

Parties, Models, Mobsters

Methods and Software for Model-Based Recursive Partitioning

Achim Zeileis

http://eeecon.uibk.ac.at/~zeileis/

Parties, Models, Mobsters

Motivation

Motivation: Trees

Breiman (2001): Distinguishes two cultures of statistical modeling (*Statistical Science*, *16(3)*, *199–215*).

• Data models: Stochastic models, typically parametric.

 \rightarrow Classical strategy in statistics. Regression models are still the workhorse for many empirical analyses.

Algorithmic models: Flexible models, data-generating process unknown.
 → Less applications in many fields, e.g., social sciences or economics.

Classical example: Trees, i.e., modeling of dependent variable *y* by "learning" a recursive partition w.r.t explanatory variables z_1, \ldots, z_l .

Motivation: Trees

Breiman (2001): Distinguishes two cultures of statistical modeling (*Statistical Science*, *16(3)*, *199–215*).

• Data models: Stochastic models, typically parametric.

 \rightarrow Classical strategy in statistics. Regression models are still the workhorse for many empirical analyses.

Algorithmic models: Flexible models, data-generating process unknown.
 → Less applications in many fields, e.g., social sciences or economics.

Classical example: Trees, i.e., modeling of dependent variable *y* by "learning" a recursive partition w.r.t explanatory variables z_1, \ldots, z_l .

Example: Recursive partitioning (RPart) for dependence of survival on the Titanic w.r.t. gender, age, and class of passengers.

Motivation: Leaves

Key features:

- Predictive power in nonlinear regression relationships.
- 2 Interpretability (enhanced by visualization), i.e., no "black box" methods.

Typically: Simple models for univariate *y*, e.g., mean.

Motivation: Leaves

Key features:

- Predictive power in nonlinear regression relationships.
- 2 Interpretability (enhanced by visualization), i.e., no "black box" methods.

Typically: Simple models for univariate *y*, e.g., mean.

Idea: More complex models for more complex *y*, e.g., regression models, multivariate normal model, item responses, etc.

Here: Synthesis of parametric data models and algorithmic tree models.

Goal: Fitting local models by partitioning of the sample space.

Parties, Models, Mobsters

Model-based recursive partitioning

MOB algorithm:

- Fit the parametric model in the current subsample.
- **2** Assess the stability of the parameters across each splitting variable z_i .
- Split sample along the z_{j^*} with strongest instability: Choose breakpoint with highest improvement of the model fit.
- Repeat steps 1–3 recursively in the subsamples until some stopping criterion is met.

Example: Logistic regression, assessing differences in the effect of "preferential treatment" ("women and children first"?) in the Titanic survival data.

In R: Generalized linear model tree with binomial family (and default logit link).

```
R> library("partykit")
R> mb <- glmtree(Survived ~ Treatment | Age + Gender + Class,
+ data = ttnc, family = binomial, alpha = 0.05, prune = "BIC")
R> plot(mb)
R> print(mb)
```

Result: Log-odds ratio of survival given treatment differs across classes (slope), as does the survival probability of male adults (intercept).

Generalized linear model tree (family: binomial)

```
Model formula:
Survived ~ Treatment | Age + Gender + Class
Fitted party:
[1] root
    [2] Class in 3rd: n = 706
                  (Intercept) TreatmentPreferential
                       -1.641
                                               1.327
    [3] Class in 1st, 2nd, Crew
        [4] Class in 2nd: n = 285
                      (Intercept) TreatmentPreferential
                           -2 398
                                                   4 477
        [5] Class in 1st, Crew: n = 1210
                      (Intercept) TreatmentPreferential
                           -1.152
                                                   4.318
```

Number of inner nodes: 2 Number of terminal nodes: 3 Number of parameters per node: 2 Objective function (negative log-likelihood): 1061

1. Model estimation

Models: $\mathcal{M}(y, x, \theta)$ with (potentially multivariate) observations y, optionally regressors x, and k-dimensional parameter vector $\theta \in \Theta$.

Parameter estimation: $\hat{\theta}$ by optimization of additive objective function $\Psi(y, x, \theta)$ for *n* observations y_i (i = 1, ..., n):

$$\widehat{\theta} = \operatorname{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} \Psi(y_i, x_i, \theta).$$

Special cases: Maximum likelihood (ML), weighted and ordinary least squares (WLS and OLS), quasi-ML, CRPS, and other M-estimators.

1. Model estimation

Estimating function: $\widehat{\boldsymbol{\theta}}$ can also be defined in terms of

$$\sum_{i=1}^n \psi(\mathbf{y}_i, \mathbf{x}_i, \widehat{\theta}) = \mathbf{0},$$

where $\psi(y, x, \theta) = \partial \Psi(y, x, \theta) / \partial \theta$ is the model score function.

Central limit theorem: If there is a true parameter θ_0 and given certain weak regularity conditions

$$\sqrt{n}(\widehat{\theta} - \theta_0) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(\theta_0)),$$

where $V(\theta_0) = \{A(\theta_0)\}^{-1}B(\theta_0)\{A(\theta_0)\}^{-1}$. A and B are the expectation of the derivative of ψ and the variance of ψ , respectively.

1. Model estimation

Idea: In many situations, a single global model $\mathcal{M}(y, x, \theta)$ that fits **all** *n* observations cannot be found. But it might be possible to find a partition w.r.t. the variables z_1, \ldots, z_l so that a well-fitting model can be found locally in each cell of the partition.

Tools:

- Assess parameter instability w.r.t to splitting variables z_j (j = 1, ..., l).
- A general measure of deviation from the model is the score or estimating function $\psi(\mathbf{y}, \mathbf{x}, \theta)$.

≽

13/47

Test statistics: Scalar functional $\lambda(W_i)$ that captures deviations from zero.

Null distribution: Asymptotic distribution of $\lambda(W^0)$.

Special cases: Class of test encompasses many well-known tests for different classes of models. Certain functionals λ are particularly intuitive for numeric and categorical z_j , respectively.

Advantage: Model $\mathcal{M}(y, x, \hat{\theta})$ just has to be estimated once. Empirical estimating functions $\psi(y_i, x_i, \hat{\theta})$ just have to be re-ordered and aggregated for each z_j .

Class of tests: Generalized M-fluctuation tests capture instabilities in $\hat{\theta}$ for an ordering w.r.t z_j .

Basis: Empirical fluctuation process of cumulative deviations w.r.t. to an ordering $\sigma(z_{ij})$.

$$W_{j}(t,\widehat{\theta}) = \widehat{B}^{-1/2} n^{-1/2} \sum_{i=1}^{\lfloor nt \rfloor} \psi(y_{\sigma(z_{ij})}, x_{\sigma(z_{ij})}, \widehat{\theta}) \qquad (0 \le t \le 1)$$

Functional central limit theorem: Under parameter stability $W_j(\cdot) \xrightarrow{d} W^0(\cdot)$, where W^0 is a *k*-dimensional Brownian bridge.

Splitting numeric variables: Assess instability using supLM statistics.

$$\lambda_{supLM}(W_j) = \max_{i=\underline{i},...,\overline{i}} \left(\frac{i}{n} \cdot \frac{n-i}{n}\right)^{-1} \left\|W_j\left(\frac{i}{n}\right)\right\|_2^2.$$

Interpretation: Maximization of single shift *LM* statistics for all conceivable breakpoints in $[\underline{i}, \overline{i}]$.

Limiting distribution: Supremum of a squared, *k*-dimensional tied-down Bessel process.

Potential alternatives: Many other parameter instability tests from the same class of tests, e.g., a Cramér-von Mises test (or Nyblom-Hansen test), MOSUM tests, etc.

Splitting categorical variables: Assess instability using χ^2 statistics.

$$\lambda_{\chi^2}(W_j) = \sum_{c=1}^C \frac{n}{|I_c|} \left\| \Delta_{I_c} W_j\left(\frac{i}{n}\right) \right\|_2^2.$$

Feature: Invariant for re-ordering of the *C* categories and the observations within each category.

Interpretation: Capture instability for split-up into *C* categories.

Limiting distribution: χ^2 with $k \cdot (C-1)$ degrees of freedom.

Splitting ordinal variables: Several strategies conceivable. Assess instability either as for categorical variables (if *C* is low), or as for numeric variables (if *C* is high), or via a specialized test.

$$\lambda_{maxLMo}(W_j) = \max_{i \in \{i_1, \dots, i_{C-1}\}} \left(\frac{i}{n} \cdot \frac{n-i}{n} \right)^{-1} \left\| W_j\left(\frac{i}{n} \right) \right\|_2^2,$$

$$\lambda_{WDMo}(W_j) = \max_{i \in \{i_1, \dots, i_{C-1}\}} \left(\frac{i}{n} \cdot \frac{n-i}{n} \right)^{-1/2} \left\| W_j\left(\frac{i}{n} \right) \right\|_{\infty}$$

Interpretation: Assess only the possible splitpoints i_1, \ldots, i_{C-1} , based on L_2 or L_∞ norm.

Limiting distribution: Maximum from selected points in a squared Bessel process or multivariate normal distribution, respectively.

Alternative inference frameworks: Classic association tests for independence of *y* and *z_j* can be turned into model-based tests by using model scores $\psi(y, x, \hat{\theta})$ instead of just *y* (Schlosser, Hothorn, Zeileis 2019, *arXiv*).

Alternative inference frameworks: Classic association tests for independence of *y* and *z_j* can be turned into model-based tests by using model scores $\psi(y, x, \hat{\theta})$ instead of just *y* (Schlosser, Hothorn, Zeileis 2019, *arXiv*).

CTree: Hothorn, Hornik, Zeileis (2006, *JCGS*).

- Based on conditional inference (or permutation tests).
- Originally nonparametric.

Alternative inference frameworks: Classic association tests for independence of *y* and *z_j* can be turned into model-based tests by using model scores $\psi(y, x, \hat{\theta})$ instead of just *y* (Schlosser, Hothorn, Zeileis 2019, *arXiv*).

CTree: Hothorn, Hornik, Zeileis (2006, *JCGS*).

- Based on conditional inference (or permutation tests).
- Originally nonparametric.

GUIDE: Loh (2002, Statistica Sinica).

- Based on χ^2 tests.
- Originally based on residuals only (not full model scores).
- Categorizes both z_j and the model residuals (or scores) into bins.

3. Splitting

Goal: Split model into b = 1, ..., B subsamples along the splitting variable z_j associated with the highest parameter instability. Local optimization of

$$\sum_{b}\sum_{i\in I_{b}}\Psi(y_{i},x_{i},\theta_{b}).$$

B = 2: Exhaustive search of order O(n).

B > 2: Exhaustive search is of order $O(n^{B-1})$, but can be replaced by dynamic programming of order $O(n^2)$. Different methods (e.g., information criteria) can choose B adaptively.

Here: Binary splitting. Optionally, B = C can be chosen (without search) for categorical variables.

3. Splitting

Alternatively:

- Selecting the optimal split w.r.t. the objective function $\Psi(y, x, \theta)$ requires refitting the model and may be costly.
- Employ a maximally-selected score-based test statistic instead.
- Avoids refitting the model and is thus much cheaper to compute.

4. Pruning

Goal: Avoid overfitting.

Pre-pruning:

- Internal stopping criterium.
- Stop splitting when there is no significant parameter instability.
- Based on Bonferroni-corrected *p* values of the parameter instability tests.

Post-pruning:

- Grow large tree (e.g., with high significance level).
- Prune splits that do not improve the model fit based on information criteria (e.g., AIC or BIC).

Hyperparameters: Significance level and information criterion penalty can be chosen manually (or possibly through cross-validation etc.).

Parties, Models, Mobsters

Software

Workhorse function: mob() for

- data handling,
- calling model fitters,
- carrying out parameter instability tests and
- recursive partitioning algorithm.

Required functionality:

- Parties: Class and methods for recursive partytions.
- *Models:* Model fitting functions (optimizing suitable objective function).
- *Mobsters:* High-level interfaces (lmtree(), glmtree(), bttree(), ...) that call lower-level mob() with suitable options and methods.

Parties: S3 class 'modelparty' built on 'party'.

- Separates data and tree structure.
- Inherits generic infrastructure for printing, predicting, plotting, ...

Models: Plain functions with input/output convention.

- Basic and extended interface for rapid prototyping and for speeding up computings, respectively.
- Only minimial glue code required if models are well-designed.

Mobsters:

- mob() completely agnostic regarding models employed.
- Separate interfaces lmtree(), glmtree(), ...
- New interfaces typically need to bring their model fitter and adapt the main methods print(), plot(), predict() etc.

Input: Basic model interface.

fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...)

y, x, weights, offset are (the subset of) the preprocessed data. Starting values are in start and further fitting arguments in

Output: Fitted model object of class with suitable methods.

- coef(): Estimated parameters $\hat{\theta}$.
- logLik(): Maximized log-likelihood function $-\sum_{i} \Psi(y_i, x_i, \hat{\theta})$.
- estfun(): Empirical estimating functions $\Psi'(y_i, x_i, \hat{\theta})$.

Input: Extended model interface.

```
fit(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...,
estfun = FALSE, object = FALSE)
```

Output: List.

- coefficients: Estimated parameters $\hat{\theta}$.
- objfun: Minimized objective function $\sum_{i} \Psi(y_i, x_i, \hat{\theta})$.
- estfun: Empirical estimating functions $\Psi'(y_i, x_i, \hat{\theta})$. Only needed if estfun = TRUE, otherwise optionally NULL.
- object: A model object (providing further methods).
 Only needed if object = TRUE, otherwise optionally NULL.

Internally: Extended interface constructed from basic interface if supplied. Efficiency can be gained through extended approach.

Mobsters:

- Distributions: Parametric, multivariate, circular, transformation (*disttree*, *circtree*, *trtf*).
- Linear and generalized linear models (*partykit*, *palmtree*).
- Linear and generalized linear mixed effects models (*glmertree*).
- Survival models (*partykit*, *model4you*).
- Beta regression (*betareg*).
- Psychometric models: Bradley-Terry, item response theory, multinomial processing trees (*psychotree*).
- Structural equation models (partykit, semtree).
- Network models (*networktree*).
- Spatial lag models (*lagsarlmtree*).

Parties, Models, Mobsters

Bradley-Terry trees

Bradley-Terry trees

Question: Which of these women is more attractive?

And: How does the answer depend on age, gender, and the familiarity with the associated TV show *Germany's Next Topmodel*?

Bradley-Terry trees

Data: Paired comparisons of attractiveness.

- *Germany's Next Topmodel 2007* finalists: Barbara, Anni, Hana, Fiona, Mandy, Anja.
- Survey with 192 respondents at Universität Tübingen.
- Available covariates: Gender, age, familiarty with the TV show.
- Familiarity assessed by yes/no questions:
 - Do you recognize the women?/Do you know the show?
 - Did you watch it regularly?
 - Did you watch the final show?/Do you know who won?

Model: Bradley-Terry (or Bradley-Terry-Luce) model.

- Standard model for paired comparisons in social sciences.
- Parametrizes probability π_{ij} for preferring object *i* over *j* in terms of corresponding "ability" or "worth" parameters θ_i .

$$\pi_{ij} = \frac{ heta_i}{ heta_i + heta_j}$$

 $\log \operatorname{it}(\pi_{ij}) = \log(heta_i) - \log(heta_j)$

• Maximum likelihood as a logistic or log-linear GLM.

Mobster: Bradley-Terry trees.

- Core infrastructure: Model-fitting function btmodel() in psychotools.
- High-level interface: bttree() in psychotree.
- Here: Recreation from scratch using only mob() and btmodel().

Illustration:

```
R> library("psychotree")
R> data("Topmodel2007", package = "psychotree")
R> bt <- bttree(preference ~ gender + age + q1 + q2 + q3, data = Topmodel2007)
R> plot(bt)
R> print(bt)
```



```
Bradlev-Terrv tree
Model formula:
preference \sim gender + age + q1 + q2 + q3
Fitted party:
[1] root
    [2] age <= 52
        [3] q2 in yes: n = 35
           Barbara Anni
                              Hana
                                    Fiona
                                            Mandy
            1.3378 1.2318 2.0499 0.8339
                                           0.6217
        [4] q2 in no
            [5] gender in male: n = 71
                Barbara
                            Anni
                                    Hana
                                            Fiona
                                                     Mandv
                0.43866 0.08877 0.84629 0.69424 -0.10003
           [6] gender in female: n = 56
               Barbara
                          Anni
                                 Hana Fiona
                                                Mandv
                0.9475 0.7246 0.4452 0.6350 -0.4965
    [7] age > 52: n = 30
       Barbara
                  Anni
                          Hana
                                 Fiona
                                        Mandv
        0.2178 -1.3166 -0.3059 -0.2591 -0.2357
```

Number of inner nodes: 3 Number of terminal nodes: 4 Number of parameters per node: 5 Objective function (negative log-likelihood): 1829

```
Number of inner nodes: 3
Number of terminal nodes: 4
Number of parameters per node: 5
Objective function (negative log-likelihood): 1829
```

From scratch: Only need basic model fitting function because btmodel() provides all necessary methods.

More efficient: Extended model fitting function.

```
R> btfit2 <- function(y, x = NULL, start = NULL, weights = NULL, offset = NULL, ...,
     estfun = FALSE, object = FALSE) {
+
     rval <- btmodel(v, weights = weights, ..., estfun = estfun, vcov = object)</pre>
+
+
     list(
       coefficients = rval$coefficients.
+
      objfun = -rval$loglik,
+
       estfun = if(estfun) rval$estfun else NULL.
+
       object = if(object) rval else NULL
+
    )
+
   3
+
R> system.time(
     bt2 <- mob(preference ~ gender + age + q1 + q2 + q3, data = Topmodel2007,
+
      fit = btfit2)
+
   )
+
  user system elapsed
  1,407 0,467 1,064
```

Infrastructure:

- Basics readily available: print(), plot(), predict(), coef(), ...
- Customizable, e.g., model-specific plots, predictions, ...

Here:

```
R> plot(bt2)
R> print(bt2)
Model-based recursive partitioning (btfit2)
```

```
Model formula:
preference ~ gender + age + q1 + q2 + q3
```

```
Fitted party:
[1] root
    [2] age <= 52
        [3] q2 in yes: n = 35
           Barbara
                      Anni
                              Hana
                                    Fiona
                                            Mandy
            1.3378 1.2318 2.0499 0.8339
                                           0.6217
       [4] q2 in no
           [5] gender in male: n = 71
                Barbara
                            Anni
                                    Hana
                                            Fiona
                                                     Mandv
                0.43866 0.08877 0.84629 0.69424 -0.10003
           [6] gender in female: n = 56
               Barbara
                          Anni
                                 Hana
                                        Fiona
                                                Mandv
                0.9475 0.7246 0.4452 0.6350 -0.4965
   [7] age > 52: n = 30
       Barbara
                  Anni
                          Hana
                                Fiona
                                        Mandv
        0.2178 -1.3166 -0.3059 -0.2591 -0.2357
Number of inner nodes:
                         3
```

Number of terminal nodes: 4 Number of parameters per node: 5 Objective function: 1829

Parties, Models, Mobsters

Model-based random forests

Tree:

- *Idea:* Automatic detection of steps and abrupt changes.
- Goal: Capture non-linear and non-additive effects and interactions.
- *Result:* Yields *B* subsamples \mathcal{B}_b with b = 1, ..., B in which separate local models are estimated.

Tree:

- *Idea:* Automatic detection of steps and abrupt changes.
- Goal: Capture non-linear and non-additive effects and interactions.
- *Result:* Yields *B* subsamples \mathcal{B}_b with b = 1, ..., B in which separate local models are estimated.

Forest:

- *Idea:* Ensemble of *T* trees based on resampling the learning data.
- *Goal:* Stabilization and regularization, smoother effects.
- *Strategies:* Bootstrap or subsamples. Random input variable sampling.
- *Result:* Yields subsamples \mathcal{B}_b^t with $b = 1, ..., B^t$ and t = 1, ..., T for adaptive local model estimation.

Tree: For predicting a (potentially new) observation z only consider observations corresponding to z_i in the learning data.

Tree: For predicting a (potentially new) observation z only consider observations corresponding to z_i in the learning data.

Forest: Obtain a finer similarity measure between new observation z and z_i .

Tree: For predicting a (potentially new) observation z only consider observations corresponding to z_i in the learning data.

Forest: Obtain a finer similarity measure between new observation z and z_i .

Weights: Average over trees, e.g., 2 out of 3 for *z_i*.

Parameter estimator for **a global**

model with learning data $\{(y_i, x_i)\}_{i=1,...,n}$:

$$\hat{ heta} = \operatorname*{argmin}_{ heta \in \Theta} \sum_{i=1}^{n} \Psi(y_i, x_i, heta)$$

Parameter estimator for a global

model with learning data $\{(y_i, x_i, z_i)\}_{i=1,...,n}$:

$$\hat{\theta}(z) = \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} w_i(z) \cdot \Psi(y_i, x_i, \theta)$$

Parameter estimator for a global

model with learning data $\{(y_i, x_i, z_i)\}_{i=1,...,n}$:

$$\hat{\theta}(z) = \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} w_i(z) \cdot \Psi(y_i, x_i, \theta)$$

Weights:

$$w_i^{\text{base}}(z) = 1$$

Parameter estimator for an adaptive local

model with learning data $\{(y_i, x_i, z_i)\}_{i=1,...,n}$:

$$\hat{\theta}(z) = \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} w_i(z) \cdot \Psi(y_i, x_i, \theta)$$

Weights:

$$egin{array}{rll} w^{ ext{base}}_i(z)&=&1 \ w^{ ext{tree}}_i(z)&=&\sum_{b=1}^B I((z_i\in\mathcal{B}_b)\wedge(z\in\mathcal{B}_b)) \end{array}$$

Parameter estimator for an adaptive local

model with learning data $\{(y_i, x_i, z_i)\}_{i=1,...,n}$:

$$\hat{\theta}(z) = \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} w_i(z) \cdot \Psi(y_i, x_i, \theta)$$

Weights:

$$\begin{split} w_i^{\text{base}}(z) &= 1 \\ w_i^{\text{tree}}(z) &= \sum_{b=1}^B I((z_i \in \mathcal{B}_b) \land (z \in \mathcal{B}_b)) \\ w_i^{\text{forest}}(z) &= \frac{1}{T} \sum_{t=1}^T \sum_{b=1}^{B^t} \frac{I((z_i \in \mathcal{B}_b^t) \land (z \in \mathcal{B}_b^t))}{|\mathcal{B}_b^t|} \end{split}$$

Software:

- cforest() based on ctree() in *partykit*.
- Redesign of *partykit* internals in development to facilitate "plug & play" trees and forests.
- pmforest() for personalized treatment effects in model4you.
- traforest() for transformation forests in *trtf*.
- distforest() for distributional forests in *disttree* on R-Forge.
- circforest() for circular forests in *circtree* on R-Forge.

Parties, Models, Mobsters

References

References

Zeileis A, Hothorn T, Hornik K (2008). "Model-Based Recursive Partitioning." *Journal of Computational and Graphical Statistics*, **17**(2), 492–514. doi:10.1198/106186008X319331

Hothorn T, Zeileis A (2015). "partykit: A Modular Toolkit for Recursive Partytioning in R." *Journal of Machine Learning Research*, **16**, 3905–3909. URL http://www.jmlr.org/papers/v16/hothorn15a.html

Schlosser L, Hothorn T, Zeileis A (2019). "The Power of Unbiased Recursive Partitioning: A Unifying View of CTree, MOB, and GUIDE." arXiv:1906.10179, arXiv.org E-Print Archive. https://arxiv.org/abs/1906.10179.

Strobl C, Wickelmaier F, Zeileis A (2011). "Accounting for Individual Differences in Bradley-Terry Models by Means of Recursive Partitioning." *Journal of Educational and Behavioral Statistics*, **36**(2), 135–153. doi:10.3102/1076998609359791

Seibold H, Zeileis A, Hothorn T (2017). "Individual Treatment Effect Prediction for ALS Patients." *Statistical Methods in Medical Research*, **27**(10), 3104–3125. doi:10.1177/0962280217693034

Schlosser L, Hothorn T, Stauffer R, Zeileis A (2019). "Distributional Regression Forests for Probabilistic Precipitation Forecasting in Complex Terrain." *The Annals of Applied Statistics*, **13**(3), 1564–1589. doi:10.1214/19-A0AS1247