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Probabilistic regression models

Classical approach: Model conditional expectation E(y;|x;) = p; of a response
yi given explanatory variables x; fori=1,...n.

Regression model:
pi = r(x;)
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Probabilistic regression models

Classical approach: Model conditional expectation E(y;|x;) = p; of a response
yi given explanatory variables x; fori=1,...n.

Regression model: Linear model.
pi = r(x) = Bo+pB1-Xi1+-+ B Xik

LM, GLM
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Probabilistic regression models

Classical approach: Model conditional expectation E(y;|x;) = p; of a response
yi given explanatory variables x; fori=1,...n.

Regression model: Generalized linear model with link function g(-).
Hi = r(x,-) - g_l(/BO + 61 “Xj1 +--- 4+ 5/< 'X,'7k)

LM, GLM
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Probabilistic regression models

Classical approach: Model conditional expectation E(y;|x;) = p; of a response
yi given explanatory variables x; fori=1,...n.

Regression model: Generalized additive model with link function g(-).
pi = r(x;) = g *(Bo+S(xi1) + - + s(xik))

LM, GLM GAM
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Probabilistic regression models
Classical approach: Model conditional expectation E(y;|x;) = p; of a response
yi given explanatory variables x; fori=1,...n.

Regression model: Algorithmic, machine learning, nonparametric, ...

wi = r(x;)

LM, GLM GAM Regression tree
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Probabilistic regression models

Classical approach: Model conditional expectation E(y;|x;) = p; of a response
yi given explanatory variables x; fori=1,...n.

Regression model: Algorithmic, machine learning, nonparametric, ...
pi = r(x;)

LM, GLM GAM Random forest
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Probabilistic regression models

Often: Further assumptions are made beyond the mean specification,
especially for estimation and inference.

® Constant variance for least squares.

® Higher moments may co-vary with expectation p;, e.g., in exponential
family (Poisson, binomial, ...)

e Full distribution for maximum likelihood or Bayesian MCMC, etc.
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Probabilistic regression models

Often: Further assumptions are made beyond the mean specification,
especially for estimation and inference.

® Constant variance for least squares.

® Higher moments may co-vary with expectation p;, e.g., in exponential
family (Poisson, binomial, ...)
e Full distribution for maximum likelihood or Bayesian MCMC, etc.

But typically: Focus is on conditional means.
® Forecasting: [i; = F(x;).
e Scores: (yi — fi;)? or |y; — fiil.
® |nference: Robustness/adjustments under misspecification.
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Probabilistic regression models

However: Mean forecasts are often of limited interest.
® Football: Average goals of team A vs. team B.
® Precipitation: Average amount of precipitation today.
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Probabilistic regression models

However: Mean forecasts are often of limited interest.
® Football: Average goals of team A vs. team B.
® Precipitation: Average amount of precipitation today.

Instead: Full distribution of interest.
® Football: Probability for 0, 1, ... goals, implying win/draw/lose probability.
® Precipitation: Probability of no/moderate/extreme precipitation.

3/31



Probabilistic regression models

Models:
® Classical models under full assumptions.

Normal (G)LM w/ constant variance
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Probabilistic regression models

Models:
® Classical models under full assumptions.
® Generalized additive models for location, scale, and shape.

Normal (G)LM w/ constant variance GAMLSS

4/31



Probabilistic regression models

Models:
® Classical models under full assumptions.
® Generalized additive models for location, scale, and shape.
e Other distributional regression (Bayesian, trees, forests, neural nets, ...).

Normal (G)LM w/ constant variance GAMLSS Distributional tree
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® Classical models under full assumptions.
® Generalized additive models for location, scale, and shape.
e Other distributional regression (Bayesian, trees, forests, neural nets, ...).

Normal (G)LM w/ constant variance GAMLSS Distributional forest
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Probabilistic regression models

Formally: Fit full probability distribution for each observation y;.

Often: Assume parametric response distribution with parameter vector 6;.
Cumulative distribution function: F(y;|6;).

Probability density function: f(y;|0;).
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Probabilistic regression models

Formally: Fit full probability distribution for each observation y;.

Often: Assume parametric response distribution with parameter vector 6;.
Cumulative distribution function: F(y;|6;).

Probability density function: f(y;|0;).

Forecasting: 0; = #(x;).
® Model fit typically yields distribution parameters.
* Implies all other aspects of the distribution F(-|6;).
® Thus: Moments, quantiles, probabilities, ...

5/31



lllustration: Goals in the 2018 FIFA World Cup

Response: Goals scored by the two teams in all 64 matches.

Covariates: Basic match information and prediction of team (log-)abilities
(based on bookmakers odds).

R> data("FIFA2018", package = "distributions3")
R> head (FIFA2018)

goals team match type stage logability difference

1 5 RUS 1 A group 0.15631 0.8638
2 0 KSA 1 A group -0.7108 -0.8638
3 0 EGY 2 A group -0.2066 -0.4438
4 1 URU 2 A group 0.2372 0.4438
5 3 RUS 3 A group 0.15631 0.3597
6 1 EGY 3 A group -0.2066 -0.3597
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lllustration: Goals in the 2018 FIFA World Cup

Model: Poisson GLM with log link.
Regression: Number of goals per team explained by ability difference.

Iog(f\,-) = Bo + /31 - difference;
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lllustration: Goals in the 2018 FIFA World Cup

Model: Poisson GLM with log link.

Regression: Number of goals per team explained by ability difference.

Iog(f\,-) = Bo + /31 - difference;

R> m <- glm(goals ~ difference, data = FIFA2018, family = poisson)
R> 1lmtest::coeftest(m)

z test of coefficients:

Estimate Std. Error z value Pr(>|zl|)
(Intercept) 0.2127 0.0813 2.62 0.0088 *x*
difference 0.4134 0.1058 3.91 9.3e-05 *x*x

Signif. codes: O 'sx*x' 0.001 'sx' 0.01 '¥' 0.05 '.' 0.1 ' ' 1
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lllustration: Goals in the 2018 FIFA World Cup

Forecasting: In-sample for simplicity.

R> head(procast(m))

distribution
Poisson distribution (lambda = 1.7680)
Poisson distribution (lambda = 0.8655)
Poisson distribution (lambda = 1.0297)
Poisson distribution (lambda = 1.4862)
Poisson distribution (lambda = 1.4354)
Poisson distribution (lambda = 1.0661)

OO WN
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lllustration: Goals in the 2018 FIFA World Cup

Forecasting: In-sample for simplicity.

R> head(procast(m))

distribution
1 Poisson distribution (lambda = 1.7680)
2 Poisson distribution (lambda = 0.8655)
3 Poisson distribution (lambda = 1.0297)
4 Poisson distribution (lambda = 1.4862)
5 Poisson distribution (lambda = 1.4354)
6 Poisson distribution (lambda = 1.0661)
Implies:

® Probabilities for match results (assuming independence of goals).
® Corresponding probabilities for win/draw/lose.
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lllustration: Goals in the 2018 FIFA World Cup

Example: Probabilities for final France-Croatia.
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lllustration: Goals in the 2018 FIFA World Cup

Example: Probabilities for final France-Croatia. Result 4-2.
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lllustration: Goals in the 2018 FIFA World Cup

France vs. Croatia
1 2 8

0

1 1-0 A=Al
12.4% 11.9%

2 2-0 2-1
10.0% 9.5%

3

Goals France

2

Goals Croatia
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lllustration: Goals in the 2018 FIFA World Cup

Possible extensions:
® More observations: Fit on previous World Cups, forecast out-of-sample.
® More covariates: Previous matches, team structure, economic indicators.
® More flexible models: GAM, random forests, boosting, ...
® More flexible distributions: Bivariate, overdispersion, zero inflation.
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lllustration: Goals in the 2018 FIFA World Cup

Possible extensions:
® More observations: Fit on previous World Cups, forecast out-of-sample.
® More covariates: Previous matches, team structure, economic indicators.
® More flexible models: GAM, random forests, boosting, ...
® More flexible distributions: Bivariate, overdispersion, zero inflation.

Here: Focus on goodness-of-fit assessment.

In particular: Graphical assessment of model calibration.
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Goodness of fit: Scoring rules

Log-score: Log-likelihood; basis for information criteria and classical inference.

log f(y; | 6))

12/31



Goodness of fit: Scoring rules

Log-score: Log-likelihood; basis for information criteria and classical inference.
log f(y; | 6)

(Continuous) ranked probability score: Bounded alternative to log-score.

/(F(Z | 6)) — 1(z > yi))’dz
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Goodness of fit: Residuals

Probability integral transform: u; = F(y; | 6,).
e Uniformly distributed if model correctly specified.
® Uniquely defined for continuous distributions.
e Otherwise consider uniform draw between F(y; — 1 | 8;) and F(y; | 6;).
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Goodness of fit: Residuals

Probability integral transform: u; = F(y; | 6,).
e Uniformly distributed if model correctly specified.
® Uniquely defined for continuous distributions.
e Otherwise consider uniform draw between F(y; — 1 | 8;) and F(y; | 6;).

(Randomized) quantile residuals: ¢~!(y;).
® Map to normal scale (from uniform).
® More similar to residuals in classical linear regression.
® More emphasis on deviations in the tails of the distribution.
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Goodness of fit: Graphical assessment

Ideas:
® Use visualizations instead of just summing up scores.
® Gain more insights graphically.
® Reveal different types of model misspecification.
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Goodness of fit: Graphical assessment

Ideas:
® Use visualizations instead of just summing up scores.
® Gain more insights graphically.
® Reveal different types of model misspecification.

Questions: Graphics are not new but novel unifying view.
e What are useful elements of such graphics?
e What are relative (dis)advantages?
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Goodness of fit: Graphical assessment

Ideas: lllustrated for FIFA Poisson model.

Frequency

0 2 4 6
Goals

Marginal calibration:

- Observed
frequencies.
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Goodness of fit: Graphical assessment

Ideas: lllustrated for FIFA Poisson model.

Frequency

6

0 2 4
Goals

Marginal calibration:

- Observed
frequencies.

- Compare: Expected.
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Goodness of fit: Graphical assessment

Ideas: lllustrated for FIFA Poisson model.

Frequency

0 2 4 6 0.00 0.25 0.50 0.75 1.00
Goals PIT

Marginal calibration: Probabilistic calibration:
- Observed - Probability integral
frequencies. transform.

- Compare: Expected. - Compare: Uniform.
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Goodness of fit: Graphical assessment

Ideas: lllustrated for FIFA Poisson model.

Frequency

0 2 4 6

Goals
Marginal calibration:

- Observed
frequencies.

- Compare: Expected.

0.25 0.50 0.75 1.00
PIT

Probabilistic calibration:

- Probability integral
transform.

- Compare: Uniform.

3 2 1 0 1 2 3
Randomized quantile residuals

Probabilistic calibration:

- (Randomized)
quantile residuals.

- Compare: Normal
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Goodness of fit: Marginal calibration

Observed vs. expected frequencies: Standing, with reference line.

Frequency
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Goodness of fit: Marginal calibration

v Observed vs. /expected frequencies: Standing, with reference line.
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Goodness of fit: Marginal calibration

v Observed vs. \/expected frequencies: Hanging.

IS
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sqrt(Frequency)
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Goodness of fit: Marginal calibration

v Observed vs. \/expected frequencies: Hanging, with confidence interval.

IS
f

sqrt(Frequency)
N
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Goodness of fit: Marginal calibration

Rootogram:
® Frequencies on raw or square-root scale.
® Hanging, standing, or suspended styled rootograms.

17/31



Goodness of fit: Marginal calibration

Rootogram:
® Frequencies on raw or square-root scale.
® Hanging, standing, or suspended styled rootograms.

Overall:
® Advantage: Scale of observations is natural, direct interpretation.
® Disadvantage: Needs to be compared with a combination of distributions.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1a.

15+

Density

0.5+

0.0-7
0.00

0.25 0.50 0.75 1.00
PIT
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1a, with reference line.

15+

Density

0.5+

0.0-7
0.00

0.25 0.50 0.75 1.00
PIT
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1a, with reference line and confidence interval.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1b.
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1c.

15+

Density
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Goodness of fit: Probabilistic calibration

PIT: Randomization 1c, with simulation intervals.
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Goodness of fit: Probabilistic calibration

PIT: 10 random draws.
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Goodness of fit: Probabilistic calibration

PIT: 100 random draws.
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Goodness of fit: Probabilistic calibration

PIT: Expected.
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Goodness of fit: Probabilistic calibration

Randomized quantile residuals: Expected.
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Goodness of fit: Probabilistic calibration

Randomized quantile residuals: Expected, with reference.

--------

0.5+

Density
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Goodness of fit: Probabilistic calibration

Observed vs. expected quantiles: Q-Q plot.
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Goodness of fit: Probabilistic calibration

Observed vs.

Deviation

expected quantiles: Detrended Q-Q plot (worm plot).
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Goodness of fit: Probabilistic calibration

PIT histogram:
® Probability scale or transformed to normal scale.
® Randomized or expected for discrete distributions.
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Goodness of fit: Probabilistic calibration

PIT histogram:
® Probability scale or transformed to normal scale.
® Randomized or expected for discrete distributions.

Q-Q residuals plot:
® Normal or uniform scale.
® Detrended Q-Q plot (worm plot).
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Goodness of fit: Probabilistic calibration

PIT histogram:
® Probability scale or transformed to normal scale.
® Randomized or expected for discrete distributions.

Q-Q residuals plot:
® Normal or uniform scale.
® Detrended Q-Q plot (worm plot).

Overall:
® Advantage: Comparison with only one distribution (uniform or normal).
® Djsadvantages: Scale is not so natural. May require randomization.
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lllustration: Precipitation in Innsbruck

Observation data:
® 3 day-accumulated precipitation amounts over 13 years (2000-2013).
® Observation station “Innsbruck” in Austria.
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lllustration: Precipitation in Innsbruck

Observation data:
® 3 day-accumulated precipitation amounts over 13 years (2000-2013).
® Observation station “Innsbruck” in Austria.

Covariates:
® Ensemble mean and standard deviation of numerical precipitation forecasts.
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lllustration: Precipitation in Innsbruck

Observation data:
® 3 day-accumulated precipitation amounts over 13 years (2000-2013).

® QObservation station “Innsbruck” in Austria.

Covariates:
® Ensemble mean and standard deviation of numerical precipitation forecasts.

Model assumptions:
® Homoscedastic linear regression:
fi = Bo+ p1-ensmean;, & = sd(e)
® Heteroscedastic censored regression with a logistic distribution assumption:
y; ~ Logistic, (/},- = Bo + b1 - ensmean;, 6; = exp(Jo + 91 - enssd,-))

20/31



lllustration: Precipitation in Innsbruck

Data: Observations and numerical ensemble mean.
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lllustration: Precipitation in Innsbruck

Data: Observations and numerical ensemble mean.
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lllustration: Precipitation in Innsbruck

Data: Observations and numerical ensemble mean.
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lllustration: Precipitation in Innsbruck

Rootogram:

sqrt(Frequency)
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lllustration: Precipitation in Innsbruck

Rootogram:
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lllustration: Precipitation in Innsbruck

PIT histogram:
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lllustration: Precipitation in Innsbruck

PIT histogram:
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lllustration: Precipitation in Innsbruck

PIT histogram:
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lllustration: Precipitation in Innsbruck

Q-Q residual plot:
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lllustration: Precipitation in Innsbruck

Q-Q residual plot: Detrended.
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Software: topmodels
R package: topmodels. Forecasting and assessment of probabilistic models.
Not yet on CRAN: https://topmodels.R-Forge.R-project.org/

Visualizations:

rootogram() Rootograms of observed and fitted frequencies
pithist () PIT histograms

qqrplot () Q-Q plots for quantile residuals

wormplot () Worm plots for quantile residuals

reliagram() (Extended) reliability diagrams
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https://topmodels.R-Forge.R-project.org/

Software: topmodels

Numeric quantities:

procast ()
proscore()
pitresiduals()

qresiduals()

Probabilistic forecasts (probabilities, quantiles, etc.)
Evaluate scoring rules for procasts

Probability integral transform (PIT) residuals
(Randomized) quantile residuals
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Software: topmodels

Numeric quantities:

procast () Probabilistic forecasts (probabilities, quantiles, etc.)
proscore() Evaluate scoring rules for procasts

pitresiduals() Probability integral transform (PIT) residuals
gresiduals() (Randomized) quantile residuals

Object orientation:
® Work with distribution objects (vectorized) from distributions3.
® Model classes like 1m, glm, gamlss, bamlss, hurdle, zeroinfl, ...
® New model classes can be easily added if distribution can be extracted.
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Software: topmodels & distributions3

Probabilistic forecasts:
R> p <- procast(m)
R> head(p, 3)

distribution
1 Poisson distribution (lambda = 1.7680)
2 Poisson distribution (lambda = 0.8655)
3 Poisson distribution (lambda 1.0297)
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Software: topmodels & distributions3

Probabilistic forecasts:
R> p <- procast(m)
R> head(p, 3)

distribution
1 Poisson distribution (lambda = 1.7680)
2 Poisson distribution (lambda = 0.8655)
3 Poisson distribution (lambda 1.0297)

For final:
R> p_final <- tail(p$distribution, 2)
R> pdf (p_final, 0:4)

d_0 d_1 d_2 d_3 d_4
127 0.2010 0.3225 0.2587 0.13836 0.05550
128 0.3853 0.3675 0.1752 0.05572 0.01329
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Software: topmodels & distributions3

Probabilistic forecasts:
R> p <- procast(m)
R> head(p, 3)

distribution
1 Poisson distribution (lambda = 1.7680)
2 Poisson distribution (lambda = 0.8655)
3 Poisson distribution (lambda 1.0297)

For final:
R> p_final <- tail(p$distribution, 2)
R> pdf (p_final, 0:4)

d_0 d_1 d_2 d_3 d_4
127 0.2010 0.3225 0.2587 0.13836 0.05550
128 0.3853 0.3675 0.1752 0.05572 0.01329

Scoring rules:

R> proscore(m, type = c("LogS", "CRPS", "MSE"), aggregate = TRUE)
LogS CRPS MSE

1 -1.388 0.562 1.162
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Contact

Mastodon: Gzeileis@fosstodon.org
X/Twitter: @AchimZeileis
Web: https://www.zeileis.org/

31/31


https://fosstodon.org/@zeileis
https://twitter.com/AchimZeileis
https://www.zeileis.org/

	A Toolbox for Probabilistic Regression Models
	Overview
	Probabilistic regression models
	Illustration: Goals in the 2018 FIFA World Cup
	Goodness of fit
	Illustration: Precipitation in Innsbruck
	Software
	References
	Contact


