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A conceptual Lego system

Hothorn, Hornik, van de Wiel, and Zeileis (2006) discuss a unified
approach to conditional inference in the independence problem based
on the theory of Strasser and Weber (1999). This theory unifies a wide
collection of classical and modern non-parametric test procedures.

The theory utilizes various components that can be put together like
Lego bricks for a specific problem:

influence function for response,

transformation of explanatory variable,

aggregation to test statistic,

type of null distribution (exact, asymptotic, approximate).

Hothorn et al. (2006) provide an implementation in the R package coin
enabling the construction of known and new test procedures “on the fly”.



Independence problem

Null hypothesis: Independence of two variables Y and X (both
possibly multivariate).

H0 : D(Y |X) = D(Y ).

Two models are typically distinguished:

Population model: X codes well-defined populations from which
random samples can be drawn.

Randomization model: X is the randomization result (e.g.,
treatment arm in a clinical trial).



A class of linear statistics

For Y and X from populations Y and X a linear statistic for assessing
departures from H0 can be defined:

T = vec

(
n∑

i=1

wig(Xi)h(Yi)
>

)
∈ Rpq

with

weights wi ∈ R,

transformation g : X → Rp,

influence function h : Y → Rq .

Problem: The distribution of T depends on the joint distribution of Y
and X and is thus typically unknown in practice (unless further
assumptions are imposed).



Conditional null distribution

Solution: Use conditional distribution of T given the observed data.

Under H0, all permutations S of Y yield the conditional distribution of T .
It has mean µ ∈ Rpq :

µ = E(T |S) = vec

((
n∑

i=1

wig(Xi)

)
E(h|S)>

)
,

E(h|S) = w−1
+

∑
i

wih(Yi),

where w+ =
∑n

i=1 wi .

This can be easily computed for a given problem.



Conditional null distribution

Similarly, the conditional covariance matrix Σ ∈ Rpq×pq under H0 is:

Σ = V(T |S) =
w+

w+ − 1
V(h|S)⊗

(∑
i

wig(Xi)⊗ wig(Xi)
>

)
−

1
w+ − 1

V(h|S)⊗

(∑
i

wig(Xi)

)
⊗

(∑
i

wig(Xi)

)>
,

V(h|S) = w−1
+

∑
i

wi (h(Yi)− E(h|S)) (h(Yi)− E(h|S))> ,

where ⊗ denotes the Kronecker product.



Aggregation to test statistic

To aggregate an observed linear statistic T to a scalar test statistic, the
following strategies seem natural:

cmax(T , µ,Σ) = max

∣∣∣∣ T − µ
diag(Σ)1/2

∣∣∣∣
cquad(T , µ,Σ) = (T − µ)Σ+(T − µ)>

where Σ+ is the Moore-Penrose inverse of Σ.



Asessing the test statistic

Various approaches can be used to assess the significance of c.

Exact: Direct computation of c for all permutations S is typically
burdensome but special algorithms are available for certain
problems (e.g., shift algorithm for 2-sample problems).

Approximate: Compute c for a sufficiently large number of
permutations from S, drawn using Monte Carlo methods.

Asymptotic: Compute the conditional asymptotic distribution of c
based on the asymptotic conditional distribution of T .
T ∼ N (µ,Σ) for n→∞.



History

The ideas underlying this unified theory are not new. In fact,
permutation methods have been discussed in the literature since the
1930s.

Example: For a 2-sample problem, g(X) is typically chosen as the
indicator function for the two samples. If h(Y ) = Y , this yields a
t statistic (using the 1-sample standard deviation).

The exact unconditional distribution under the assumption of
normality was famously derived by Gosset in 1908.

In the 1930s, Fisher suggested to use the exact conditional
distribution instead.

Already in 1937 Pitman and Welch published results about the
asymptotic properties of the conditional approach in Biometrika.



History

Problem: Hard to compute and thus not used for a long time.

Idea in mid-1900s: Use h(Y ) = rank(Y ), then the exact conditional
distribution (for data without ties) can be computed by recursion
formulas.

Justification: Ranks introduce robustness (for certain types of
departures from normality) in the procedures.

Since late 1900s: Increased interest again in conditional inference
methods. Permutations become feasible much more generally by using
new algorithms and increased computing power of modern PCs.

Problem: Many implementations of permutation tests are focused on
specific test problems.



From conceptual to computational Lego bricks

In R, package coin provides an implementation that reflects the
flexibility of the conceptual tools. The workhorse function is

independence_test(

formula y ~ x | block

ytrafo influence function for Y

xtrafo transformation of X

teststat "max" or "quad"

distribution exact(), approximate() or asymptotic()
)

This can be employed for computing well-known and new test
procedures without explicitly implementing the specific null distribution.



Genetic components of alcoholism

Bönsch et al. (2005) study the association of allele length and
expression levels of alpha synuclein mRNA, a gene linked to
alcoholism. Allele length was discretized: short (0–4, n = 24),
intermediate (5–9, n = 58), long (10–12, n = 15).
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Genetic components of alcoholism

Use Kruskal-Wallis test for assessing the association:

R> library("coin")
R> independence_test(elevel ~ alength, data = alpha,
+ ytrafo = rank, teststat = "quad")

Asymptotic General Independence Test

data: elevel by
alength (short, intermediate, long)
chi-squared = 8.83, df = 2, p-value = 0.01209

xtrafo is chosen as the indicator function for the categorical variable
alength by default.



Genetic components of alcoholism

Convenience interface:

R> kt <- kruskal_test(elevel ~ alength, data = alpha)
R> kt

Asymptotic Kruskal-Wallis Test

data: elevel by
alength (short, intermediate, long)
chi-squared = 8.83, df = 2, p-value = 0.01209

The underlying conceptual components can be easily recovered:

R> statistic(kt)

[1] 8.83

R> pvalue(kt)

[1] 0.01209



Genetic components of alcoholism

R> statistic(kt, type = "linear")

short 900.5
intermediate 2878.5
long 974.0

R> expectation(kt)

short intermediate long
1176 2842 735

R> covariance(kt)

short intermediate long
short 14305 -11366 -2939
intermediate -11366 18469 -7104
long -2939 -7104 10043



Genetic components of alcoholism

Question: The Kruskal-Wallis test has long been available in R (in
kruskal.test()), so what is the advantage of using coin?

Answer: Going beyond the classical functionality is easy in coin (and
would otherwise require extensive programming), e.g.:

Use original observations instead of ranks.

Use the resampling distribution instead of the asymptotic
distribution.

Exploit the ordered nature of the allele length using numeric scores
(interval midpoints), similar to linear-by-linear association tests.



Genetic components of alcoholism

Use original observations instead of ranks:

R> independence_test(elevel ~ alength, data = alpha,
+ teststat = "quad")

Asymptotic General Independence Test

data: elevel by
alength (short, intermediate, long)
chi-squared = 5.056, df = 2, p-value = 0.07981

The default ytrafo is to use the identity for numeric variables like
elevel.



Genetic components of alcoholism

Use the resampling distribution:

R> set.seed(123)
R> pvalue(independence_test(elevel ~ alength,
+ data = alpha, teststat = "quad",
+ distribution = approximate(B = 19999)))

[1] 0.07835
99 percent confidence interval:
0.07354 0.08337



Genetic components of alcoholism

Use numeric scores for ordered alternative:

R> mpoints <- function(x) c(2, 7, 11)[unlist(x)]
R> independence_test(elevel ~ alength, data = alpha,
+ teststat = "quad", xtrafo = mpoints,
+ distribution = approximate(B = 19999))

Approximative General Independence Test

data: elevel by
alength (short, intermediate, long)
chi-squared = 4.626, p-value = 0.02915



Smoking and Alzheimer’s disease

Salib and Hillier (1997) report results of a case-control study on
Alzheimer’s disease and smoking behaviour of 198 patients and 164
controls.
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Smoking and Alzheimer’s disease

Use the Chochran-Mantel-Haenszel test for assessing the
independence between smoking behaviour and disease status, treating
gender as a block factor.

R> cmh <- independence_test(disease ~ smoking | gender,
+ data = alzheimer, teststat = "quad")
R> cmh

Asymptotic General Independence Test

data: disease by
smoking (None, <10, 10-20, >20)
stratified by gender
chi-squared = 23.32, df = 6, p-value = 0.0006972

The default xtrafo and ytrafo are indicator functions for both
categorical variables disease and smoking.



Smoking and Alzheimer’s disease

The linear statistic is simply the underlying contingency table:

R> statistic(cmh, type = "linear")

Alzheimer's Other dementias Other
None 126 79 104
<10 15 8 5
10-20 30 33 47
>20 27 44 20

If performed separately for both genders, it turns out that there is some
association for the male but not for the female patients.



Smoking and Alzheimer’s disease

Hence, we use a maximum-type test for the male patients only to gain
insights into the pattern of association.

R> alzmax <- independence_test(disease ~ smoking,
+ data = alzheimer,
+ subset = alzheimer$gender == "Male",
+ teststat = "max")
R> alzmax

Asymptotic General Independence Test

data: disease by smoking (None, <10, 10-20, >20)
maxT = 4.95, p-value = 1.030e-05



Smoking and Alzheimer’s disease

The table of standardized statistics is

R> statistic(alzmax, type = "standardized")

Alzheimer's Other dementias Other
None 2.5900 -2.340 -0.1522
<10 2.9713 -2.057 -0.8446
10-20 -0.7765 -1.237 2.1146
>20 -3.6678 4.950 -1.5303

with critical value

R> qperm(alzmax, 0.95)

[1] 2.815



Photococarcinogenicity experiments

Molefe et al. (2005) study the effect of phototoxic doses of ultraviolet
radiation on tumor frequency and latency. At least three responses are
of interest: survival time, time to first tumor, and number of tumors.
Three different doses are applied: A (600 RBu, with topical vehicle,
n = 36), B (600 RBu, without topical vehicle, n = 36), C (1200 RBu,
without topical vehicle, n = 36).

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival Time

Weeks

A
B
C

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to First Tumor

Weeks

A
B
C

●

●●

●

●

A B C

0
5

10
15

Number of Tumors

Treatment Group



Photococarcinogenicity experiments

Global test of all three endpoints using maximum statistic:

R> phc <- independence_test(
+ Surv(time, event) + Surv(dmin, tumor) + ntumor ~ group,
+ data = photocar, teststat = "max")
R> phc

Asymptotic General Independence Test

data: Surv(time, event), Surv(dmin, tumor), ntumor
by group (A, B, C)
maxT = 7.078, p-value = 6.55e-12



Photococarcinogenicity experiments

Again, the source of deviation can be identified by comparing the
individual standardized statistics with their 95% critical value:

R> statistic(phc, type = "standardized")

Surv(time, event) Surv(dmin, tumor) ntumor
A -2.327 -2.179 0.2642
B -4.750 -4.106 0.1510
C 7.078 6.285 -0.4152

R> qperm(phc, 0.95)

[1] 2.714



Photococarcinogenicity experiments

Equivalently, we can switch to the p-value scale for each statistic:

R> phc_pval <- pvalue(phc, method = "single-step")
R> round(phc_pval, digits = 3)

Surv(time, event) Surv(dmin, tumor) ntumor
A 0.136 0.189 1.000
B 0.000 0.000 1.000
C 0.000 0.000 0.999



Contaminated fish consumption

Rosenbaum (1994) studies subjects who ate contaminated fish for
more than three years in the exposed group (n = 23) and a control
group (n = 16). Three responses are available: mercury level of the
blood, percentage of abnormal cells, percentage of cells with
chromosome aberrations.
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Contaminated fish consumption

Rosenbaum (1994) proposed to compare the groups using a coherence
criterion: An observation is said to be smaller than another when all
variables are smaller. The rank score is the number of observations
smaller minus the number larger.

The resulting univariate score induces a partial ordering, hence the
resulting test is called POSET (partially ordered sets) test.

In this situation—univariate response (after transformation) in two
samples—the exact conditional distribution of the test statistic can be
efficiently obtained using the Streitberg-Röhmel shift algorithm.



Contaminated fish consumption

R> coherence <- function(data) {
+ x <- t(as.matrix(data))
+ f <- function(y)
+ sum(colSums(x < y) == nrow(x)) -
+ sum(colSums(x > y) == nrow(x))
+ apply(x, 2, f)
+ }

R> independence_test(mercury + abnormal + ccells ~ group,
+ data = mercuryfish, ytrafo = coherence,
+ distribution = exact())

Exact General Independence Test

data: mercury, abnormal, ccells by group (control, exposed)
Z = -4.258, p-value = 4.486e-06
alternative hypothesis: two.sided



Tree pipit abundance

Müller and Hothorn (2004) study various habitat factors influencing the
abundance of tree pipits in oak forests. The cover of canopy overstorey
is of particular interest.

●
●

●●
●

●

● ● ●● ● ●
● ●

●● ●
●●● ● ●
●

●
● ●●●

● ●●
●● ● ●

● ●
● ● ●

●
●

●
●

●

●

●●
● ●

●

●
●

●

● ●●

●
●
●

●
●● ●

● ●
●

● ●

●

●●
●

●
●

● ●
●●● ●

●● ●
●

●

0 20 40 60 80 100

0
1

2
3

4
5

Percentage of Cover of Canopy Overstorey

T
re

e 
P

ip
it 

A
bu

nd
an

ce
 (

jit
te

re
d)



Tree pipit abundance

This suggests that there is a step-shaped relationship between the
mean number of tree pipits and the cover of canopy overstorey (rather
than a linear association), i.e., a cutpoint.

If the cutpoint c was known, its significance could be assessed in the
conditional inference framework by using the indicator function
gc(X) = I(X ≤ c).

A straightforward idea to assess all conceivable cutpoints c1, . . . , c` is
to use maximally selected statistics, i.e., compute all 2-sample test
statistics and reject if the maximum is too large.

This is again a special case of the conditional inference framework
when using a maximum statistic and the multivariate transformation
g(X) = (gc1(X), . . . , gc`

(X))>.



Tree pipit abundance
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Tree pipit abundance
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Tree pipit abundance
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Tree pipit abundance

Thus, maximally selected statistics can be used to assess if and where
a cutpoint exists.

R> tp <- maxstat_test(counts ~ coverstorey,
+ data = treepipit)
R> tp

Asymptotic Maxstat Test

data: counts by coverstorey
maxT = 4.314, p-value = 0.0001545
sample estimates:
$cutpoint
[1] 40



High- and low-risk groups of rectal cancer patients

Sauer et al. (2004) study the association of survival times of n = 349
rectal cancer patients and their TNM classification (ordinal
assessments of tumors, lymph nodes, metastases).

Current practice in TNM classification is to distinguish stage I vs. II
cancer by the T category, II vs. III by N (N ≤ N0), III vs. IV by M.

Instead of using these fixed interactions, consider all ordered
interactions in a generalized maximally selected statistic. Only T and N
can be used because all patients belong to M category M0.

influence function h: logrank scores for censored response,

transformation g: all binary partitions in the two ordered covariates
(T and N category) that are ordered in T given N and vice versa.



High- and low-risk groups of rectal cancer patients

R> independence_test(Surv(time, event) ~ tn,
+ data = preOP, xtrafo = ordered_splits,
+ distribution = approximate(B = 9999))

Approximative General Independence Test

data: Surv(time, event) by tn
maxT = 8.69, p-value < 2.2e-16

The binary partition leading to the maximal standardized statistic is
essentially a cutpoint in the N category

low risk: N0 or N1 (excluding N1 and ypT4),

high risk: N2 and N3 (plus N1 and ypT4).

However, just one patient is in group “N1 and ypT4”.



High- and low-risk groups of rectal cancer patients
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Software

Package coin provides independence_test() as the workhorse
function, based on C routines for computing the linear statistic, its
expectation and covariance. Only a single implementation of the Monte
Carlo and asymptotic null distribution is used.

Convenience interfaces facilitate application of classical tests
(previously available in R) in a flexible conditional-inference framework.

Most analyses discussed above can be reproduced via
R> vignette("LegoCondInf", package = "coin")

The package is available from the Comprehensive R Archive Network at

http://CRAN.R-project.org/package=coin

http://CRAN.R-project.org/package=coin


Special cases

The following classical tests are special cases of the framework
implemented in coin:

2- und k -sample permutation test, Wilcoxon-Mann-Whitney rank sum
test, van Elteren test, van der Waerden test, Median test, Kruskal-Wallis
test, Ansari-Bradley test, Fligner-Killeen test, Pearson’s χ2 test,
generalized Cochran-Mantel-Haenszel test, linear-by-linear association
test, logrank test, maximally selected statistics, Spearman test,
Friedman test, Wilcoxon signed rank test, Page test, McNemar test,
Cochran’s Q, Quade test, Anderson test,
Wilcoxon-Nemenyi-McDonald-Thompson test,
Nemenyi-Damico-Wolfe-Dunn test, Rosenbaum’s POSET test, . . .
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