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Motivation: Trees

Breiman (2001): Distinguishes two cultures of statistical modeling (Statistical
Science, 16(3), 199–215).

• Data models: Stochastic models, typically parametric.
→ Classical strategy in statistics. Regression models are still the workhorse
for many empirical analyses.

• Algorithmic models: Flexible models, data-generating process unknown.
→ Less applications in many fields, e.g., social sciences or economics.

Classical example: Trees, i.e., modeling of dependent variable y by “learning”
a recursive partition w.r.t explanatory variables z1, . . . , zl.

Example: Recursive partitioning (RPart) for dependence of survival on the
Titanic w.r.t. gender, age, and class of passengers.
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Motivation: Trees
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Motivation: Leaves

Key features:

1 Predictive power in nonlinear regression relationships.

2 Interpretability (enhanced by visualization), i.e., no “black box” methods.

Typically: Simple models for univariate y, e.g., mean.

Idea: More complex models for more complex y, e.g., regression models,
multivariate normal model, item responses, etc.

Here: Synthesis of parametric data models and algorithmic tree models.

Goal: Fitting local models by partitioning of the sample space.
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Model-based recursive partitioning
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Model-based recursive partitioning

MOB algorithm:

1 Fit the parametric model in the current subsample.

2 Assess the stability of the parameters across each splitting variable zj.

3 Split sample along the zj∗ with strongest instability: Choose breakpoint with
highest improvement of the model fit.

4 Repeat steps 1–3 recursively in the subsamples until some stopping
criterion is met.
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Model-based recursive partitioning

Example: Logistic regression, assessing differences in the effect of “preferential
treatment” (“women and children first”?) in the Titanic survival data.

In R: Generalized linear model tree with binomial family (and default logit link).

R> library("partykit")
R> mb <- glmtree(Survived ~ Treatment | Age + Gender + Class,
+ data = ttnc, family = binomial, alpha = 0.05, prune = "BIC")
R> plot(mb)
R> print(mb)

Result: Log-odds ratio of survival given treatment differs across classes (slope),
as does the survival probability of male adults (intercept).
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Model-based recursive partitioning
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Model-based recursive partitioning
Generalized linear model tree (family: binomial)

Model formula:

Survived ~ Treatment | Age + Gender + Class

Fitted party:

[1] root

| [2] Class in 3rd: n = 706

| (Intercept) TreatmentPreferential

| -1.641 1.327

| [3] Class in 1st, 2nd, Crew

| | [4] Class in 2nd: n = 285

| | (Intercept) TreatmentPreferential

| | -2.398 4.477

| | [5] Class in 1st, Crew: n = 1210

| | (Intercept) TreatmentPreferential

| | -1.152 4.318

Number of inner nodes: 2

Number of terminal nodes: 3

Number of parameters per node: 2

Objective function (negative log-likelihood): 1061
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1. Model estimation

Models: M(y, x, θ) with (potentially multivariate) observations y, optionally
regressors x, and k-dimensional parameter vector θ ∈ Θ.

Parameter estimation: θ̂ by optimization of additive objective function
Ψ(y, x, θ) for n observations yi (i = 1, . . . ,n):

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(yi, xi, θ).

Special cases: Maximum likelihood (ML), weighted and ordinary least squares
(WLS and OLS), quasi-ML, CRPS, and other M-estimators.
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1. Model estimation

Estimating function: θ̂ can also be defined in terms of

n∑
i=1

ψ(yi, xi, θ̂) = 0,

where ψ(y, x, θ) = ∂Ψ(y, x, θ)/∂θ is the model score function.

Central limit theorem: If there is a true parameter θ0 and given certain weak
regularity conditions

√
n(θ̂ − θ0)

d−→ N (0,V(θ0)),

where V(θ0) = {A(θ0)}−1B(θ0){A(θ0)}−1. A and B are the expectation of the
derivative of ψ and the variance of ψ, respectively.
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1. Model estimation

Idea: In many situations, a single global modelM(y, x, θ) that fits all
n observations cannot be found. But it might be possible to find a partition w.r.t.
the variables z1, . . . , zl so that a well-fitting model can be found locally in each
cell of the partition.

Tools:

• Assess parameter instability w.r.t to splitting variables zj (j = 1, . . . , l).

• A general measure of deviation from the model is the score or estimating
function ψ(y, x, θ).
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2. Tests for parameter instability
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2. Tests for parameter instability

Test statistics: Scalar functional λ(Wj) that captures deviations from zero.

Null distribution: Asymptotic distribution of λ(W0).

Special cases: Class of test encompasses many well-known tests for different
classes of models. Certain functionals λ are particularly intuitive for numeric and
categorical zj, respectively.

Advantage: ModelM(y, x, θ̂) just has to be estimated once. Empirical
estimating functions ψ(yi, xi, θ̂) just have to be re-ordered and aggregated for
each zj.
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2. Tests for parameter instability

Class of tests: Generalized M-fluctuation tests capture instabilities in θ̂ for an
ordering w.r.t zj.

Basis: Empirical fluctuation process of cumulative deviations w.r.t. to an
ordering σ(zij).

Wj(t, θ̂) = B̂−1/2n−1/2
bntc∑
i=1

ψ(yσ(zij), xσ(zij), θ̂) (0 ≤ t ≤ 1)

Functional central limit theorem: Under parameter stability Wj(·)
d−→ W0(·),

where W0 is a k-dimensional Brownian bridge.
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2. Tests for parameter instability

Splitting numeric variables: Assess instability using supLM statistics.

λsupLM(Wj) = max
i=ı̇,...,ı

(
i

n
· n− i

n

)−1 ∣∣∣∣∣∣∣∣Wj

(
i

n

)∣∣∣∣∣∣∣∣2
2

.

Interpretation: Maximization of single shift LM statistics for all conceivable
breakpoints in [ı̇, ı].

Limiting distribution: Supremum of a squared, k-dimensional tied-down
Bessel process.

Potential alternatives: Many other parameter instability tests from the same
class of tests, e.g., a Cramér-von Mises test (or Nyblom-Hansen test), MOSUM
tests, etc.
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2. Tests for parameter instability

Splitting categorical variables: Assess instability using χ2 statistics.

λχ2(Wj) =
C∑

c=1

n

|Ic|

∣∣∣∣∣∣∣∣∆IcWj

(
i

n

)∣∣∣∣∣∣∣∣2
2

.

Feature: Invariant for re-ordering of the C categories and the observations
within each category.

Interpretation: Capture instability for split-up into C categories.

Limiting distribution: χ2 with k · (C− 1) degrees of freedom.
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2. Tests for parameter instability

Splitting ordinal variables: Several strategies conceivable. Assess instability
either as for categorical variables (if C is low), or as for numeric variables (if C is
high), or via a specialized test.

λmaxLMo(Wj) = max
i∈{i1,...,iC−1}

(
i

n
· n− i

n

)−1 ∣∣∣∣∣∣∣∣Wj

(
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2

,

λWDMo(Wj) = max
i∈{i1,...,iC−1}

(
i

n
· n− i

n

)−1/2 ∣∣∣∣∣∣∣∣Wj
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∞
.

Interpretation: Assess only the possible splitpoints i1, . . . , iC−1, based on L2 or
L∞ norm.

Limiting distribution: Maximum from selected points in a squared Bessel
process or multivariate normal distribution, respectively.
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2. Tests for parameter instability

Alternative inference frameworks: Classic association tests for
independence of y and zj can be turned into model-based tests by using model
scores ψ(y, x, θ̂) instead of just y (Schlosser, Hothorn, Zeileis 2019, arXiv).

CTree: Hothorn, Hornik, Zeileis (2006, JCGS).

• Based on conditional inference (or permutation tests).

• Originally nonparametric.

GUIDE: Loh (2002, Statistica Sinica).

• Based on χ2 tests.

• Originally based on residuals only (not full model scores).

• Categorizes both zj and the model residuals (or scores) into bins.
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3. Splitting

Goal: Split model into b = 1, . . . ,B subsamples along the splitting variable zj
associated with the highest parameter instability. Local optimization of∑

b

∑
i∈Ib

Ψ(yi, xi, θb).

B = 2: Exhaustive search of order O(n).

B > 2: Exhaustive search is of order O(nB−1), but can be replaced by dynamic
programming of order O(n2). Different methods (e.g., information criteria) can
choose B adaptively.

Here: Binary splitting. Optionally, B = C can be chosen (without search) for
categorical variables.
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3. Splitting

Alternatively:

• Selecting the optimal split w.r.t. the objective function Ψ(y, x, θ) requires
refitting the model and may be costly.

• Employ a maximally-selected score-based test statistic instead.

• Avoids refitting the model and is thus much cheaper to compute.
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4. Pruning

Goal: Avoid overfitting.

Pre-pruning:

• Internal stopping criterium.

• Stop splitting when there is no significant parameter instability.

• Based on Bonferroni-corrected p values of the parameter instability tests.

Post-pruning:

• Grow large tree (e.g., with high significance level).

• Prune splits that do not improve the model fit based on information criteria
(e.g., AIC or BIC).

Hyperparameters: Significance level and information criterion penalty can be
chosen manually (or possibly through cross-validation etc.).
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Software
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Software

Workhorse function: mob() for

• data handling,

• calling model fitters,

• carrying out parameter instability tests and

• recursive partitioning algorithm.

Required functionality:

• Parties: Class and methods for recursive partytions.

• Models: Model fitting functions (optimizing suitable objective function).

• Mobsters: High-level interfaces (lmtree(), glmtree(), bttree(), . . . ) that
call lower-level mob() with suitable options and methods.
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Software

Parties: S3 class ‘modelparty’ built on ‘party’.

• Separates data and tree structure.

• Inherits generic infrastructure for printing, predicting, plotting, . . .

Models: Plain functions with input/output convention.

• Basic and extended interface for rapid prototyping and for speeding up
computings, respectively.

• Only minimial glue code required if models are well-designed.

Mobsters:

• mob() completely agnostic regarding models employed.

• Separate interfaces lmtree(), glmtree(), . . .

• New interfaces typically need to bring their model fitter and adapt the main
methods print(), plot(), predict() etc.
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Software

Input: Basic model interface.

fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...)

y, x, weights, offset are (the subset of) the preprocessed data.

Starting values are in start and further fitting arguments in ....

Output: Fitted model object of class with suitable methods.

• coef(): Estimated parameters θ̂.

• logLik(): Maximized log-likelihood function −
∑

i Ψ(yi, xi, θ̂).

• estfun(): Empirical estimating functions Ψ′(yi, xi, θ̂).
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Software

Input: Extended model interface.

fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...,

estfun = FALSE, object = FALSE)

Output: List.

• coefficients: Estimated parameters θ̂.

• objfun: Minimized objective function
∑

i Ψ(yi, xi, θ̂).

• estfun: Empirical estimating functions Ψ′(yi, xi, θ̂).
Only needed if estfun = TRUE, otherwise optionally NULL.

• object: A model object (providing further methods).
Only needed if object = TRUE, otherwise optionally NULL.

Internally: Extended interface constructed from basic interface if supplied.
Efficiency can be gained through extended approach.
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Software

Mobsters:

• Distributions: Parametric, multivariate, circular, transformation
(disttree, circtree, trtf).

• Linear and generalized linear models (partykit, palmtree).

• Linear and generalized linear mixed effects models (glmertree).

• Survival models (partykit, model4you).

• Beta regression (betareg).

• Psychometric models: Bradley-Terry, item response theory, multinomial
processing trees (psychotree).

• Structural equation models (partykit, semtree).

• Network models (networktree).

• Spatial lag models (lagsarlmtree).
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Bradley-Terry trees
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Bradley-Terry trees

Question: Which of these women is more attractive?

And: How does the answer depend on age, gender, and the familiarity with the
associated TV show Germany’s Next Topmodel?
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Bradley-Terry trees

Data: Paired comparisons of attractiveness.

• Germany’s Next Topmodel 2007 finalists: Barbara, Anni, Hana, Fiona,
Mandy, Anja.

• Survey with 192 respondents at Universität Tübingen.

• Available covariates: Gender, age, familiarty with the TV show.
• Familiarity assessed by yes/no questions:

1 Do you recognize the women?/Do you know the show?
2 Did you watch it regularly?
3 Did you watch the final show?/Do you know who won?
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Bradley-Terry trees

Model: Bradley-Terry (or Bradley-Terry-Luce) model.

• Standard model for paired comparisons in social sciences.

• Parametrizes probability πij for preferring object i over j in terms of
corresponding “ability” or “worth” parameters θi.

πij =
θi

θi + θj
logit(πij) = log(θi)− log(θj)

• Maximum likelihood as a logistic or log-linear GLM.
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Bradley-Terry trees

Mobster: Bradley-Terry trees.

• Core infrastructure: Model-fitting function btmodel() in psychotools.

• High-level interface: bttree() in psychotree.

• Here: Recreation from scratch using only mob() and btmodel().

Illustration:
R> library("psychotree")
R> data("Topmodel2007", package = "psychotree")
R> bt <- bttree(preference ~ gender + age + q1 + q2 + q3, data = Topmodel2007)
R> plot(bt)
R> print(bt)
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Bradley-Terry trees
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Bradley-Terry trees

Bradley-Terry tree

Model formula:

preference ~ gender + age + q1 + q2 + q3

Fitted party:

[1] root

| [2] age <= 52

| | [3] q2 in yes: n = 35

| | Barbara Anni Hana Fiona Mandy

| | 1.3378 1.2318 2.0499 0.8339 0.6217

| | [4] q2 in no

| | | [5] gender in male: n = 71

| | | Barbara Anni Hana Fiona Mandy

| | | 0.43866 0.08877 0.84629 0.69424 -0.10003

| | | [6] gender in female: n = 56

| | | Barbara Anni Hana Fiona Mandy

| | | 0.9475 0.7246 0.4452 0.6350 -0.4965

| [7] age > 52: n = 30

| Barbara Anni Hana Fiona Mandy

| 0.2178 -1.3166 -0.3059 -0.2591 -0.2357
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Bradley-Terry trees

Number of inner nodes: 3
Number of terminal nodes: 4
Number of parameters per node: 5
Objective function (negative log-likelihood): 1829

From scratch: Only need basic model fitting function because btmodel()

provides all necessary methods.

R> btfit1 <- function(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...) {
+ btmodel(y, weights = weights, ...)
+ }
R> system.time(
+ bt1 <- mob(preference ~ gender + age + q1 + q2 + q3, data = Topmodel2007,
+ fit = btfit1)
+ )

user system elapsed
4.873 2.879 1.962
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Bradley-Terry trees

More efficient: Extended model fitting function.
R> btfit2 <- function(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...,
+ estfun = FALSE, object = FALSE) {
+ rval <- btmodel(y, weights = weights, ..., estfun = estfun, vcov = object)
+ list(
+ coefficients = rval$coefficients,
+ objfun = -rval$loglik,
+ estfun = if(estfun) rval$estfun else NULL,
+ object = if(object) rval else NULL
+ )
+ }
R> system.time(
+ bt2 <- mob(preference ~ gender + age + q1 + q2 + q3, data = Topmodel2007,
+ fit = btfit2)
+ )

user system elapsed
1.407 0.467 1.064

37/47



Bradley-Terry trees

Infrastructure:

• Basics readily available: print(), plot(), predict(), coef(), . . .

• Customizable, e.g., model-specific plots, predictions, . . .

Here:
R> plot(bt2)
R> print(bt2)

Model-based recursive partitioning (btfit2)

Model formula:
preference ~ gender + age + q1 + q2 + q3
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Bradley-Terry trees

Fitted party:

[1] root

| [2] age <= 52

| | [3] q2 in yes: n = 35

| | Barbara Anni Hana Fiona Mandy

| | 1.3378 1.2318 2.0499 0.8339 0.6217

| | [4] q2 in no

| | | [5] gender in male: n = 71

| | | Barbara Anni Hana Fiona Mandy

| | | 0.43866 0.08877 0.84629 0.69424 -0.10003

| | | [6] gender in female: n = 56

| | | Barbara Anni Hana Fiona Mandy

| | | 0.9475 0.7246 0.4452 0.6350 -0.4965

| [7] age > 52: n = 30

| Barbara Anni Hana Fiona Mandy

| 0.2178 -1.3166 -0.3059 -0.2591 -0.2357

Number of inner nodes: 3

Number of terminal nodes: 4

Number of parameters per node: 5

Objective function: 1829
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Bradley-Terry trees
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Parties, Models, Mobsters

Model-based random forests
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Model-based random forests

Tree:

• Idea: Automatic detection of steps and abrupt changes.

• Goal: Capture non-linear and non-additive effects and interactions.

• Result: Yields B subsamples Bb with b = 1, . . . ,B in which separate local
models are estimated.

Forest:

• Idea: Ensemble of T trees based on resampling the learning data.

• Goal: Stabilization and regularization, smoother effects.

• Strategies: Bootstrap or subsamples. Random input variable sampling.

• Result: Yields subsamples Btb with b = 1, . . . ,Bt and t = 1, . . . , T for adaptive
local model estimation.
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Model-based random forests

Tree: For predicting a (potentially new) observation z only consider
observations corresponding to zi in the learning data.

Forest: Obtain a finer similarity measure between new observation z and zi.

Weights: Average over trees, e.g., 2 out of 3 for zi.
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Model-based random forests
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Weights: Average over trees, e.g., 2 out of 3 for zi.
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Model-based random forests

Parameter estimator for a global
model with learning data{(yi, xi)}i=1,...,n :

θ̂

(z)

= argmin
θ∈Θ

n∑
i=1

wi(z) ·

Ψ(yi, xi, θ)

Weights:

wbase
i (z) = 1

wtree
i (z) =

B∑
b=1

I((zi ∈ Bb) ∧ (z ∈ Bb))

wforest
i (z) =

1

T

T∑
t=1

Bt∑
b=1

I((zi ∈ Btb) ∧ (z ∈ Btb))

|Btb|
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Model-based random forests

Parameter estimator for an adaptive local
model with learning data{(yi, xi, zi)}i=1,...,n :

θ̂(z) = argmin
θ∈Θ
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Model-based random forests

Software:

• cforest() based on ctree() in partykit.

• Redesign of partykit internals in development to facilitate “plug & play”
trees and forests.

• pmforest() for personalized treatment effects in model4you.

• traforest() for transformation forests in trtf.

• distforest() for distributional forests in disttree on R-Forge.

• circforest() for circular forests in circtree on R-Forge.
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