
Score-Based Tests of Differential Item Functioning
via Pairwise Maximum Likelihood Estimation

Ting Wang
University of Missouri

Carolin Strobl
University of Zurich

Achim Zeileis
Universität Innsbruck

Edgar C. Merkle
University of Missouri

Abstract

Measurement invariance is a fundamental assumption in item response theory models,
where the relationship between a latent construct (ability) and observed item responses
is of interest. Violation of this assumption would render the scale misinterpreted or
cause systematic bias against certain groups of persons. While a number of methods
have been proposed to detect measurement invariance violations, they typically require
advance definition of problematic item parameters and respondent grouping information.
However, these pieces of information are typically unknown in practice. As an alternative,
this paper focuses on a family of recently-proposed tests based on stochastic processes of
casewise derivatives of the likelihood function (i.e., scores). These score-based tests only
require estimation of the null model (when measurement invariance is assumed to hold),
and they have been previously applied in factor-analytic, continuous data contexts as well
as in models of the Rasch family. In this paper, we aim to extend these tests to two-
parameter item response models, with strong emphasis on pairwise maximum likelihood.
The tests’ theoretical background and implementation are detailed, and the tests’ abilities
to identify problematic item parameters are studied via simulation. An empirical example
illustrating the tests’ use in practice is also provided.

Keywords: pairwise maximum likelihood, score-based test, item response theory, differential
item functioning.

1. Introduction
A major topic of study in educational and psychological testing is measurement invariance,
with violation of this assumption being called differential item functioning (DIF) in the item
response literature (see, for example, Millsap 2012, for a review). If a set of items violates mea-
surement invariance, then individuals with the same ability (“amount” of the latent variable)
may systematically receive different scale scores. This is problematic because researchers
might conclude group ability differences when, in reality, the differences arise from unfair
items.
We can formally define measurement invariance in a general fashion via (Mellenbergh 1989):

f(yi|vi,θi) = f(yi|θi), (1)

where yi is a vector of observed variables for individual i, θi is the latent variable vector
for individual i, which can be viewed as a random variable generated from a normal or
multivariate normal distribution with parameter θ, vi ∈ V , where V is the auxiliary variable
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2 Score-Based DIF Tests via Pairwise ML Estimation

such as age, gender, ethnicity, etc., against which we are testing measurement invariance,
and f(·) is an assumed parametric distribution. In applying the measurement invariance
definition to a parametric item response theory (IRT) framework, Equation (1) states that
the relationship between the latent construct (ability) θi and response yi (binary or ordinal)
holds regardless of the value of V .
Under this definition, many procedures have been proposed to assess measurement invari-
ance/DIF in IRT models, including the Mantel-Haenszel statistic (Holland and Thayer 1988),
Raju’s Area approach (Raju 1988), logistic regression methods (Swaminathan and Rogers
1990; Van den Noortgate and De Boeck 2005), Lord’s Wald test (Lord 1980) and likelihood
ratio test (Thissen, Steinberg, and Wainer 1988). Overviews can be found in Millsap and
Everson (1993); Osterlind and Everson (2009); Magis, Béland, Tuerlinckx, and De Boeck
(2010); Glas (2015). These methods focus on generally detecting the presence or absence of
DIF. When a measurement invariance violation is detected, however, researchers are typi-
cally interested in “locating” the measurement invariance. As Millsap (2005) stated, locating
the invariance violation is one of the major outstanding problems in the field. This locating
problem can be divided into two aspects. One is to locate which item parameter violates the
measurement invariance assumption. The other is to locate the point/level of the auxiliary
variable (V ) at which the violation occurs. Unfortunately, this second aspect is often ignored
because previous procedures require us to pre-define the reference and focal groups (based on
V ).
Beyond the approaches described in the previous paragraph, Glas and colleagues have done
seminal work applying the Lagrange multiplier test (see also Satorra 1989) to item response
models, focusing on situations where pre-defined group information is available (i.e., V is
treated as categorical variable). Their work has included the traditional two-parameter Glas
(1998), three-parameter Glas and Falcón (2003), and nominal response Glas (1999, 2010) mod-
els, with applications including computerized adaptive testing Glas (2009), country-specific
DIF Glas and Jehangir (2014) and models of response time Glas and Van der Linden (2010).
The main estimation framework in this line of research is marginal maximum likelihood Glas
(2009); Bock and Schilling (1997); Schilling and Bock (2005), which is generally most popular
in IRT applications.
A more general family of score-based or Lagrange multiplier tests has been recently proposed
to address “locating” issues in factor models for continuous response data Merkle and Zeileis
(2013); Merkle, Fan, and Zeileis (2014); Wang, Merkle, and Zeileis (2014), where the auxil-
iary variable V can be continuous, ordinal, or categorical. Additionally, Strobl, Kopf, and
Zeileis (2015) applied related tests to Rasch models estimated via conditional ML in order
to identify the violating point along a categorical or continuous auxiliary variable. Moreover,
Strobl et al. (2015) applied the tests recursively to multiple auxiliary variables via a “Rasch
trees” approach, highlighting the fact that the groups tested for DIF need not be specified in
advance and can even be formed by interactions of several auxiliary variables. Unfortunately,
the conditional ML framework is only applicable to models of the Rasch family. Penalized
maximum likelihood has also been recently proposed to detect DIF Tutz and Schauberger
(2015), but the work has also been confined to the Rasch model.
In this paper, we extend the score-based tests to more general IRT models in a unified way,
using both pairwise and marginal maximum likelihood estimation. We focus on identifying
problematic item parameters without pre-specifying reference and focal groups. This approach
allows us to 1) detect DIF in various IRT models without additional computational burden;
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and 2) detect DIF against ordinal auxiliary variables like socioeconomic status and age group,
whose ordinal nature is often ignored in IRT literature. We first describe the two-parameter
IRT model and its relationship to factor analysis, along with the score-based tests’ application
to IRT via pairwise maximum likelihood estimation. Next, we report on the results of two
simulation studies designed to examine the tests’ ability to locate problematic item parameters
while simultaneously handling the issue of person impact. Next, we apply the tests to real
data, studying the measurement invariance of a mathematics achievement test with respect
to socioeconomic status. Finally, we discuss test extensions and further IRT applications.

2. Model
In this study, we focus on binary data yij , where i represents individuals (i ∈ 1, . . . , n) and
j represents items (j ∈ 1, . . . , p). There are two related approaches in the social science
literature for analyzing these data: IRT and factor analysis. A two-parameter IRT model can
be written as

yij ∼ Bernoulli(pij), (2)
logit(pij) = αjθi + γj , (3)

θi ∼ N(µ, σ2), (4)

where Equation (2) states that each person’s response to each item (yij) arises from a Bernoulli
distribution with parameter pij . Then Equation (3) transforms pij to logit(pij) = log( pij

1−pij
),

which is a linear function of the person’s ability θi and the item parameters γj and αj . The
alternative parameterization, αj(θi − γj), could also be used here. Finally, person ability θi

is described by hyperparameters µ and σ2, with these parameters commonly being fixed to
0 and 1, respectively, for identification. Instead of using the logit as the link function in
Equation (3), we can alternatively use the inverse cumulative distribution function of the
standard normal distribution Φ−1() (the probit link function). In this case, Equation (3)
could be written as pij = Φ(αjθi + γj).
Use of the probit link function in the above model is equivalent to placing a factor analysis
model on latent continuous variables y? Takane and De Leeuw (1987). In particular,

y?
i = Λθi + ε, (5)

where Λ is a p × 1 factor loading vector, with components λ1, . . . , λp; θi ∼ N(0, 1); and ε is
an error term, which follows the distribution N(0,Ψ). The matrix Ψ is diagonal and defined
as I−diag(ΛΛ>). The continuous response vector y?

i is composed by y?
ij (j = 1, . . . , p), with

the observed binary data being obtained via

yij =
{

1 y?
ij ≥ τj

0 y?
ij < τj .

(6)

Therefore, we can see that λj is similar to αj in Equation (3); they are both attached to
the ability variable θi. The error term ε is related to the probit link function that could be
used in Equation (3). Finally, the threshold τj corresponds to γj , which is related to item j’s
difficulty.
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No matter which link function is used, however, estimation of the two-parameter IRT model
is not straightforward. The difficulty is caused by the person parameters θi, which we gener-
ally avoid estimating (either by conditioning on them or integrating them out). Estimation
methods that address this difficulty include conditional maximum likelihood (CML; e.g., Fis-
cher and Molenaar 2012; De Ayala 2009), marginal maximum likelihood (MML; e.g., Thissen
1982) and pairwise maximum likelihood (PML; e.g., Katsikatsou, Moustaki, Yang-Wallentin,
and Jöreskog 2012). We briefly describe PML below, which is the main focus of this paper
(though we also consider MML).

3. Estimation
If we employ the factor analysis version of the model, the log-likelihood of individual i’s
observed data yi, given the parameter vector η (including λ, τ), involves the integral

`(η;yi) = log
∫
τ
f(y?

i |η)dy?
i (7)

where y?
i is described as Equation (5), the distribution of y?

i with θi marginalized out is
denoted as f(y?

i |η) (p dimensional), which can be considered as a multivariate normal distri-
bution following N(0,ΛΛ> + Ψ). The integration of the p-dimensional multivariate normal
distribution over support τ is the difficult part, which does not have a closed form.
Katsikatsou et al. (2012) proposed that the likelihood function above can be approximated
by:

p`(η;yi) =

∑
j<k

`(η; (yij , yik))

 , (8)

=

∑
j<k

 2∑
cj=1

2∑
ck=1

log π(cjck)
yijyik (η)

 , (9)

where ∑j<k `(η; (yij , yik)) is the log-likelihood associated with all pairs of items, which is
a series of 2-way contingency tables; π(cjck)

yijyik (η) is the probability that individual i responds
to item j and k with category cj (cj = 1, 2) and ck (ck = 1, 2) under the model, which is
expressed as a function of pairwise integrals. (See Katsikatsou et al. 2012) for the explicit
expression of π(cjck)

yijyik (η), and note that the categories 1, 2 above represent responses of “0”,
“1” respectively in Equation (6).
Comparing Equation (7) with Equation (8), we can see that the p-dimensional integral is
reduced to all possible pairwise (j < k) integrals, which are bivariate normal distributions
with closed form solution. This significantly reduces the computational complexity, which is
a major advantage of PML.

4. Maximizing likelihood function
The model’s log-likelihood function can be written as the sum of individual log-likelihoods

`(η;y1, . . . ,yn) =
n∑

i=1
log f(yi|η), (10)
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where the length of the parameter vector η is q.
Maximizing the model’s log-likelihood function is equivalent to solving the first order condi-
tions

n∑
i=1
s(η̂;yi) = 0, (11)

where
η̂ = argmax

η
`(η;y1,y2, . . . ,yn). (12)

and

s(η̂;yi) = ∂`(yi,η)
∂η

∣∣
η=η̂

(13)

=
(
∂`(η;yi)
∂η1

, . . . ,
∂`(η;yi)
∂ηq

)
. (14)

For the two-parameter IRT model analyzed in this paper, the log-likelihood function and
consequently also the individual score function differs depending on the log-likelihood. We
provide some detail on the PML score function below, with the MML score function being
detailed in, e.g., Glas (1998).
Maximizing the log-likelihood function in Equation (8) over the parameter η, we obtain the
composite pairwise maximum likelihood estimator η̂PML. Again, this is equivalent to solving
for η so that the sum of scores equals zero. The score vector of the pairwise likelihood for
each individual can be decomposed in two blocks: the first derivative with respect to the
factor loading Λ and the first derivative with respect to the thresholds τ :

s(η;yi) =


∂

{∑
j<k

`(η; (yij , yik))
}

∂Λ
,

∂

{∑
j<k

`(η; (yij , yik))
}

∂τ

 . (15)

The elements of the score matrix are analytic solutions, requiring no approximation via
quadrature. The derivatives are explicitly demonstrated in the Appendix of Katsikatsou
et al. (2012).
It is easy to show that PML estimates are more easily obtained and less computationally
intensive compared to traditional maximum likelihood estimation, e.g., marginal maximum
likelihood (MML) estimation, which often involves quadrature or adaptive quadrature to ap-
proximate integrals Schilling and Bock (2005); Katsikatsou et al. (2012). Further, Katsikat-
sou and Moustaki (2016) have recently derived likelihood ratio tests for the PML framework,
which in turn lead to expressions for pairwise AIC and BIC. Thus, we focus on PML in the
simulations and analyses below, with similar results holding for MML as demonstrated in sup-
plementary material. In the next section, we describe the scores’ use in tests of measurement
invariance.

5. Score-based tests of measurement invariance
Measurement invariance is usually studied in a hypothesis testing framework. We can write
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the hypothesis very generally by assuming a potential observation-specific parameter vector
ηi. The null hypothesis of measurement invariance can then be expressed as all observations
arising from a common set of population parameters η0

H0 : ηi = η0 (i = 1, . . . , n), (16)

versus
H1 : ηi = η(vi) (i = 1, . . . , n), (17)

where η(vi) is typically an unknown function w.r.t. vi. If the function is known, the alternative
hypothesis can be expressed more specifically. For example, one function of particular interest
involves V dividing individuals into two subgroups with different parameter vectors based on
the cut point v:

H1 : ηi =
{
η(A) vi ≤ v
η(B) vi > v.

(18)

For this hypothesis testing problem with known cut point v, the likelihood ratio test (LRT;
Thissen et al. 1988) is most popular. The LRT compares two models, a full model and a
reduced model. The full model is a multiple-group model with parameters free to vary across
group A and group B, while the reduced model constrains some parameters to be equal across
groups. The LRT statistic for cut point v can be expressed as

LR(v) = −2[`(η̂;y1, . . . ,yn)− {`(η̂(A);y1, . . . ,ym) + `(η̂(B);ym+1, . . . ,yn)}], (19)

where ` represents the log-likelihood function, η̂(A) is the MLE of η(A) based on {y1, . . . ,ym},
for which vi ≤ v and η̂(B) is the MLE of η(B) based on {ym+1, . . . ,yn} for which vi > v. This
LRT statistic has an asymptotic χ2 distribution with degrees of freedom equal to the number
of parameters in η.
However, when the grouping information is unknown, we can also compute LR(v) for each
possible value of V in some interval [v, v̄], obtaining a test statistic via:

max
v∈[v,v̄]

LR(v). (20)

The asymptotic distribution of this maximum LR statistic is not χ2; Andrews (1993) showed
that, under the null hypothesis in (16), the statistic converges in distribution to some stochas-
tic process. This result is also utilized in the score-based tests discussed below.

5.1. Test background

The score-based tests described here utilize the scores defined above, and they are based on
theory showing that functions of the scores follow a stochastic process along an auxiliary
variable V . Related descriptions can be found in Zeileis and Hornik (2007), Merkle et al.
(2014), and Wang et al. (2014).
We can build the following intuition for the tests. We examine individuals’ scores as we move
from the smallest value of V to the largest. If there are no measurement invariance violations,
the scores should fluctuate around zero. Conversely, the scores will systematically shift from
zero when measurement invariance is violated.
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To obtain formal test statistics, we define the cumulative score as

B(t; η̂) = Î−1/2n−1/2
bn·tc∑
i=1

s(η̂;y(i)) (0 ≤ t ≤ 1), (21)

where y(i) represents the observed data vector for ith-largest observation, with ordering de-
termined by the auxiliary variable V . Î denotes some estimate of the covariance matrix of the
scores, which serves to decorrelate the fluctuation processes associated with individual model
parameters; bntc is the integer part of nt (i.e., a floor operator); and 0 ≤ t ≤ 1. In a sample of
size n, B(t; η̂) changes at 0, 1

n ,
2
n , . . . ,

n
n . For t = 1 the cumulative score vector always equals

0, as defined in Equation (11). We are specifically interested in how the cumulative score
fluctuates as we move from t = 0 to t = 1.
Along with the score vectors, we need an estimate of the score covariance matrix, which is
shown in Equation (21) as Î. For regular maximum likelihood estimation, the covariance
matrix is equal to the information matrix. However, this identity does not hold for PML
Katsikatsou et al. (2012). Therefore, instead of the information matrix, we use an estimate
based on the outer product of scores Î = (1/n)∑n

i=1 s(η̂,y(i))s(η̂,y(i))>.
Hjort and Koning (2002) showed that, under the null hypothesis from (16), B(t; η̂) converges
in distribution to an independent Brownian bridge:

B(·; η̂) d→ B0(·), (22)

where B0(·), is a q-dimensional Brownian bridge, and each column represents a unidimen-
sional Brownian bridge associated with a single parameter.
Empirically, the B(t;η) process can be described by an n× q matrix, with each column fol-
lowing an independent Brownian bridge. The matrix row represents the ordered observations’
cumulative score vector and the last row is zero as described by Equation (11). To obtain
scalar test statistics, we summarize the empirical behavior of Equation (21) and compare it
to the analogous scalar summary of the Brownian bridge. In the next section, we introduce
various summaries of Equation (21) that can serve as test statistics.

5.2. Test statistics

After summarizing or aggregating the empirical cumulative score process via a scalar, the
asymptotic distribution of the scalar can be obtained by applying the same summary to the
asymptotic Brownian bridge. This allows us to obtain critical values and p-values. Various
statistics have been proposed, with selection of a statistic being based on the plausible patterns
of potential measurement invariance violations.
The simplest aggregation strategy is to reject measurement invariance if the largest component
of the empirical cumulative score matrix is greater than a critical value. Based on the location
of the detected component, we can easily identify the violating parameter and the value of V
at which the violation occurs. Because this statistic is searching for the maximum over the
parameters (columns of the empirical cumulative score matrix) and individuals (rows of the
empirical cumulative score matrix), this statistic is called the “double maximum” (DM).

DM = max
i=1,...,n

max
j=1,...,q

|B(η̂)ij |. (23)
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However, the DM statistic is sub-optimal if many of the parameters change at the same
value of V and/or there exist many (rather than only one) changing points in V , because this
“wastes” power by only considering the maximum. In such cases, sums across parameters and
individuals are more suitable. The Cramèr-von Mises (CvM) statistic falls in this category,

CvM = n−1 ∑
i=1,...,n

∑
j=1,...,q

B(η̂)2
ij . (24)

If we expect there is only one change point, but that change point affects multiple parameters,
we can aggregate by summing over parameters, then taking the maximum over the individ-
ual interval (scaled by variance). This statistic is equivalent to obtaining the maximum of
Lagrange multiplier statistics, and it can be formally written as

max LM = max
i=i,̄i

{
i

n

(
1− i

n

)}−1 ∑
j=1,...,q

B(η̂)2
ij . (25)

Note that this statistic is asymptotically equivalent to the max LR mentioned before, in
the same way that the traditional likelihood ratio test is asymptotically equivalent to the
traditional Lagrange multiplier test.
Across the above statistics, the auxiliary variable V is assumed to be continuous. Merkle
et al. (2014) introduced two modified statistics that could deal with ordinal V , which could
include school grades or income levels. For an ordinal auxiliary variable with m levels, the
modifications are based on tl (l = 1, . . . ,m− 1), which are the empirical, cumulative propor-
tions of individuals observed at the first m− 1 levels. The modified statistics are then given
by

WDM o = max
i∈{i1,...,im−1}

{
i

n

(
1− i

n

)}−1/2
max

j=1,...,q
|B(η̂)ij |, (26)

max LM o = max
i∈{i1,...,im−1}

{
i

n

(
1− i

n

)}−1 ∑
j=1,...,q

B(η̂)2
ij , (27)

where il = bn · tlc (l = 1, . . . ,m− 1).
If the auxiliary variable V is only nominal/categorical, the empirical cumulative sums of scores
can be used to obtain a Lagrange multiplier statistic by first summing scores within each of
the m levels of the auxiliary variable, then summing the sums Hjort and Koning (2002). This
test statistic can be formally written as

LM uo =
∑

l=1,...,m

∑
j=1,...,q

(
B(η̂)ilj −B(η̂)il−1j

)2
, (28)

where B(η̂)i0j = 0 for all j. This statistic is asymptotically equivalent to the usual likelihood
ratio statistic, and it is advantageous over the LRT from (19) because it requires the estimation
of only one model (the null model). We expect similar asymptotic equivalence results to hold
in the PML framework, though this equivalence has not been investigated.
In the following sections, we apply these theoretical results to IRT models. We focus on the
two-parameter model estimated via PML, where the θi are assumed to arise from a normal
distribution (and, as mentioned previously, MML results are included in the appendices).
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6. Simulation 1
In this study, we aim to examine the tests’ abilities to locate item parameters that violate
measurement invariance. Consider a hypothetical battery of five items administered to stu-
dents in several ordered groups (e.g. m = 8), with the item responses being described by a
traditional two-parameter model. Measurement invariance violations may occur in the item
intercept or the item slope parameters (related to difficulty and discrimination, respectively).
It is plausible that violations in an item’s slope parameter influences the item’s intercept pa-
rameter, or that one violating item influences the other items. Thus, the goal of Simulation 1
is to examine the extent to which the score-based tests attribute the measurement invariance
violation to the correct item parameters.

6.1. Method

Data were generated from a two-parameter model (with probit link function) for a test with 5
items. A violation occurred in one of two places: the item 3 slope parameter (α3) or intercept
parameter (γ3). The fitted models matched the data-generating model, and parameter esti-
mates were obtained by PML. Measurement invariance violations were tested in eight subsets
of parameters: each item’s intercept parameter (or slope parameter, depending on the loca-
tion of the true violation), item 3’s non-violating parameter (γ3 or α3), all items’ intercept
parameters, and all items’ slope parameters.
Power and type I error were examined across three sample sizes (n = 120, 480, 960), three
numbers of ordered groups (m = 4, 8, 12) and 17 magnitudes of invariance violations. The
measurement invariance violations occurred at levelm/2+1 of V : Students with V < (m/2+1)
deviated from students with V ≥ (m/2 + 1) by d times the parameters’ asymptotic standard
errors (scaled by

√
n), with d = 0, 0.25, 0.5, . . . , 4.

For each combination of sample size (n) × violation magnitude (d) × violating parameter
× groups (m), 5000 data sets were generated and tested. In all conditions, we maintained
equal sample sizes in each subgroup of the categories m. Statistics from Equations (26)
and (27) (both ordinal statistics) were examined, as was the statistic from (28) (categorical
statistic, ignoring the ordering information). As mentioned previously, the latter statistic
is asymptotically equivalent to the usual likelihood ratio test. Thus, this statistic provides
information about the relative performance of the ordinal statistics vs. the LRT.

6.2. Results

Full simulation results for PML are presented in Figures 1 to 4 (similar results for MML are
shown in supplementary material). Figures 1 and 2 compare different test statistics at a fixed
value of n, while Figures 3 and 4 display a single test statistic across all values of n. Because
items 1, 2, 4, and 5 display similar power curves in all conditions, we only show item 2’s
results.
Figure 1 demonstrates power curves (of sample size 960) as a function of violation magnitude
in item 3’s slope parameter α3, with the tested parameters changing across rows, the number
of levels m of the ordinal variable V changing across columns, and lines reflecting different
test statistics. In each panel, the x-axis represents the violation magnitude and the y-axis
represents power. Figure 2 demonstrates similar power curves when the violating parameter
is item 3’s intercept parameter γ3.
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Figure 1: Simulation 1. Simulated power curves for max LM o, WDM o, and LM uo across
three levels of the ordinal variable m and measurement invariance violations of 0–4 standard
errors (scaled by

√
n), estimated by the PML two-parameter model. The parameter violating

measurement invariance is α3. n = 960. Panel labels denote the parameter(s) being tested
and the number of levels of the ordinal variable m.

These two graphs show that the ordinal statistics exhibit similar results, with the max LM uo

statistic demonstrating lower power across all situations. This demonstrates the sensitivity of
the ordinal statistics to invariance violations that are monotonic with V . In situations where
only one parameter is tested, WDM o and max LM o exhibit equivalent power curves. This
is because these two statistics are equivalent when only one parameter is tested (see Merkle
et al. 2014).
Figures 3 and 4 display similar power curves (of statistic WDM o), but the lines now reflect
different sample sizes. Figure 3 demonstrates results when the violating parameter is α3, and
Figure 4 displays the results when the violating parameter is γ3.
From these figures, one generally observes that the tests isolate the parameter violating mea-
surement invariance. Comparing Figure (1) to Figure (2), we can see the tests have somewhat
higher power to detect measurement invariance violations in the intercept parameter as op-
posed to the slope parameter. This is because it is easier to detect violations in “main effects”
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Figure 2: Simulation 1. Simulated power curves for max LM o, WDM o, and LM uo across
three levels of the ordinal variable m and measurement invariance violations of 0–4 standard
errors (scaled by

√
n), estimated by PML two-parameter model. The parameter violating

measurement invariance is γ3. n = 960. Panel labels denote the parameter(s) being tested
and the number of levels of the ordinal variable m.

(we can see it as intercept × 1) than in “interactions” (slope × person parameter θi). Any
changes in an intercept parameter will influence every person equally whereas any changes in
a slope parameter’s influence is moderated by each person’s ability θi. Meanwhile, comparing
Figure 3 and Figure 4, we can see that sample size has a much larger influence on power to
detect violations in the slope parameter, as compared to the intercept parameter. This is
related to the fact that the violation magnitudes were scaled by the square root of n, and the
slope parameter is attached to the person parameter θi which follows a distribution instead
of a constant.
Finally, simultaneous tests of all slope parameters or of all intercept parameters resulted in
decreased power, as compared to the situation where only the violating parameter is tested.
This “dampening” phenomenon is more apparent for max LM o statistic, because it involves a
sum across all tested parameters (see Equation (27)) whereas WDM o only takes the maximum
over parameters (see Equation (26)). However, the relative power advantage of using max LM o
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Figure 3: Simulation 1. Simulated power curves for sample sizes n = 120, 480 and 960 of test
statistic WDM o, across three levels of the ordinal variable m and measurement invariance
violations of 0–4 standard errors (scaled by

√
n), estimated by PML two-parameter model.

The parameter violating measurement invariance is α3. Panel labels denote the parameter(s)
being tested and the number of levels of the ordinal variable m.

and WDM o when testing multiple parameters depends on the number of parameters that
actually violate invariance Merkle et al. (2014). In practice, we often test multiple parameters
in the exploratory stage and, when we have no information about which parameter(s) might
be problematic, max LM o has more power than WDM o Merkle et al. (2014); Wang et al.
(2014).

In summary, we found that the proposed tests can attribute measurement invariance vio-
lations to the correct parameter of a two-parameter item response model. While this can
give practitioners some confidence in the tests, we did not examine the situation where per-
son abilities differ across groups, which is often called “impact” in item response literature
Fischer (1995b). We consider this situation in Simulation 2.
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Figure 4: Simulation 1. Simulated power curves for sample sizes n = 120, 480 and 960 of test
statistic WDM o, across three levels of the ordinal variable m and measurement invariance
violations of 0–4 standard errors (scaled by

√
n), estimated by PML two-parameter item

response model. The parameter violating measurement invariance is γ3. Panel labels denote
the parameter(s) being tested and the number of levels of the ordinal variable m.

7. Simulation 2

In Simulation 1, the ability distributions were assumed to be the same for all persons. This
ignored the fact that person hyperparameters (mean ability, variance of ability) could change
across groups along with the item parameters. Changes in person hyperparameters do not
count as measurement invariance violations, but ignoring these changes may lead us to in-
correctly conclude an invariance violation Woods (2009); Stark, Chernyshenko, and Drasgow
(2006); Wang and Yeh (2003); Fischer (1995a); Kopf, Zeileis, and Strobl (2015).

Formally, in a regular two-parameter model, we assume that the person parameters follow a
standard normal distribution across all groups: θi ∼ N(0, 1). There is the potential that the
hyperdistribution is group specific, however, with θ?

i ∼ N(µvi , σ
2
vi

), where vi is in 1, . . . ,m. If
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the hyperparameters change from group to group, then our model can be written as:

Φ−1(pij) = γj + αjθ
?
i , (29)

= γj + αj(µvi + σviθi), (30)
= (γj + αjµvi) + σviαjθi. (31)

This shows that, when σvi differs across values of vi, it will look like there are measurement
invariance violations in αj (for all j). Similarly, when µvi differs across values of vi, it will
look like there are measurement invariance violations in γj (for all j). Further, because µvi

is no longer 0, changes in αj will also make it look like there are measurement invariance
violations in the γj (through the term αjµvi). Therefore, the proposed tests’ good properties
from Simulation 1 are lost when the person hyperparameters change across groups.
To avoid this problem, we should estimate the person hyperparameters µvi and σ2

vi
, when there

is uncertainty about person abilities. It is clear that estimation of these extra parameters will
decrease the proposed tests’ power. However, both the extent of decrease and the relative
performance compared to traditional statistics is unclear. In this section, we conduct two
simulations that address these issues.

7.1. Method

To examine the decrease in power when we estimate person hyperparameters with or without
a “true” person hyperparameter change, we organize Simulation 2 into two subsections. In
Simulation 2.1, the data-generation model is the same as Simulation 1, with abilities of
students generated from θi ∼ N(0, 1) whereas, in Simulation 2.2, the abilities of students
were manipulated. Specifically, abilities of students with V = 1, 2, 3, or 4 were generated
from θi ∼ N(0, 1), while the abilities of students with V = 5, 6, 7, or 8 were generated from
θi ∼ N(−1, 2).
The estimated model for both Simulations 2.1 and 2.2 is the multiple-group two-parameter
model, which can be described as: free parameters for each level’s µvi (with level 1 fixed to
zero for identification), σ2

vi
(with level 1 fixed to 1 for identification) and the five items’ slope

and intercept parameters (as in Simulation 1), with estimates again being obtained by PML.
Because the multiple-group two-parameter model has more parameters to be estimated (7
mean parameters µvi and 7 variance parameters σ2

vi
), the sample sizes were increased to

n = 1200, 4800, and 9600. Measurement invariance violations still occurred in the same
places (either α3 or γ3), and the subsets of tested parameters were the same as in Simulation
1.
Power and type I error were examined across three sample sizes and 17 magnitudes of in-
variance violations (manipulated in the same way as Simulation 1). For each combination
of sample size (n) × violation magnitude (d), 5000 data sets were generated and tested. In
all conditions, we still maintained equal sample sizes in each level of V . We examined the
statistics from Equations (26), (27) and (28).

7.2. Results

In the sections below, we first discuss results when the data-generation model had person
hyperparameters that were the same across groups (Simulation 2.1). We then discuss results
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Figure 5: Simulation 2.1. Simulated power curves for max LM o, WDM o, and LM uo across
measurement invariance violations of 0–4 standard errors (scaled by

√
n), estimated by PML

(fitting multiple-group two-parameter model, without person abilities change in the generation
model). The parameter violating measurement invariance is α3. The number of categories is
m = 8. Panel labels denote the parameter(s) being tested and sample size.

when the data-generation model had person hyperparameters that differed across groups
(Simulation 2.2).

Simulation 2.1

Results are presented in Figures 5 and 6. Figure 5 demonstrates power curves as a function
of violation magnitude in item 3’s slope parameter α3, with the parameters being tested
changing across rows, the sample sizes n changing across columns, and lines reflecting different
test statistics. Figure 6 demonstrates similar power curves when the violating parameter is
item 3’s intercept parameter γ3. In both figures, tests of item 2’s parameters are again
representative of all invariant items.
From these two figures, one generally observes that the tests isolate the parameter violating
measurement invariance in the multiple-group two-parameter model (across rows), and power
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Figure 6: Simulation 2.1. Simulated power curves for max LM o, WDM o, and LM uo across
measurement invariance violations of 0–4 standard errors (scaled by

√
n), estimated by PML

(fitting multiple-group two-parameter model, without person abilities change in the generation
model). The parameter violating measurement invariance is γ3. The number of categories is
m = 8. Panel labels denote the parameter(s) being tested and sample size.

increases with n (across columns). The impact of n is more substantial when the slope
parameter, as opposed to the intercept parameter, violates invariance. We need sample size
as large as 9600 to obtain power near .8 for detecting DIF in the slope parameter (with
increasing violation magnitude), whereas there is no large difference across columns when the
intercept parameter violates invariance.
Within each panel of Figures 5 and 6, the three lines reflect the three test statistics. It is seen
that the two ordinal statistics still exhibit similar results, with max LM uo demonstrating lower
power across all situations. Therefore, the sensitivity of the ordinal statistics is preserved in
the multiple-group two-parameter model.
Comparing Figure 5 and Figure 6 in general, we can see the tests still have somewhat higher
power to detect measurement invariance violations in the intercept parameter as opposed to
the slope parameter. Moreover, power is lower when we test the full set of slope (or intercept)
parameters, as opposed to only the problematic parameter.
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Simulation 2.2

Results are presented in supplementary material, with the same figure and panel arrangements
as Simulation 2.1. They demonstrate the same pattern as Simulation 2.1. We can observe that
the power decrease is related to the number of parameters in the estimated model, regardless
of the data-generation model.
In summary, we found that the proposed tests can attribute measurement invariance vio-
lations to the correct multiple-group model parameter when impact is exhibited. Although
the multiple-group model requires a much larger sample size to obtain reasonable power, this
type of model is necessary in practice when there is uncertainty about changes in person
hyperparameters. Otherwise, there will be a serious “false alarm” as illustrated by Equa-
tions 29 to 31. The sample size issue can often be addressed, as IRT researchers often have
thousands of respondents in their datasets. However, in other situations, we may wish to first
test whether the hyperparameters vary across groups before examining the item parameters.
If this test indicates that the hyperparameters do not vary, then we can constrain them to be
equal and gain more power to detect DIF. If the test indicates that the hyperparameters do
vary, then we can use the “location” information resulting from the tests to potentially reduce
the number of hyperparameters in the model (i.e., by constraining similar groups’ parameters
to be equal). This would again lead to increased power to detect DIF.
The procedure outlined in the previous paragraph has the potential to capitalize on chance,
as we are relying on sequential statistical tests to modify the focal model. However, sequential
statistical tests are commonly used in the DIF literature for, e.g., anchor item selection and
item “purification”. Because the tests proposed here utilize a constrained model where all
items serve as anchors, we have essentially replaced the sequential anchor item tests with se-
quential tests of the person hyperparameters. Further, to address concerns about capitalizing
on chance, we can employ cross-validation methods. These strategies are demonstrated below
in a practical example.

8. Application
We illustrate the tests’ application using 18 dichotomously scored mathematics items from
the graduation examination developed by the Netherlands National Institute for Educational
Measurement Doolaard (1999); Fox (2010).

8.1. Method

In the data set, 2156 eighth grade students completed the test, with a socioeconomic status
(SES) variable also being measured on each student. The SES scores were based on four
indicators, which were the education and occupation levels of both parents (if present). In
this sample, there are 40 unique SES values ranging from −3.23 to 2.8, with higher values
indicating higher SES. For the purposes of demonstration, we treat SES as a 6-category
ordinal variable here and maintain equal sample sizes at each level.
The correlation between SES and mathematics achievement (sum of the 18 items) equals
0.49. Of course, this relationship could be explained in two different manners: either people
of different SES exhibit different abilities, or the items are unfair to people of certain SES
levels. We use the score-based tests to distinguish between these different explanations.

Copyright © 2017 The Psychometric Society



18 Score-Based DIF Tests via Pairwise ML Estimation

Following the strategy outlined at the end of the previous section, we start with a two-
parameter item response model where the person hyperparameters µ1 and σ2

1 (for level 1) are
fixed to 0 and 1, while the hyperparameters in other levels are estimated but constrained to
be equal, in the following referred to as the constrained hyperparameter model. This allows
us to test whether the hyperparameters are equal across levels, and, if hyperparameters are
not equal, it provides us with information about specific groups that are unequal. This
information is used to build a model with relatively higher power to detect DIF and avoids
“false alarm” by accounting for person hyperparameters. To address the potential problem
of “capitalizing on chance” by adopting this strategy, overall model fit and cross validation
are examined.

8.2. Results

We describe the results in three sections, one for the initial examination of fluctuations in the
hyperparameters, one for examination of parameters based on the model with appropriate
hyperparameters, and one for further support of our chosen model.

Testing the hyperparameters

Results representing the statistics’ fluctuations across SES level based on the constrained
hyperparameter model are shown in Figure 7. The first column displays the fluctuation
process associated with LM o for testing the 18 items’ slopes (first row), the 18 items’ intercepts
(second row), the person mean parameters (third row), and the person variance parameters
(fourth row). The second column displays the fluctuation process associated with WDM o for
the same sets of parameters. In other words, these panels show the values of Equations (26)
and (27) for each SES level, with the dashed horizontal line being the 5% critical value. If the
solid line crosses the critical value, then there is evidence that the corresponding parameter
fluctuates across levels of SES. Because the final level’s statistics always equal zero (see
Equation (11)), the final level (level 6 here) is not displayed.
It is observed that the person mean parameter (third row) fluctuates across all levels, while the
person variance parameter (fourth row) fluctuates between the middle levels and level 5 (note
that person hyperparameter change is not DIF). As shown in Simulation 2, this can cause the
slope (first row) and intercept (second row) parameters to exhibit DIF regardless of whether
they actually exhibit DIF. Therefore, we need to examine a second model where person
hyperparameters are free across specific levels of SES. Based on the statistics’ fluctuation
processes, the second model should estimate a separate person mean parameter for each
SES level and a separate person variance parameter for the middle levels (levels 2–4) and
for the extreme levels (at and after level 5). The test results involving this partially-free
hyperparameter model is described in the next section.

Testing the partially-free hyperparameter model

In estimating a separate µvi for each of the six SES groups (with first level being fixed to 0
for identification) and two separate σ2s for the middle level and extreme levels, we obtain the
results shown in Figure 8. The panel arrangements are the same as Figure 7.
Figure 8 implies that no sets of item parameters exhibit DIF, according to either statistic.
This is the opposite result of what we found in the previous section, and it is related to the
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Figure 7: Empirical fluctuation processes of the max LM o statistic (first column) and WDM o

(second column) for slope parameters (first row), intercept parameters (second row), person
mean parameter (third row) and person variance parameter (fourth row), using constrained
hyperparameter model.

findings from Simulation 2. Further, the estimated µvi increase monotonically with SES, with
the lowest SES level having a fixed mean of 0, followed by 0.54, 1.01, 1.26, 1.58, and 2.25.
Meanwhile, σ2 for the middle SES levels (levels 2–4) and extreme SES levels (level 5–6) are
1.14 and 1.37, with the lowest SES level having a fixed variance of 1.

Overall model fit and cross validation

As mentioned earlier, the fact that we sequentially studied person parameters and item pa-
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Figure 8: Empirical fluctuation processes of the max LM o statistic (first column) and WDM o

(second column) for slope parameters (first row), intercept parameters (second row), person
mean parameters (third row) and person variance parameters (fourth row), using partially-free
hyperparameter model.

rameters is potentially problematic from the perspective of “capitalizing on chance”. This
is because our tests of item parameters were based on a model that was influenced by the
tests of person parameters. In this section, we do model comparisons and cross-validations
to examine the extent to which our results were robust.
We start with general model comparisons. In addition to the two models examined above,
we added a third model where each SES level has unique hyperparameters (similar to the
model from Simulation 2). As mentioned before, this model will generally have lower power
compared to the partially-free hyperparameter model, but it also avoids “false alarm” to the
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AICPL BICPL PLRT (p-value)
constrained 733831.17 736465.92 constrained vs. partially-free 346.73 (0.00)
partially-free 718893.34 723281.20 partially-free vs. fully-free 3.84 (0.27)
fully-free 718907.81 723408.24 fully-free vs. constrained 380.80 (0.00)

Training replication 86 100 Training replication 90
(model ordering) (partially-free vs. fully-free)
Test replication 97 97 Test replication 100
(model ordering) (partially-free vs. fully-free)

Table 1: Model fit, comparison, and replication statistics from the Application. The la-
bels “constrained”, “partially-free” and “fully-free” represent the constrained hyperparame-
ter model, partially-free hyperparameter model and fully-free hyperparameter model, respec-
tively. The bottom half of the table contains the percentage of 100 cross-validations for which
the results replicated the original results (in order of model preference and the PLRT of the
top two models).

greatest extent. This third model is referred as the fully-free hyperparameter model in the
following. Both the AIC and BIC statistics (arising from PML, denoted as AICPL and BICPL
below) preferred the partially-free hyperparameter model to the fully-free hyperparameter
model, as well as the constrained hyperparameter model. Model statistics are given in the
top half of Table 1. In addition, the pairwise likelihood ratio test (PLRT) preferred the
partially-free hyperparameter model to the other two models. Specifically, the fit of the fully-
free hyperparameter model is not significantly better than the partially-free hyperparameter
model (3.84, p = 0.27) and the partially-free model is significantly better than that of the
constrained hyperparameter model (346.73, p = 0.00). Additionally, the model with all free
hyperparameters is preferred to the constrained hyperparameter model (380.80, p = 0.00).
Thus, the preference order of these three models is: partially-free hyperparameter model,
then fully-free hyperparameter model, followed by the constrained hyperparameter model.
In order to confirm the generality of the above model assessment, we conducted a cross-
validation whereby half of the original dataset was randomly allocated to the training set,
with the remaining half being allocated to the test set. This random allocation is replicated
100 times, resulting 100 training data sets and corresponding 100 test data sets. For each of
100 training data sets, we fitted the three models and compared them to one another. We
then computed analogous model fit statistics for the test data, holding the model parameter
values at the estimates from the training data. This allows us to examine the extent to which
the fitted models continue to be preferred in new data. These results are displayed in the
bottom half of Table 1, where the numbers represent percentages of the 100 datasets that
replicated the original results.
The bottom half of the table shows that, in the training data sets, the original model preference
ordering was replicated 86 times out of 100 based on AICPL and 100 times out of 100 based on
BICPL. This result is also supported by pairwise log-likelihood ratio test when comparing the
top two models, whereby 90 out of 100 statistics preferred the partially-free hyperparameter
model at α = .05. Similarly, in the test data sets, the same model preference ordering was
replicated 97 times out of 100 based on AICPL, as well as 97 times out of 100 based on BICPL.
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Finally, applying score-based tests to the partially-free hyperparameter model for the training
data, 83% (using the statistic WDM o) and 99% (using the statistic LM o) datasets exhibited
no DIF. Taken together, these analyses illustrate that our original results (model preferences
and DIF results) remain similar across the 100 resamples.
In summary, we found that the positive correlation between SES and math achievement is
due to the fact that students’ ability means and variances increase with SES. All parameters
appear to fulfill the measurement invariance assumption after we take account of changes in
person ability at corresponding SES level. The score-based tests allowed us to systematically
study these issues without estimating an excessive number of models. If desired, we could
also test each item’s parameters individually (as opposed to the set of intercepts and the set
of slopes) without fitting any new models. This illustrates the inherent flexibility of the tests.

9. General discussion
In this paper, we extended a recently proposed family of score-based tests to item response
models, focusing on multiple-group two-parameter models. The tests’ power levels are compa-
rable to traditional statistics, and the tests can isolate specific parameters violating invariance
so long as we account for changes in person ability across groups.
The test statistics examined here, along with estimation by PML, provides a more general
and flexible framework to detect DIF in IRT research. Traditionally, we pre-define two groups
of individuals and compare them via a multiple-group model. In using score-based tests, we
do not need to pre-define the groups and can test many groups simultaneously. Additionally,
person hyperparameters can be estimated conveniently in a multiple-group null model (that
assumes measurement invariance holds) without re-fitting multiple alternative models as is
required by the LRT or Wald test (see also Glas 1998). This can enhance our ability to detect
DIF in large datasets with many groups.
In the sections below, we consider the tests’ applications in related models and in complex
scenarios.

9.1. Model extensions

The PML framework generally allows us to use the score-based tests in situations when the
responses have multiple categories, where a graded response model Samejima (1969) or partial
credit model Muraki (1992) may be used. These models become increasingly difficult to esti-
mate when we have many groups and when items have many categories. In these situations,
the score-based tests become increasingly attractive because they require estimation of only
a null model (assuming that invariance holds).
Another extension involves use of multidimensional IRT models, especially because multidi-
mensionality is one possible cause of DIF Millsap (2012). However, it is difficult to test this
hypothesis due to the multidimensional integration involved. In employing the factor-analytic
framework described here with PML, we can more easily estimate models with multiple di-
mensions. This can further help us study DIF in larger datasets.
Finally, moving beyond traditional IRT models, the tests proposed here can be applied to
multilevel/mixed models where, e.g., students’ responses may be nested in classes, schools, or
states. Score-based tests only rely on the derivative of each individual’s likelihood function
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so that, as long as the individual derivative (analytic or approximation) can be specified,
the tests can be applied. Scores for generalized linear mixed models will be more difficult to
obtain than scores for linear mixed models, in the same way that scores for continuous-data
factor analysis are easier to obtain than scores for IRT models.

9.2. Full structural equation modeling approach to linking/equating prob-
lem
In practice, we often need to transform person parameters so that ability estimates are equiv-
alent across different scales. This is called equating (see Kolen and Brennan 2004, for a
review). For example, we may need to equate test takers’ abilities across multiple versions of
the SAT.
The existence of DIF complicates equating. Suppose that Form A of the SAT exhibits DIF
with respect to country/grade/age, but Form B does not exhibit DIF. We must then decide
whether we should equate each level of V separately, as opposed to equating simultaneously
across the whole sample. Dorans (2004) dealt with this question by introducing new statistics
that utilized the test characteristic curve. Alternatively, we can frame the question in a full
structural equation model (SEM) and employ the score-based test to examine the correspond-
ing coefficients’ stability against V . In this way, no new statistics need to be introduced.

9.3. Multiple violating slope parameters
In this paper, we studied the tests’ applications to two-parameter and multiple-group two-
parameter models when only one parameter violated invariance. When there are multiple
violating parameters, Bechger and Maris (2015) point out that both the null and alternative
hypotheses of a score-based test can be incorrect. For example, if we test a single item
intercept parameter, then the null hypothesis would involve all intercept parameters being
equal across groups and the alternative hypothesis would involve the focal intercept parameter
being unequal across groups (with the remaining intercepts being equal). If a non-focal
intercept parameter is unequal across groups, however, then both hypotheses are incorrect.
To address this issue, we can employ recursive tests related to item purification. This could
proceed as follows (see Glas 1998, for a related approach): (1) fit the null model with person
hyperparameters, (2) test for DIF in each item parameter, (3) free the parameter with the
largest statistic and refit the model with person hyperparameters, (4) repeat steps (2)–(3)
until there is no further DIF detected. This procedure is similar to the LRT algorithm
described by Magis et al. (2010), which is implemented in R packages mirt Chalmers (2012)
and difR Magis, Beland, and Raiche (2015). The score-based tests are advantageous here
because no anchor items are needed (see Woods 2009, for a review of procedures involving
anchor items). This is because we only need to estimate the null model, where all parameters
are already assumed to be invariant across groups. However, the sensitivity to the order of
purification described by, e.g., Magis and Facon (2013) and Bechger and Maris (2015) cannot
be avoided under this approach.
As an alternative to the item purification approach, Bechger and Maris (2015) make the
insightful point that, in a Rasch framework, pairwise differences between item parameters
are preserved across the set of possible identification constraints. Thus, they conceptualize
differential item pair functioning as a property of item pairs, whereby differences between
item parameters may vary across groups (as opposed to individual item parameters varying
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across groups). This proposal leads to Wald tests of differences between item parameters,
where the test results are the same regardless of choice of identification constraint. A poten-
tial difficulty here is that, in the marginal and pairwise ML frameworks considered in this
paper, we typically want hyperparameters to be free across groups, and estimation of these
hyperparameters requires more parameter constraints than would typically be employed in
the Wald test framework. It appears difficult to address all these issues without an iterative
procedure.
Nonetheless, we might make some progress through consideration of alternative parameter
constraints. That is, instead of constraining one group’s mean and variance hyperparameters
to 0 and 1, respectively, we may employ “sum” constraints that allow us to freely estimate
more parameters. For example, Verhagen, Levy, Millsap, and Fox (2016) constrained the
sum of all intercept parameters to be zero (in a Rasch-type model) to avoid the need for
defining anchor items or assuming group ability (i.e. fixing one group ability parameter).
These constraints can be extended to the slopes of a two-parameter model, requiring that the
squared slope parameters sum to 1. Further work may consider the combination of these types
of parameter constraints with both score-based tests and differential item pair functioning.

9.4. Summary

In this paper, we generalized the score-based tests to IRT models estimated by MML and
PML. This extension has advantages over traditional DIF detection methods in locating
the violating parameter without pre-specifying grouping information and in accounting for
the ordinal information of the auxiliary variable V . Besides, implementation of these tests
is simpler, requiring only estimation of a null model that assumes measurement invariance.
Applied researchers in psychology and education could use these tests to conveniently examine
measurement invariance in their own data sets.

Computational details
All results were obtained using the R system for statistical computing R Core Team (2017),
version 3.2.3, employing the add-on package lavaan 0.5-23.1097 Rosseel (2012) for fitting of
the factor analysis models and strucchange 1.5-1 Zeileis, Leisch, Hornik, and Kleiber (2002);
Zeileis (2006) for evaluating the parameter instability tests. R and both packages are freely
available under the General Public License from the Comprehensive R Archive Network at
https://CRAN.R-project.org/. R code for replication of our results is available in the
supplementary materials and at http://semtools.R-Forge.R-project.org/.
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