 with respect to Θ,

Θ̂ = arg max
Θ

n∑
i=1

`(Θ; yi). (5)

One way of solving Equation 5 is by means of the expectation-maximization (EM) algorithm
described in Hu and Batchelder (1994). The idea is that parameter estimation would be
simplified if not only the category frequencies were known, but also the frequencies of every
single branch from the root to the leaves. The latter are missing, of course, but their expected
value can be computed given initial parameter values (E step). With the expected branch
frequencies at hand, the parameter values are updated (M step). These two steps are iterated
until the likelihood converges to a local maximum.
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A prerequisite for the application of the EM algorithm is that the link probabilities in a
branch take the form

γ
K∏
k=1

ϑαk (1− ϑk)β, (6)

where α, β ∈ {0, 1} indicate the occurrence of either ϑk or 1 − ϑk, and γ is a nonnegative
real number. Equation 6 is the structural restriction of the class of MPT models that can
be represented by binary trees. Other model types have to be suitably reparameterized for
the algorithm to apply. The 1HT model with the equations in (3) fulfils the requirement
in Equation 6. Accordingly, the graph of this model and of the models presented in the
application section are examples of binary trees.
An alternative way of solving Equation 5 is by directly maximizing the log-likelihood using
analytical gradients (Riefer and Batchelder 1988). When doing so, it is advantageous to
transform the parameters to the logit scale in order to remove the [0, 1] boundaries.
Confidence intervals are straightforward since both parameter estimation methods lead to
analytical expressions for the observed Fisher information or negative Hessian matrix (Hu
and Batchelder 1994, Equation 16; Riefer and Batchelder 1988, Equation 21). When working
on the logit scale, the information matrix may be obtained by the multivariate delta method
(Agresti 2002; Bishop, Fienberg, and Holland 1975; Grizzle, Starmer, and Koch 1969). The
approximate covariance matrix is available via the inverse information matrix.
Once the model is fit to the full sample, we want to test for parameter heterogeneity that can
be attributed to the covariates; this is described next.

2.3. Detection of parameter instability

In the framework of model-based recursive partitioning, a test of parameter instability checks
if the model fit can be improved by splitting the sample according to some covariate X and
fitting the model to the subsamples. Under the null hypothesis of parameter homogeneity (or
stability), it is assumed that Equation 1 holds1 and thus the parameter vector is equal for all
participants,

H0 : Θi = Θ0 (i = 1, . . . , n), (7)

where Θi is the parameter vector of individual i. The alternative hypothesis is that the
parameter vector varies as a function of X with observations x1, . . . , xn,

H1 : Θi = Θ(xi) (i = 1, . . . , n). (8)

The exact pattern of variation is usually unknown. For unordered categorical X, such as
medical diagnosis or experimental condition, it is common to test for differences in the pa-
rameter vector for all categories of X. For continuous and ordinal X, one frequent pattern of
interest is an abrupt change in the parameter vector at an unknown cutpoint ν,

H∗1 : Θi =
{

Θ(A) if xi ≤ ν,
Θ(B) if xi > ν,

(9)

1If the model is misspecified and misspecification is associated with some of the partitioning variables, the
instability tests may become progressive.
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where Θ(A) 6= Θ(B) (Merkle and Zeileis 2013; Merkle, Fan, and Zeileis 2014). Possible exam-
ples of such a pattern include hypothetical effects of age, expertise, intelligence, etc., where
the parameter vector changes at some value ν.
To test the above hypotheses, the parameter instability statistics employed here make use of
the individual contributions to the score function or subject-wise estimating function, s(Θ; yi),
and assess the deviations from its mean zero. For MPT models, due to the multinomial form
of the likelihood, the contribution of individual i to the score function is given by

s(Θ; yi) = ∂`(Θ; yi)
∂Θ =

J∑
j=1

yij
∂ log pj
∂Θ =

J∑
j=1

yij
pj(Θ)

∂pj
∂Θ . (10)

For example, in the 1HT model, the individual score contributions are determined by first
partially differentiating the probabilities in Equation 3 with respect to Θ = (r, b); this yields

∂p1
∂Θ =

(
1− b
1− r

)
∂p2
∂Θ =

(
b− 1
r − 1

)
∂p3
∂Θ =

(
0
1

)
∂p4
∂Θ =

(
0
−1

)
.

(11)

Second, substituting these terms into Equation 10 gives

s(Θ; yi) =


yi1(1− b)
r + (1− r)b + yi2(b− 1)

(1− r)(1− b) + yi3 · 0 + yi4 · 0

yi1(1− r)
r + (1− r)b + yi2(r − 1)

(1− r)(1− b) + yi3
b
− yi4

1− b

 . (12)

The score contributions behave like residuals and are diagnostic of the model fit. Evaluation
of the score function for each individual at the joint maximum likelihood estimate Θ̂ measures
the extent to which the model maximizes each individual’s likelihood: Scores further from
zero indicate that the model provides a poorer description of such individuals. The general
idea of the tests applied here is that under the null hypothesis of parameter homogeneity
(7), the individual score contributions, when ordered by any covariate X, fluctuate randomly
around zero. When parameters are not homogeneous across the entire sample, however, the
scores systematically depart from zero.
The left panel of Figure 3 shows the maximum likelihood scores (Equation 12) for the r
parameter of the 1HT model based on a hypothetical scenario as depicted in Figure 2. The
scores when ordered by covariate x1 (which might represent, say, an IQ test score) do not
fluctuate randomly around zero, but are mostly negative until x1 reaches a certain cutpoint,
and mostly positive afterwards; this cutpoint is approximately at zero. This suggests that a
model with a single r parameter would overestimate r for participants with low IQ scores and
underestimate r for participants with high IQ scores.
To capture these deviations, the cumulative score process

B(t; Θ̂) = Î−1/2n−1/2
bn·tc∑
i=1

s(Θ̂; y(i)) (0 ≤ t ≤ 1), (13)

is employed, where bn · tc is the integer part of n · t, Î is an estimate of the covariance matrix
of the scores, and y(i) denotes that yi has been ordered by X. Since the sampling distribution
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Figure 3: Maximum likelihood scores (left panel) and cumulative scores (right panel) for the
r parameter of the one-high-threshold model based on a hypothetical scenario as depicted in
Figure 2 (artificial data). Both panels indicate a change of the parameter value at a cutpoint
in x1 around zero.

of this process under the null hypothesis is known, critical values and p-values can be derived
either analytically or by simulation. The exact form of the test statistic depends on whether
the covariate is continuous, categorical, or ordinal. The right panel of Figure 3 shows the
cumulative score process (Equation 13) for the r parameter of the 1HT model based on
artificial data. Because the scores are mostly negative before and positive after the cutpoint,
the cumulative score process has a characteristic triangular shape deviating strongly from
the random pattern of a Brownian bridge expected under the null hypothesis of parameter
homogeneity.
The tests employed to detect parameter heterogeneity are generalized Lagrange multiplier
(LM) tests, also known as score tests. More background information on these tests than
provided here is included in several recent articles: Details of the parameter instability tests
are discussed by Zeileis and Hornik (2007), who show that they are not restricted to maximum
likelihood scores but also apply to other maximum-likelihood-type estimators (M-estimators),
like ordinary least squares. Details of the recursive application of these tests and of the model-
based recursive partitioning algorithm in general are given by Zeileis et al. (2008). Merkle
and Zeileis (2013) discuss the tests in the context of measurement invariance with respect
to structural equation models. Merkle et al. (2014) extend the results to ordered categorical
covariates.

2.4. Cutpoint location and recursive partitioning

When all available covariates have been tested for parameter instability using the procedure
outlined above and at least one test is significant, the MOB algorithm selects the variable that
induces the strongest instability (with the smallest p-value) in order to locate the cutpoint for
splitting the sample. As each test and p-value depend on only one of the covariates, taking
the minimum p-value is invariant against the order in which the covariates are presented to
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the algorithm. For continuous and ordinal covariates, the idea behind the estimation of the
optimal cutpoint ν is to find the value of the selected covariate with xm ≤ ν and xm+1 > ν
that splits the current sample such that the likelihood in the two subsamples

`(Θ̂(A); yi, . . . , ym) + `(Θ̂(B); ym+1, . . . , yn) (14)

is maximized. For unordered categorical covariates, all possible binary partitions are com-
puted and the one with the maximum segmented likelihood is chosen. Note that for covariates
with more than 15 unordered categories, such an exhaustive search will become increasingly
computationally expensive and may require parallel computing facilities to terminate within
a practically useful time limit.
Once the optimal cutpoint is located and the sample is split, the instability tests are recursively
conducted in the two subsamples until there is no further significant instability. Depending on
the size of the parameter differences, situations may occur where two tests lead to almost the
same p-value. Then, small perturbations in the data may (or may not) lead to different trees.
Resampling is one common approach for assessing the stability of tree structures (Philipp,
Zeileis, and Strobl 2016). This is, however, not pursued in the present paper.
Within model-based recursive partitioning, there are two built-in mechanisms that prevent
inflation of the type I error rate and, consequently, that a tree grows unwarrantedly large:
(1) When testing for instability in a subsample, Bonferroni correction is applied. Thus, in-
stability tests become increasingly strict with an increasing number of covariates. (2) Testing
proceeds in a nested fashion, that is, only if a test is significant in a subsample will testing
continue in nested subsamples. As a consequence of (1) and (2), a tree does not exceed the
nominal significance level α (Zeileis et al. 2008). We will address the statistical performance
of the proposed procedure in a simulation study presented next.

3. Simulation study 1: Power and classification accuracy
This section describes a simulation study to investigate power, type I error rate, and clas-
sification accuracy of MPT trees. The focus of this simulation is restricted to one specific
MPT model that is observed under realistic magnitudes of parameter instability and mod-
erate sample sizes. Further complementary simulation results have been reported elsewhere
and include power and type I error of score tests for measurement invariance in the context
of structural equation modeling (Merkle and Zeileis 2013; Merkle et al. 2014), performance of
recursive partitioning and comparison to mixture models for linear regression (Frick, Strobl,
and Zeileis 2014a), performance of Rasch, partial credit, and rating scale trees for detecting
differential item functioning (Komboz et al. 2016; Strobl et al. 2015).

3.1. Simulation design and experimental settings

In order to simulate responses, the 1HT model (see Figure 1) is employed as the data-
generating process with group-specific r parameters and a constant b parameter, Θ =
(rgroup, b = 0.2) for group ∈ {1, 2, 3}, see Figure 2. Each virtual subject contributes 40
simulated responses (to 20 old and 20 new items). Three subject-specific covariates (x1, x2,
x3) are included that are independently uniformly distributed in the interval [−1, 1]. The
interaction between x1 and x2 along with the corresponding binary cutoff values ν1 and ν2
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defines three groups: x1 ≤ ν1 versus x1 > ν1 ∧ x2 ≤ ν2 versus x1 > ν1 ∧ x2 > ν2. The noise
variable x3 is unrelated to the groups.
The magnitude of parameter instability is controlled by the deviation δ ∈
{0, 0.01, 0.02, . . . , 0.20} from the average recognition probability r = 0.5. The group-specific
recognition probabilities are r1 = 0.5 − δ/2, r2 = 0.5, and r3 = 0.5 + δ. Thus, δ = 0 cor-
responds to parameter homogeneity across the three groups with r1 = r2 = r3 = 0.5. The
setup with δ = 0.1 is shown in Figure 2. Moreover, three small to moderate sample sizes
n ∈ {80, 120, 200} are considered. We expect that increasing both the magnitude δ and the
number n of participants will lead to improved detection performance of the MPT trees.
Two scenarios are considered for the cutoffs ν1 and ν2: First, the median value of the dis-
tributions of x1 and x2 is used, that is, ν1 = ν2 = 0, so that on average the group sizes are
1/2, 1/4, and 1/4, respectively, of the total sample. Second, ν1 = −0.5 and ν2 = 0.5 are used
as the cutoffs resulting in group sizes of about 1/4, 9/16, and 3/16, respectively. Thus, in
the latter scenario, the parameter differences are harder to detect because the middle group
(with r2 = 0.5) is the largest and the deviating groups are smaller.
For benchmarking the power and the accuracy of MPT trees (see below for details on the
outcome measures), the frequently used likelihood ratio test (LRT) is employed as a reference
method. Because the LRT requires a pre-specified split into groups, we consider the common
strategy of splitting at the median of a relevant covariate. Here, we consider splitting either
x1 or x2 at their corresponding medians. Note that this gives the LRT a somewhat unfair
advantage, especially in the first scenario where the true cutoffs are at the median of zero.
Also, the irrelevant covariate x3 is not considered at all and no Bonferroni correction is applied
for aggregating multiple LRTs.
In summary, for each of the two cutoff scenarios and each combination of magnitude of
parameter instability and sample size, 2000 data sets are generated to compute the outcome
measures below for the MPT tree method, the LRT with splitting at the median of x1, and
the LRT with splitting at the median of x2, respectively. All simulations were run in R using
software described in the “Computational details and software” section.

3.2. Outcome measures

Two kinds of outcome measures are considered: (1) the power with which the MPT tree
and the two LRTs reject the null hypothesis of parameter stability; (2) the accuracy with
which the true groups were recovered. For the MPT tree, the power is the proportion of
experiments in which the score test in the root node is significant for x1 or x2, that is, in
which the sample is split at least once. For comparison, the power of the two LRTs is the
proportion of experiments in which the null hypothesis of rx1≤0 = rx1>0 or rx2≤0 = rx2>0,
respectively, is rejected. Note that the hypothesized cutoff value of zero, the median of x1
and x2, either coincides with the true cutoff (first cutoff scenario) or differs (second cutoff
scenario).
The classification accuracy for MPT trees is assessed using the Cramér coefficient of agree-
ment defined as the normalized χ2 statistic of the crosstabulated true and predicted group
membership (Mirkin 2001). It takes a value of zero if the true and predicted groups are un-
correlated, and a value of one if true and predicted groups essentially match. However, unlike
many other cluster indices (e. g., the Rand index), it does not penalize if some of the groups
are split up further. This property is particularly useful when assessing recursive partitions
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Figure 4: Simulated power as a function of the magnitude of parameter instability (δ), sample
size (n), and the method used to test for instability. For the likelihood ratio tests (LRT),
the median of x1 or x2, respectively, is used that either coincides with the true cutoff (upper
panels) or not (lower panels).

that might need several splits to form a certain group. Note that for the LRTs, we do not
simulate the Cramér coefficient but simply determine its theoretical value assuming a given
cutoff of zero in either one of x1, x2, or x3 alone.

3.3. Results

Figure 4 displays the simulated power of the MPT tree in comparison to LRTs based on x1 or
x2 as a function of the magnitude of parameter instability (δ) and sample size (n). In the first
row, the results for the scenario are shown where the true cutoffs coincide with the medians
of x1 and x2, respectively. Thus, the LRT that splits at the median of x1 performs best for
all magnitudes and sample sizes as it tests for the correct split of the root node. The MPT
tree performs second best (except for very small magnitudes δ), although it neither knows
which variable (x1, x2 or x3) nor which cutoff point is correct. Furthermore, under the null
hypothesis of homogeneous parameters (δ = 0), the MPT tree holds its nominal significance
level of 5%; it does not exceed α although it tests for instability in three variables. It is,
however, somewhat conservative, especially for small sample sizes n, due to the asymptotic
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Figure 5: Average Cramér coefficient of agreement between true and MPT-tree-predicted
group membership as a function of the magnitude of parameter instability (δ) and sample
size (n). Horizontal lines indicate the Cramér coefficient when splitting the sample along the
median of x1, x2, or x3, which may either be the true cutoff (left panel) or not (right panel).
As x3 is unrelated to the groups, its Cramér coefficient is zero.

nature of the tests employed. Finally, the LRT that splits at the median of x2 performs worst
among the three methods despite using the correct split in one of the relevant variables. In the
second row, where the true cutoffs do not coincide with the medians, the power of all methods
goes down because the groups are more unbalanced (see above) and, more importantly, the
search for the correct variables and cutoffs in the MPT tree pays off. This advantage of
the MPT tree over the LRTs becomes more pronounced for larger magnitudes of parameter
instability and larger sample size.
In summary, because the MPT tree always determines the cutoffs in a data-driven way, it
cannot profit from “knowing” the true cutoffs in contrast to the LRTs. Therefore, the latter
tests will have a power advantage over MPT trees if the true cutoff and the relevant variables
are used. Conversely, when the cutoffs are unknown, the MPT tree has an advantage over
LRTs, which depend on an often arbitrary choice of the cutoff (here, the median).
The second part of the results shows the accuracy of the MPT tree in recovering the true
partitions. Figure 5 displays the average Cramér coefficient of agreement between true and
predicted group membership as a function of the magnitude of parameter instability (δ) and
sample size (n). In both cutoff scenarios, the Cramér coefficient of the MPT tree increases
with increasing parameter instability and sample size; however, it is generally somewhat lower
in the second scenario in the right panel. This is due to the fact that the groups 1 and 3, which
differ from the middle group 2, are smaller and hence harder to detect. As a reference, both
panels show the theoretical Cramér coefficient of the deterministic splits using the medians
of x1, x2, and x3, respectively. For the split in x3, this is generally 0 because this split is
completely unrelated to the true groups in either scenario. For a split at the median of x1 in
the first scenario, the Cramér coefficient is 1 because this exactly catches the first split of the
tree (and ignoring the second split is not penalized by the Cramér coefficient). However, if
the true cutoff in x1 differs from the median, the theoretical Cramér coefficient drops to 1/3.
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Similarly, the Cramér coefficient for the deterministic split at the median of x2 yields 1/2 if
this coincides with the true cutoff, and 1/4 otherwise. Thus, in both scenarios, the Cramér
coefficient of the MPT tree approaches the best possible value of 1 only for large δ and/or n;
however, in the second scenario, this outperforms the deterministic splits already for values
of δ above around 0.1 (depending on the sample size).
In conclusion, these results show that subgroups previously defined on the covariates are
satisfactorily recovered by recursive partitioning based on an MPT model. In contrast to the
likelihood ratio test, neither the relevant covariates nor the cutpoints have to be known in
advance. A limitation of the results presented here is that they were obtained for a single
MPT model (the 1HT model) and two similar tree structures (cutoff scenarios). Nevertheless,
similar results can be obtained in other setups (see references cited above). Hence, we believe
that these insights contribute evidence that MPT trees constitute a useful tool for detecting
parameter heterogeneity in realistic settings.

4. Simulation study 2: MPT trees versus latent-class models
To assess how different heterogeneity detection methods based on the same MPT model com-
pare, we investigate MPT trees in contrast with latent-class MPT (mixture) models (Klauer
2006). As in the previous section, the focus is restricted to a single MPT model under a
number of realistic settings. The procedure follows earlier studies, which include the compar-
ison of model-based trees and mixture models for linear regression (Frick et al. 2014a) and
for the Bradley-Terry-Luce choice model (Frick, Strobl, and Zeileis 2014b). While both, the
trees and the latent-class models, are based on the same MPT model and aim at detecting
subgroups with homogeneous parameters, they differ in several respects:

• For a mixture model, the number of groups has to be fixed before estimating parameters.
Subsequently, the number of groups is often chosen based on information criteria or
sequential tests. In contrast, for a tree the number of groups is determined recursively
from application of parameter instability tests, where in each step only a single MPT
model has to be estimated.

• Mixture models ignore any covariates, but detect latent subgroups based on the response
variable only. Trees require informative covariates: If no covariates associated with
the subgroups are available, the groups cannot be detected. The selection of relevant
covariates, however, is inherent to trees.

• Trees yield a hard clustering of the observations, mixtures a probabilistic clustering.
The sample splits of a tree represent abrupt shifts in parameter values. Multiple splits
in a covariate are able to represent a non-monotonic transition.

The following simulation investigates how these differences between the two methods affect
their ability to detect parameter heterogeneity.

4.1. Simulation design and experimental settings

The design and settings are identical to those in the previous section apart from the following
changes: A two-group 1HT model is employed for data generation, where Θ = (rgroup, b = 0.2)

Copyright © 2018 Psychonomic Society. http://www.psychonomic.org/



14 Recursive Partitioning of Multinomial Processing Tree Models

x1

P
(g

ro
up

=
2)

none

moderate
strong

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6: Probability of membership in the second group as a function of covariate x1 and
strength of association between x1 and the groups. The depicted settings are used in the
second simulation study.

for group ∈ {1, 2}. Only covariate x1 is related to the groups as explained below; x2 and
x3 are noise variables. The magnitude of parameter instability is controlled by the deviation
δ ∈ {0, 0.01, 0.02, . . . , 0.16} from the average recognition probability r = 0.5, where the group-
specific recognition probabilities are r1 = 0.5− δ and r2 = 0.5 + δ. The sample size (n = 120)
is constant in all simulations.
The strength of the association between the covariate x1 and the two groups is manipulated
via the logistic regression model

log P (group = 2)
P (group = 1) = β · x1, (15)

which predicts the probability of membership in the second group. The regression coefficient β
is set to 0, 4, and∞, which we label no, moderate, and strong association with x1, respectively
(see Figure 6). The first setting (β = 0) renders x1 a noise variable; the second (β = 4)
represents a smooth transition of group membership as a function of x1; the third setting
(β = ∞) represents a step function so that group membership abruptly shifts from 1 to 2
when x1 becomes positive.
In summary, for each of the three strengths of association and each magnitude of parameter
instability, 500 data sets are generated to compute the outcome measures below for MPT trees
and MPT mixture models. We expect that higher magnitudes δ will improve the detection
performance of both trees and mixture models. For MPT trees, however, this should interact
with the strength of association between the covariate x1 and the group membership: The
stronger this association, the better is the performance of MPT trees. For MPT mixture
models, the strength of association should not affect their performance since they detect
groups based on only the response frequencies.

4.2. Outcome measures

As in the previous section, we consider as outcome measures (1) the power to reject the null
hypothesis of parameter stability and (2) the Cramér coefficient for classification accuracy.
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Figure 7: Simulated power and hit rate (upper panels) and average Cramér coefficient (lower
panels) as a function of the magnitude of parameter instability (δ), the strength of association
between the covariate and the groups, and the method used to detect the instability.

For the mixture models, however, the decision of how many latent groups are detected is based
on the Bayesian information criterion (BIC) rather than on a significance test. Accordingly,
we define the hit rate (instead of power) as the proportion of cases in which a mixture model
with two or more groups is selected based on BIC.

4.3. Results

Figure 7 shows the results for both power and hit rate (upper panels) and Cramér coefficient
(lower panels) for both methods. For the MPT tree, the influence of the magnitude of
parameter instability (δ) on its power strongly depends on the strength of association between
the covariate x1 and the groups: If x1 is unrelated (left panel), power is essentially zero. If,
however, x1 is moderately or strongly associated with the groups, power quickly rises with
magnitude δ, and the tree outperforms the mixture model already for small values of δ. For
the mixture model, on the other hand, the strength of association between x1 and the groups
is irrelevant for δ’s influence because it ignores information in the covariates: As soon as δ is
sufficiently large, the mixture model detects latent groups; therefore, the pattern is the same
in all three upper panels of Figure 7.
For the classification accuracy as measured by the Cramér coefficient (lower panels), the
results are similar to power and hit rate. For the MPT tree, the results depend on the strength
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of association between x1 and the groups; for the mixture model, this association is irrelevant.
If there is no association (left panel), the tree cannot correctly classify the observations since
it does not detect any groups in the first place. As the association becomes stronger, the
MPT tree’s classification accuracy becomes better. For moderate association (middle panel),
the tree has higher classification accuracy than the mixture model for δ < 0.13; for larger
magnitudes, the mixture model becomes better. For the strongest association (right panel),
the MPT tree outperforms the mixture model over the entire range of δ.
Comparing middle and right panels of Figure 7 illustrates the detection and classification
mechanism inherent in MPT trees: For smooth transitions between the groups, the tree can
only approximate the groups by splits in the covariates. For abrupt transitions, the tree is
most successful in finding the true groups. The problem of approximating smooth transitions
through several split points, however, is relevant only for numeric covariates. For categorical
covariates, the tree can only split observations into groups using the corresponding categories
and does not have to select split points anyway.
In conclusion, these results show that the main factor determining the relative performance of
MPT trees and mixture models is the availability of covariates that explain the heterogeneities.
If such covariates are available, MPT trees are able to detect less pronounced group differences.
In contrast, MPT mixture models cannot directly leverage such covariate information if it is
available. However, if no covariates can explain the parameter heterogeneities, MPT mixture
models can still identify sufficiently distinct groups of observations while MPT trees lack
power. In practice, it is likely that situations in between the two extremes occur and that
results depend on the differences between the groups (in the simulation measured by δ) and
the strength of association between covariates and groups (in the simulation measured by β).
Thus, if fitting an MPT tree does not lead to any subgroups, it would still be advisable to
check for subgroups using MPT mixture models.

5. Two applications
This section covers two applications of recursive partitioning based on MPT models. The
first analyzes a new data set for which the potential partitions were unknown a priori (as in
most applications) but were the primary research interest. The second is a reanalysis of a
published data set (Riefer, Knapp, Batchelder, Bamber, and Manifold 2002), where the focus
is on how well the MPT tree succeeds in uncovering the a priori hypothesized partitions.

5.1. Source monitoring

The first application considers a typical source monitoring experiment: Participants study
two lists of items as presented by either Source A or Source B. Afterwards, in a memory test,
participants are shown old and new items intermixed and asked to classify them as either A,
B, or new (N).
Figure 8 displays the MPT model for the source monitoring paradigm by Batchelder and
Riefer (1990). To illustrate, consider the paths from the root to an A response for a Source A
item (left tree in the figure). With probability D1, a respondent detects an item as old. If, in
a second step, he or she is able to discriminate the item from a Source B item (d1), then the
response will correctly be A; else, if discrimination fails (1−d1), a correct A response can only
be guessed with probability a. If the item was not detected as old in the first place (1−D1),
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Figure 8: Graph of the MPT model for the source monitoring paradigm (Batchelder and Riefer
1990). Latent cognitive processes are: detectability of Source A items (D1), detectability of
Source B items (D2), source discriminabilities for Source A (d1) and Source B items (d2), bias
for responding “old” to a nondetected item (b), guessing that a detected but nondiscriminated
item belongs to Source A (a), and guessing that the item is a Source A item (g).

the response will be A only if there are both a response bias for “old” (b) and a guess for the
item being Source A (g). The remaining paths in the left tree lead to classification errors (B,
N). The middle and right trees in Figure 8 represent processing of Source B and new items,
respectively.
Such a source monitoring experiment was conducted at the Department of Psychology, Uni-
versity of Tübingen. The sample consisted of 128 participants (64 female) aged between 16
and 67 years. Two source conditions were used in the study phase: Half of the respondents
had to read the presented items either quietly (think) or aloud (say). The other half wrote
them down (write) or read them aloud (say). Items were presented on a computer screen at
a self-paced rate. In the final memory test, studied items were mixed with new distractor
items, and respondents had to classify them as either A, B, or new by pressing a button on
the screen.
The response frequencies are analyzed using the above MPT model for source monitoring
(Figure 8; Batchelder and Riefer 1990), where a = g is assumed for identifiability. In addition,
discriminability is assumed to be equal for both sources (d1 = d2) as in a similar example in
Batchelder and Riefer (1990). As a research question, we investigate whether there are any
effects of source condition, gender, or age on the model parameters. The MPT tree uses a
Bonferroni-corrected significance level of α = 0.05 and a minimum number of five participants
per node.
Figure 9 shows the tree resulting from recursive partitioning of the source monitoring MPT
model. The node numbers are labels assigned from left to right, starting from the top, used
to identify a given node. Table 1 displays the results of the parameter instability tests for
every node. In Node 1, the full sample, only source type is significant, S = 28.48, p < .001,
so it is selected for splitting; since it is a binary variable, no cutpoint has to be computed.
For the think–say subgroup in Node 2, age is selected for splitting, S = 20.77, p = .043, and
the optimal cutpoint is found at age 46. No further parameter instability is detected in the
subgroups, so the procedure stops. The fact that gender is never selected as the splitting
variable suggests that there is no significant parameter heterogeneity with respect to gender.
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Figure 9: Partitioned MPT model for source monitoring data indicating that parameters vary
with combinations of the covariates source type and age.

Table 1: Parameter instability test statistic (S) and Bonferroni-adjusted p-value for each
covariate per node (see Figure 9)

Sources Age Gender
Node S p S p S p

1 28.48 .000 16.93 .249 9.00 .292
2 – – 20.77 .043 2.84 .924
3 – – 10.25 .763 4.28 .760
4 – – 8.59 .822 5.46 .593
5 – – 8.06 .965 7.41 .347

Note: Significant test results are in bold face.

Table 2 contains the resulting three sets of parameter estimates and the response proportions
for each end node of the tree. The estimates reflect the combined influence of the covariates.
For the think–say sources (Nodes 3 and 4 in Figure 9 and in Table 2), D2 exceedsD1 indicating
an advantage of say items over think items with respect to detectability. For the write–say
sources (Node 5), D2 and D1 are about the same indicating that for these sources no such
advantage exists. The think–say subgroup is further split by age with the older participants
having lower values on D1 and d, which suggests lower detectability of think items and lower
discriminability as compared to the younger participants. This age effect seems to depend on
the type of sources as there is no such effect for the write–say sources. In addition, there are
only small effects for the bias parameters b and g, which are psychologically less interesting
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Table 2: Maximum likelihood estimates of source monitoring model parameters and response
proportions associated with the end nodes of the MPT tree in Figure 9

Node D1 D2 d b g p1 p2 p3 p4 p5 p6 p7 p8 p9
3 .62 .74 .44 .12 .63 .13 .04 .08 .07 .13 .06 .04 .02 .44
4 .54 .72 .26 .20 .51 .09 .06 .09 .07 .12 .06 .06 .04 .40
5 .63 .61 .45 .19 .47 .12 .05 .07 .05 .12 .08 .04 .05 .40

Note: p1 to p9 refer to the response categories A, B, and N for Source A, Source B, and new
items, respectively (see Figure 8).

in this application. The effects of the covariates can also be seen for the response proportions
(Table 2), albeit less clearly than for the parameter estimates: The proportions of a correct
response (p1, p5, p9) are slightly lower in Node 4 than in the other nodes, corresponding to
the lower D1 and d values.
The significance tests within MPT trees are global tests for parameter heterogeneity. A
significant test indicates that at least one parameter is not constant across groups. In order
to facilitate interpretation, it may help to graphically inspect the parameter estimates and
their 95% confidence intervals. In the left panel of Figure 10, the d parameter is lower in
Node 4 than in the other groups; similarly the b parameter is lower and the g parameter
is higher in Node 3 than in the other groups. In addition to this graphical assessment of
parameter-wise differences, one could also try to conduct formal post-hoc tests. However,
we do not do so for two reasons: (1) We already have conducted sequential global tests in
the construction of the tree, and subsequent post-hoc comparisons would not have to be
in sync with these. (2) Adjusting post-hoc tests after model selection in finite samples is
challenging and to our knowledge no widely accepted procedure exists for tree-based model
selection (for a discussion see Merkle and Zeileis 2013; Zeileis and Hornik 2007). If formal
confirmatory inference in the detected subgroups is of prime interest, it would be advisable
to gather additional experimental data based on the insights from the MPT trees.

5.2. Storage-retrieval model for pair-clustering data

Riefer et al. (2002) report a study on memory deficits in schizophrenic (n = 29) and organic
alcoholic (n = 21) patients, who were compared to two matched control groups (n = 25, n =
21). Participants were presented with 20 pairs of semantically related words. In a subsequent
memory test, they freely recalled the presented words. This procedure was repeated for a
total of six study and test trials. Responses were classified into four categories: each pair
is recalled adjacently (E1), each pair is recalled non-adjacently (E2), one word in a pair is
recalled (E3), neither word in a pair is recalled (E4). Riefer et al. (2002) analyzed the data
using the storage-retrieval model for pair clustering (Batchelder and Riefer 1986) displayed
in Figure 11. This model aims at separately measuring storage and retrieval capacities of
episodic memory by its parameters c and r. Here, we reanalyze the response frequencies
using an MPT tree; the tree employs a Bonferroni-corrected significance level of α = 0.10 in
order to visualize marginally significant splits.
Figure 12 shows the results of the recursive partitioning based on the storage-retrieval model.
Table 3 contains the parameter estimates associated with the end nodes of the MPT tree and
the response proportions in each of the four categories (E1 to E4). The first split of the tree
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Figure 10: Parameter estimates and 95% confidence intervals for the source monitoring (left
panel) and storage-retrieval models (right panel). The numbers refer to the end nodes of the
MPT trees in Figure 9 and Figure 12, respectively.
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Figure 11: Graph of the storage-retrieval model for pair clustering (Batchelder and Riefer
1986). Latent cognitive processes are: forming a cluster for a category pair (c), successful
retrieval of a stored cluster (r), and storage/retrieval of an unclustered item (u).

separates the two patient and control groups. In the control groups, the parameters improve
with repeated presentation of the items: In Node 5, trial is selected as splitting variable, and
the optimal cutpoint is ≤ 2, > 2. Within the ≤ 2 partition, there is again a split into ≤ 1, > 1.
All three parameters constantly increase for one, two, and more than two presentations; the
increase is particularly pronounced for the r parameter. The patient groups, on the other
hand, do not improve to the same extent. Indeed, their improvement over trials is so weak
that it does not attain significance. Neither storage (c) nor retrieval (r) parameters for these
groups on average reach the level of the control groups. Marginally significant (Node 2)
is the difference between schizophrenic and organic alcoholic patients: While these groups
are comparably weak at storing new information, the retrieval is even more impaired in the
organic alcoholic patients.
The results of our MPT tree analysis of the data are consistent with the findings in Riefer
et al. (2002). The main conclusions is that alcoholic patients with organic brain damage
exhibit essentially no improvement in retrieval over trials. Schizophrenic patients improve,
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Figure 12: Partitioned storage-retrieval model for pair-clustering data indicating that param-
eters vary with combinations of the covariates patient group and trial number.

Table 3: Maximum likelihood estimates of storage-retrieval model parameters and response
proportions associated with the end nodes of the MPT tree in Figure 12

Node c r u p1 p2 p3 p4
3 .46 .47 .42 .22 .10 .26 .42
4 .45 .24 .32 .11 .06 .24 .59
7 .37 .27 .31 .10 .06 .27 .57
8 .43 .56 .45 .24 .12 .28 .36
9 .60 .83 .58 .50 .14 .20 .17

Note: p1 to p4 refer to the response categories E1 to E4 (see Figure 11).

albeit less than the control patients, in both storage and retrieval capacities. These results
are also reflected by the response proportions. The proportion of recalling both items in
a pair adjacently (p1) or non-adjacently (p2) increases for the control groups (Nodes 7, 8,
and 9) while the proportion of failing to recall any item (p4) decreases. For schizophrenic
patients (Node 3), the improvement is only modest and on average only reaches the level of
the control patients after one trial of practice. For the alcoholic patients with organic brain
damage (Node 4), there is no improvement with p1 and p2 staying at the lowest and p4 staying
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at the highest value throughout.
The right panel of Figure 10 shows the parameter estimates and 95% confidence intervals to
facilitate their comparison. Clearly visible are the ascending pattern of all three parameters
in the control groups (Nodes 7, 8, and 9) as well as the low r parameter estimate for the
alcoholic patients with organic brain damage.
Other than in the first application, partitioning is done here between observations, not be-
tween participants. Each participant contributes six response vectors, one for each trial, to
the data set. Consequently, responses from the same participant may appear in more than a
single end node. In order to account for the clustering of the responses contributed by the
same person, a clustered covariance matrix estimate Î for the maximum likelihood scores in
Equation 13 is employed in the instability tests. Generally, in situations with clustered data,
the parameter instability tests within the tree should be considered with care. In the present
application, the resulting tree structure is well in line with the hypothesized effects and the
results of previous analyses (Riefer et al. 2002).

6. Discussion
We introduce MPT trees as a tool for investigating the effects of covariates on MPT model
parameters. The core of MPT trees is model-based recursive partitioning (MOB), which
recursively searches for covariates that induce parameter heterogeneity. When such a variable
is found, a (locally) optimal cutpoint is detected and the sample is split. As a result, groups
of participants are established with (approximately) the same model parameters. As has
been illustrated by simulation and in the application examples, the groups do not have to
be known beforehand, combinations of relevant covariates are identified, and interactions
between covariates are incorporated automatically provided that suitable covariates exist.
The general idea of MOB is not restricted to MPT models but has proved useful in other areas
of psychological modeling (Merkle and Zeileis 2013; Strobl, Kopf, and Zeileis 2015; Strobl,
Wickelmaier, and Zeileis 2011). Therefore, it seems promising to further extend it to models
where individual differences in parameters due to covariate effects need to be accounted for.
As shown in the second simulation study, successful application of MPT trees requires that
covariates explaining the parameter heterogeneity exist. Also, there are patterns of depen-
dence on the covariates against which the underlying parameter instability tests have more
or less power. For example, Figure 7 shows that power decreases with decreasing slope of a
covariate. Another example that is often discussed in the tree literature is that power de-
creases for interaction effects in two covariates with almost no main effects. In this so-called
XOR or chessboard problem, the simple local forward search that most trees (and MOB)
employ would need to be enhanced by explicitly including interactions in the search – either
manually or more formally as in Kim and Loh (2001) – or by relaxing the Bonferroni correc-
tion for multiple testing to control the false discovery rate (Alvarez-Iglesias, Hinde, Ferguson,
and Newell 2017), or by carrying out a global optimization rather than a forward search
(Grubinger, Zeileis, and Pfeiffer 2014). Finally, rather than searching for a single split in
numerical covariates, one could also consider a split into three or more groups (Zeileis et al.
2008). However, capturing such multi-group splits by a sequence of binary splits also leads
to consistent results (Chong 1995).
There are a number of approaches that partly share the same goals with MPT trees, that is,
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accounting for individual differences in model parameters by covariate effects or explaining
parameter heterogeneity in general. Most notably, such approaches include latent-class MPT
models, latent-trait MPT models with random subject effects, and fully parameterized MPT
models with covariates as fixed effects. In the remainder, similarities and differences of these
methods to MPT trees will be discussed.
MPT trees share similarities with latent-class MPT (mixture) models (Klauer 2006; Stahl
and Klauer 2007). As with latent-class models, the sample is partitioned into a discrete
number of groups within each of which parameter homogeneity holds, while between groups
parameters differ. The difference between these two approaches to parameter heterogeneity
is that latent-class models identify a previously specified number of groups on the basis of the
response variables only. MPT trees, in contrast, identify an unknown number of groups based
on splits in the available covariates. In doing so, the groups become immediately interpretable
in terms of covariate effects and interactions. A caveat is that in MPT trees the parameter
heterogeneity is entirely attributed to covariate effects. Thus, without predictive covariates,
heterogeneity might go unnoticed. On the other hand, as has been shown in the second simu-
lation study, trees have higher power than latent-class models to detect parameter differences
if informative covariates are available. As latent-class MPT models, MPT trees assume ho-
mogeneity across items. This is sometimes considered a less problematic assumption than the
assumption of subject homogeneity (Klauer 2006); not least because the item material can
be experimentally controlled, whereas differences between participants in cognitive processes
are often the main focus of the study.
In contrast to models with a discrete number of classes, random effects models represent
heterogeneity in a continuous way. The beta MPT model (Smith and Batchelder 2010) uses
independent beta hyperdistributions for the MPT parameters to account for individual dif-
ferences. Similarly, the latent-trait MPT model (Klauer 2010) uses probit-transformed mul-
tivariate normal hyperdistributions to represent parameter heterogeneity induced by persons
and accounts for correlation between parameters. Both models assume homogeneity of items
but can be extended to deal with heterogeneity of persons and items. The crossed random
effects extension of the latent-trait MPT model (Matzke et al. 2015) accounts for both sources
of parameter heterogeneity simultaneously. For these random effects models, parameter es-
timation and hypothesis testing is carried out in a Bayesian framework using Markov chain
Monte Carlo sampling. Whereas random effects models treat parameter heterogeneity by
introducing nuisance variables and assumptions about their distributions, MPT trees seek to
explain heterogeneity by covariate effects and interactions.
Alternatively to MPT trees, the effects of covariates can be directly incorporated as fixed
effects into a parametric model using a specific link function that relates a linear predictor to
model parameters. Examples of such an approach include models with logit link function in
cultural consensus theory (Oravecz et al. 2015), logit-link MPT models (Coolin et al. 2015;
Coolin, Erdfelder, Bernstein, Thornton, and Thornton 2016; Michalkiewicz et al. 2013), and
probit-link hierarchical MPT models (Arnold, Bayen, and Smith 2015; Michalkiewicz, Arden,
and Erdfelder 2016a; Michalkiewicz, Minich, and Erdfelder 2016b). Such models will have
high power for detecting covariate effects if the model specification matches the true data-
generating process. The main advantage of MPT trees over direct modeling becomes apparent
when such a functional form of the covariate effects cannot be justified or is unknown a priori:
Because of its semi-parametric nature, an MPT tree is able to detect even nonlinear effects
and interactions between covariates without the need of a fully parameterized model; while
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with direct modeling, such effects would have to be explicitly included. This flexibility with
respect to the functional form and its straightforward graphical representation make MPT
trees a useful tool for analyzing the effects of covariates in MPT models.
To summarize, recent methodological, statistical, and computational advances have produced
a diversity of methods that account for parameter heterogeneity in MPT models. These
methods can be broadly distinguished by whether (1) the heterogeneity-inducing variables are
observed and (2) the form of the influence of these variables on the parameters is known. If the
relevant variables are not observed, latent-class and latent-trait MPT models are promising
candidates for capturing unobserved heterogeneity. If the variables are observed and the form
of their influence is known, fully parameterized MPT models are applicable. If, however, the
relevant variables are observed (plus potentially many irrelevant variables) but the form of
their influence is unknown, MPT trees provide an elegant approach to detecting and explaining
heterogeneity by means of subject covariates.

7. Computational details and software
MPT trees are implemented in the mpttree() function in the psychotree package (Zeileis,
Strobl, Wickelmaier, Komboz, and Kopf 2016b) for the R system for statistical computing (R
Core Team 2017). This function combines estimation of MPT models with mptmodel() from
psychotools (Zeileis, Strobl, Wickelmaier, Komboz, and Kopf 2016a) and model-based trees
with mob() from partykit (Hothorn and Zeileis 2015). The mptmodel() function has been
adapted from the mpt package (Wickelmaier and Zeileis 2011) in order to provide a lean and
fast implementation of MPT models. An alternative implementation is within the MPTinR
package (Singmann and Kellen 2013), which focuses more on model estimation and selection.
The empirical examples can be easily replicated using example("mpttree", package =
"psychotree"). For the source monitoring example, the following R code produces the
MPT tree displayed in Figure 9:

R> data("SourceMonitoring", package = "psychotools")
R> sm_tree <- mpttree(y ~ sources + gender + age,
+ data = SourceMonitoring,
+ spec = mptspec("SourceMon", .restr = list(d1 = d, d2 = d)))
R> plot(sm_tree, index = c("D1", "D2", "d", "b", "g"))

Parameter estimates in the end nodes of the tree and the parameter instability tests in the
root node (Table 1) are obtained by:

R> coef(sm_tree)

D1 d g b D2
3 0.624 0.442 0.628 0.118 0.742
4 0.537 0.264 0.514 0.205 0.718
5 0.635 0.446 0.470 0.195 0.612

R> sctest.modelparty(sm_tree, node = 1)
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sources gender age
statistic 2.85e+01 9.003 16.930
p.value 8.81e-05 0.292 0.249

For the example on storage and retrieval deficits in psychiatric patients, this code creates the
MPT tree in Figure 11:

R> data("MemoryDeficits", package = "psychotools")
R> MemoryDeficits$trial <- ordered(MemoryDeficits$trial)
R> sr_tree <- mpttree(cbind(E1, E2, E3, E4) ~ trial + group,
+ data = MemoryDeficits, cluster = ID, spec = mptspec("SR2"),
+ alpha = 0.1)

In this example, the trial variable is represented by an ordinal factor, and the Bonferroni-
corrected significance level is 10%. More information about the mpttree() function is avail-
able in the package documentation via ?mpttree.
Our results were obtained using R 3.5.0 and psychotree 0.15-1, partykit 1.2-2, psychotools 0.4-
3, mpt 0.5-4, and psychomix 1.1-4 (Frick, Strobl, Leisch, and Zeileis 2012); the latter package
contains the mptmix() function that implements latent-class MPT (mixture) models. R itself
and all packages used are freely available under the terms of the General Public License from
the Comprehensive R Archive Network (https://CRAN.R-project.org/).
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