



Written Exams, Online Tests, and Live Quizzes with R

#### Achim Zeileis





Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis



```
Solution

Using the product rule for f(x) = g(x) \cdot h(x), where g(x) := x^{3} and h(x) := e^{2.7x}, we obtain

f'(x) = \{g(x) \cdot h(x)\} = g'(x) \cdot h(x) + g(x) \cdot h'(x)
= \{g(x) \cdot h(x)\} = g'(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x)\} = g'(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x) + g(x) \cdot h'(x)
= g(x) \cdot h(x) + g(x) \cdot h(x) + g(x) \cdot h'(x) + g(x) \cdot h'
```

Written Exams, Online Tests, and Live Quizzes with R

#### Achim Zeileis





Written Exams, Online Tests, and Live Quizzes with R

#### Achim Zeileis

#### **Motivation:**

- Many of us teach large lecture courses, also as support for other fields.
- For example, statistics, probability, or mathematics in curricula such as business and economics, social sciences, psychology, etc.
- At WU Wien and Universität Innsbruck: Some courses are attended by more than 1,000 students per semester.
- Several lecturers teach lectures and tutorials in parallel.

#### Strategy:

- Individualized organization of learning, feedback, and assessment.
- The same pool of exercises at the core of all parts of the course.

1

| Learning    | Feedback                           | Assessment                                                    |
|-------------|------------------------------------|---------------------------------------------------------------|
| Lecture     | Live quiz                          | Written exam                                                  |
| Live stream | (+ Tutorial)                       |                                                               |
| Textbook    | Self test                          | Online test                                                   |
| Screencast  | (+ Forum)                          |                                                               |
|             | Lecture<br>Live stream<br>Textbook | Lecture Live quiz Live stream (+ Tutorial) Textbook Self test |

| Learning    | Feedback                           | Assessment                                                    |
|-------------|------------------------------------|---------------------------------------------------------------|
| Lecture     | Live quiz                          | Written exam                                                  |
| Live stream | (+ Tutorial)                       |                                                               |
| Textbook    | Self test                          | Online test                                                   |
| Screencast  | (+ Forum)                          |                                                               |
|             | Lecture<br>Live stream<br>Textbook | Lecture Live quiz Live stream (+ Tutorial) Textbook Self test |

#### Learning:

- Standard: Textbook along with presentation slides.
- Streaming: Videos streamed simultaneously or (pre-)recorded.

|              | Learning    | Feedback     | Assessment   |
|--------------|-------------|--------------|--------------|
| Synchronous  | Lecture     | Live quiz    | Written exam |
|              | Live stream | (+ Tutorial) |              |
| Asynchronous | Textbook    | Self test    | Online test  |
|              | Screencast  | (+ Forum)    |              |

#### Feedback & assessment:

- Scalability: Randomized dynamic exercises required.
- Feedback: Support for complete correct solutions.
- Flexibility: Automatic rendering into different assessment formats.

# R package exams

#### **Exercises:**

- Each exercise is a single file (either .Rmd or .Rnw).
- Contains question and (optionally) the corresponding solution.
- Dynamic templates if R code is used for randomization.

#### Answer types:

- Single choice and multiple choice.
- Numeric values.
- Text strings (typically short).
- Combinations of the above (cloze).

### R package exams

#### **Output:**

- PDF fully customizable vs. standardized with automatic scanning/evaluation.
- HTML fully customizable vs. embedded into exchange formats below.
- Moodle XML.
- QTI XML standard (version 1.2 or 2.1), e.g., for OLAT/OpenOLAT.
- ARSnova, TCExam, LOPS, ...

Infrastructure: Standing on the shoulders of lots of open-source software...

# R package exams

| Туре                  | Software                      | Purpose                                |
|-----------------------|-------------------------------|----------------------------------------|
| Statistical computing | R                             | Random data generation, computations   |
| Writing/reporting     | ĽΤ <sub>Ε</sub> Χ, Markdown   | Text formatting, mathematical notation |
| Reproducible research | knitr, rmarkdown,<br>Sweave   | Dynamically tie everything together    |
| Document conversion   | TtH/TtM, pandoc               | Conversion to HTML and beyond          |
| Image manipulation    | ImageMagick, magick,<br>png   | Embedding graphics                     |
| Web technologies      | base64enc, RCurl,             | Embedding supplementary files          |
| Learning management   | Moodle, OpenOLAT,<br>ARSnova, | E-learning infrastructure              |



# **Dynamic Exercises**

## Dynamic exercises

#### Text file:

- Random data generation (optional).
- Question.
- 3 Solution (optional).
- 4 Metainformation.

#### **Examples:**



Multiple-choice knowledge quiz with shuffled answer alternatives.

Which of these are open-source learning management systems?



Dynamic numeric arithmetic exercise.

**Example:** Which of these are open-source learning management systems?

**Example:** Which of these are open-source learning management systems?

#### Question

Which of these are open-source learning management systems?

#### Answerlist

\_\_\_\_\_

- \* Canvas
- \* Ilias
- \* Moodle
- \* OLAT
- \* Blackboard
- \* Desire2Learn

#### **Example:** Which of these are open-source learning management systems?

#### Solution

An overview of learning management systems can be found in Wikipedia at <a href="https://en.wikipedia.org/wiki/List\_of\_learning\_management\_systems">https://en.wikipedia.org/wiki/List\_of\_learning\_management\_systems</a>>.

#### Answerlist

#### -----

- st True. Canvas is developed by Instructure Inc. under the Affero General Public License Version 3.
- \* True. Ilias is an open-source system released under the General Public License. Version 3.
- \* True. Moodle is an open-source system released under the General Public License Version 3.
- \* True. OLAT is developed by the University of Zurich under the Apache License 2.0 License.
- st False. Blackboard Learn is a commercial system developed by Blackboard Inc.
- \* False. Brightspace is a commercial system developed by Desire2Learn.

#### **Example:** Which of these are open-source learning management systems?

#### Solution

An overview of learning management systems can be found in Wikipedia at <a href="https://en.wikipedia.org/wiki/List\_of\_learning\_management\_systems">https://en.wikipedia.org/wiki/List\_of\_learning\_management\_systems</a>>.

#### Answerlist

#### -----

- st True. Canvas is developed by Instructure Inc. under the Affero General Public License Version 3.
- \* True. Ilias is an open-source system released under the General Public License. Version 3.
- \* True. Moodle is an open-source system released under the General Public License Version 3.
- \* True. OLAT is developed by the University of Zurich under the Apache License 2.0 License.
- \* False. Blackboard Learn is a commercial system developed by Blackboard Inc.
- $\ast$  False. Brightspace is a commercial system developed by Desire2Learn.

#### Meta-information

exname: Learning management systems

extype: mchoice
exsolution: 111100

exshuffle: 5

```
<<echo=FALSE, results=hide>>=
## parameters
a <- sample(2:9, 1)
b <- sample(seq(2, 4, 0.1), 1)
c <- sample(seq(0.5, 0.8, 0.01), 1)
## solution
res <- exp(b * c) * (a * c^(a-1) + b * c^a)
@</pre>
```

```
<<echo=FALSE, results=hide>>=
## parameters
a <- sample(2:9, 1)
b <- sample(seq(2, 4, 0.1), 1)
c <- sample(seq(0.5, 0.8, 0.01), 1)
## solution
res <- exp(b * c) * (a * c^(a-1) + b * c^a)
@

\begin{question}
What is the derivative of $f(x) = x^{\Sexpr{a}} e^{\Sexpr{b}x}$,
evaluated at $x = \Sexpr{c}$?
\end{question}</pre>
```

```
\begin{solution}
Using the product rule for \( \frac{f}(x) = g(x) \cdot h(x) \frac{s}, \) where
\( \frac{g}(x) := x^{\sexpr{a}} \frac{s} \) and \( \frac{h}(x) := e^{\sexpr{b}x} \frac{s}, \) we obtain
\( \begin{eqnarray*} \)
\( f'(x) & = & [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot h'(x) \\
\( & = & \sexpr{a} \) x^{\sexpr{a} - 1} \cdot e^{\sexpr{b}x} +
\)
\( \cdot \left( \frac{e}{\sexpr{b}x} \reft) \)
\( \cdot \left( \frac{e}{\sexpr{b}} \reft) \)
\( \cdot \left( \sexpr{c} \reft) \reft\ \reft( \sexpr{a-1} \cdot \)
\( (\sexpr{a} + \sexpr{b}\cdot \sexpr{c}) = \sexpr{fmt(res, 6)}. \)
\( \left( \sexpr{a} \reft) \)
\( \cdot \sexpr{c} \reft( \sexpr{c}) \)
\( \sexpr{a} \reft( \sexpr{fmt(res)} \reft( \sexpr{fmt(res)} \right) \)
\( \cdot \sexpr{a} \right) \)
\( \cdot \sexpr{a} \right) \)
\( \sexpr{a} \right)
```

```
\begin{solution}
Using the product rule for f(x) = g(x) \cdot h(x), where
g(x) := x^{\left( \sum_{a}\right)}  and h(x) := e^{\left( \sum_{a}\right)}, we obtain
\begin{eqnarray*}
f'(x) & = & [g(x) \cdot h(x)]' = g'(x) \cdot h(x) + g(x) \cdot cdot \cdot h'(x) 
                         & = & \ensuremath{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\mathscrip{\m
 \end{eqnarrav*}
Evaluated at x = \operatorname{Sexpr}\{c\}, the answer is
\[ e^{\Sexpr{b}\cdot \Sexpr{c}^\Sexpr{a-1} \cdot
             (\Sexpr{a} + \Sexpr{b}\cdot \Sexpr{c}) = \Sexpr{fmt(res, 6)}. \]
Thus, rounded to two digits we have $f'(\Sexpr{c}) = \Sexpr{fmt(res)}$.
 \end{solution}
\extvpe{num}
 \exsolution{\Sexpr{fmt(res)}}
 \exname{derivative exp}
 \extol{0.01}
```

# Dynamic exercises: Single choice



extype: schoice
exsolution: 010

# Dynamic exercises: Single choice



extype: schoice exsolution: 010

#### Question

What is the seat of the federal authorities in Switzerland (i.e., the de facto capital)?

- (a) Bern
- (b) Lausanne
- (c) Zurich
- (d) St. Gallen
- (e) Basel

Knowledge quiz: Shuffled distractors.

# Dynamic exercises: Single choice



extype: schoice exsolution: 010

#### Question

What is the derivative of  $f(x) = x^3 e^{3.3x}$ , evaluated at x = 0.85?

- (a) 45.97
- (b) 35.82
- (c) 56.45
- (d) 69.32
- (e) 39.31

*Numeric exercises*: Distractors are random numbers and/or typical arithmetic mistakes.

# Dynamic exercises: Multiple choice



extype: mchoice
exsolution: 011

# Dynamic exercises: Multiple choice



extype: mchoice exsolution: 011

#### Question

Which of these are open-source learning management systems?

- (a) Ilias
- (b) OLAT
- (c) Blackboard
- (d) Moodle
- (e) Canvas

Knowledge quiz: Shuffled true/false statements.

# Dynamic exercises: Multiple choice



extype: mchoice exsolution: 011



*Interpretations*: Statements that are approximately correct or clearly wrong.

# Dynamic exercises: Numeric



extype: num

exsolution: 123.45

## Dynamic exercises: Numeric



extype: num

exsolution: 123.45



Numeric exercises: Solving arithmetic problems.

# Dynamic exercises: String



extype: string

exsolution: ANSWER

# Dynamic exercises: String



Question

What is the name of the R function for Poisson regression?

Knowledge quiz: Sample a word/phrase from a given vocabulary or list of question/answer pairs.

extype: string

exsolution: ANSWER

# Dynamic exercises: Cloze



extype: cloze

exclozetype: mchoice|num exsolution: 10|123.45

### Dynamic exercises: Cloze



extype: cloze

exclozetype: mchoice|num exsolution: 10|123.45

#### Question

Using the data provided in regression.csv estimate a linear regression of y on x and answer the following questions.

- (a) x and y are not significantly correlated / y increases significantly with x / y decreases significantly with x
- (b) Estimated slope with respect to x:

Exercises with sub-tasks: Several questions based on same problem setting.



One-for-All

#### One-for-all



- The same exercise can be exported into different formats.
- Multiple standalone documents vs. combined exercise pool.
- Multiple-choice and single-choice supported in all output formats.

# One-for-All

**Idea:** An exam is simply a list of exercise templates.

```
R> myexam <- list(
+    "deriv2.Rnw",
+    "fruit2.Rnw",
+    c("ttest.Rnw", "boxplots.Rnw")
+ )</pre>
```

#### Draw random exams:

- First randomly select one exercise from each list element.
- Generate random numbers/input for each selected exercise.
- Combine all exercises in output file(s) (PDF, HTML, ...).

### One-for-All

#### Written exam:

```
R> exams2nops(myexam, n = 3, dir = odir,
+ language = "nl", institution = "TEA 2018")
Online test:
R> exams2moodle(myexam, n = 10, dir = odir)
```

### Live quiz:

```
R> exams2arsnova(myexam, n = 1, dir = odir)
```

Other: exams2pdf(), exams2html(), exams2qti12(), exams2qti21(), ...



### Flexible: Roll your own.

- Combination with user-specified template in exams2pdf() and exams2pandoc().
- Customizable but typically has to be evaluated "by hand".

#### Standardized: "NOPS" format.

- exams2nops() intended for single- and multiple-choice questions.
- Can be scanned and evaluated automatically within R.
- Limited support for open-ended questions that have to be marked by a person.







#### 1. Create

- As illustrated above.
- Using exams2nops(), create (individual)
   PDF files for each examinee.





#### 1. Create

- As illustrated above.
- Using exams2nops(), create (individual)
   PDF files for each examinee.

#### 2. Print

- Print the PDF exams, e.g., on a standard printer.
- ... or for large exams at a print shop.



#### 3. Exam

- Conduct the exam as usual.
- Collect the completed exams sheets.



#### 4. Scan

- Scan exam sheets, e.g., on a photocopier.
- Using nops\_scan(), process the scanned exam sheets to machine-readable content.





#### 4. Scan

- Scan exam sheets, e.g., on a photocopier.
- Using nops\_scan(), process the scanned exam sheets to machine-readable content.

#### 5. Evaluate

- Using nops\_eval(), evaluate the exam to obtain marks, points, etc. and individual HTML reports for each examinee.
- Required files: Correct answers (1.), scans
   (4.), and a participant list in CSV format.

#### A vizsga eredménye

Név: Jane Doe Regisztrációs szám: 1501090

Érdemjegy: 5 Pontok: 3.1666666666667

#### Értékelés

| Kérdés | Pontok    | Adott válasz | Helyes válasz |
|--------|-----------|--------------|---------------|
| 1      | 1.0000000 | c_           | c_            |
| 2      | 0.5000000 | abc_e        | abc           |
| 3      | 0.0000000 |              | ab_d_         |
| 4      | 1.0000000 | c_           | _bc           |
| 5      | 0.6666667 | d_           | ab_d_         |
| 6      | 0.0000000 | _bc_e        | a_c           |

#### Vizsgalap

#### \_ R University

Exam 2015-07-29

#### A vizsga eredménye

Név: Ambi Dexter Regisztrációs szám: 9901071 Érdemiegy: 5

1.5

#### Pontok: Értékelés

| Kérdés | Pontok | Adott válasz | Helyes válasz |
|--------|--------|--------------|---------------|
| 1      | 0.0    | a_c          | d_            |
| 2      | 0.0    | a_cde        | ab_d_         |
| 3      | 0.0    | _b           | е             |
| 4      | 0.0    |              | a_cd_         |
| 5      | 0.0    |              | _bc           |
| 6      | 1.5    | abc          | a             |

#### Vizsgalap

+ Universität Innsbruck

Persönliche Daten

Klausur 2015-07-29

| Jachname: Dexter    | 9,9,1   |
|---------------------|---------|
| orname: Ambi        | 0       |
| Interschrift: / / T | 2 🔲 🔲 🔲 |

Matril





#### 1. Goal

- Online tests with flexible exercise types.
- Possibly: Dynamic supplements and/or complete correct solution.
- Random variations of similar exercises to reduce the risk of cheating.
- Use university's learning management system, e.g., Moodle, ...



#### 2. Create

- Draw random replications from exercise templates, e.g., via exams2moodle(),...
- Automatically embed these into exchange file format (typically via HTML/XML).





#### 2. Create

- Draw random replications from exercise templates, e.g., via exams2moodle(),...
- Automatically embed these into exchange file format (typically via HTML/XML).

### 3. Import

- Import in learning management system.
- From there handling "as usual" in the system.

# E-Learning: Online test





# E-Learning: Online test





# E-Learning: Live quiz









# What else?

### **Under development:**

- Many volunteers: Internationalization for "NOPS" exams.
- Nikolaus Umlauf: Exercise "stress tester".
- *Nikolaus Umlauf:* Graphical exams manager based on *shiny* that can be used on a local machine or on a server.
- Achim Zeileis: Reports for lecturers based on IRT models.
- Niels Smits: Better management of exercise categories.
- Niels Smits, Claus Ekstrøm, Nikolaus Umlauf: Canvas interface based on QTI 1.2.
- Mirko Birbaumer, Andreas Melillo, Achim Zeileis: Ilias interface based on QTI 1.2.

# NOPS internationalization

| Please mark the boxes carefully: X Not marked: Or                                                       | da  | Jensen, Messner           | More contributions |
|---------------------------------------------------------------------------------------------------------|-----|---------------------------|--------------------|
| This document is scanned automatically. Please keep clean and deplease use a <b>blue or black pen</b> . | de  | Zeileis                   | welcome            |
| Only clearly marked and positionally accurate crosses will be                                           | en  | Zeileis                   |                    |
| Answers 1 - 15                                                                                          | es  | Kogelnik                  |                    |
| 16 0 0 0                                                                                                | fi  | Nordhausen                |                    |
|                                                                                                         | fr  | Allignol                  |                    |
| Merci de cocher soigneusement: 🛛 Non coché: 🗌 ou 🔳                                                      | gsw | Stauffer                  |                    |
| Cet examen sera corrigé par un système automatisé. Ne pas pliet bille bleu ou noir.                     | hr  | Juraić, Kecojevic         |                    |
| Seul les marques lisibles et bien positionées seront evaluées                                           | hu  | Daróczi, Tóth             |                    |
| Réponses 1 - 15 Réponses 16 - 21 a b c d e a b c d                                                      | it  | Zambella                  |                    |
| 16   16   16   16   16   16   16   16                                                                   | nl  | Smits                     |                    |
|                                                                                                         |     |                           |                    |
| <b>→</b> (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1                                                         | pt  | Calvão, Dellinger,        |                    |
| A válaszát jelölje egyértelmű x-el: A Jelöletlen cella: vagy                                            |     | Petutschnig (pt-PT/pt-BR) |                    |
| A vizsgalap szkennelése automatikusan történik, ezért kérjük, hog<br>kék vagy fekete tollat.            | ro  | Gatu                      |                    |
| Kizárólag az egyértelműen és pontosan megjelölt válaszok ke                                             |     |                           |                    |
| Válaszok 1 - 15 Válaszok 16 - 21                                                                        | ru  | Demeshev                  |                    |
|                                                                                                         | sk  | Fabsic                    |                    |
|                                                                                                         | sr  | Kecojevic                 |                    |

tr

Er

# Stress tester

R> s <- stresstest\_exercise("deriv2.Rnw")
R> plot(s)



# Stress tester

R> s <- stresstest\_exercise("deriv2.Rnw")
R> plot(s)



# Graphical exams manager



# Graphical exams manager



Report: Exercise difficulty, student performance, unidimensionality, fairness.

**Methods:** Psychometrics, especially item response theory.

**Example:** End-term exam from first-year mathematics course for business and economics students at Universität Innsbruck.

- 729 students (out of 941 registered).
- 13 single-choice exercises on the basics of analysis, linear algebra, financial mathematics.
- Two groups with partially different pools of exercise templates.

```
R> library("psychotools")
R> data("MathExam14W", package = "psychotools")
R> mex <- subset(MathExam14W, nsolved > 0 & nsolved < 13)</pre>
```

Item difficulty: Raw proportions vs. Rasch model.

```
R> plot(mex$solved, ...)
R> mr <- raschmodel(mex$solved)
R> plot(mr, ...)
```



**Student performance:** Points and person-item map.

```
R> hist(MathExam14W$points, ...)
R> piplot(mr)
```





### **Unidimensionality:** Principal component analysis.

```
R> pr <- prcomp(mex$solved, scale = TRUE)
R> plot(pr, ...)
R> biplot(pr, ...)
```





### Fairness: Differential item functioning.

```
R> ma <- anchortest(solved ~ group, data = mex, adjust = "single-step")
R> plot(ma$final_tests, ...)
```





### Recommendations

# If you want to try R/exams:

- Start with simple exercises before moving to more complex tasks.
- Focus on content of exercises.
- Don't worry about layout/formatting too much.
- Try to build a team (with lecturers, assistants, etc.).
- Use exercise types creatively.
- Don't be afraid to try stuff, especially in formative assessments.
- Thorough quality control for dynamic exercises before summative assessments.

### Resources

Contributors: Zeileis, Grün, Leisch, Umlauf, Smits, Birbaumer, Ernst, Keller, Krimm, Stauffer.

#### Links:

Web http://www.R-exams.org/

CRAN https://CRAN.R-project.org/package=exams

Forum http://R-Forge.R-project.org/forum/?group\_id=1337

 ${\tt StackOverflow} \quad {\tt https://stackoverflow.com/questions/tagged/exams}$ 

Twitter @AchimZeileis

#### References:

- Zeileis A, Umlauf N, Leisch F (2014). "Flexible Generation of E-Learning Exams in R: Moodle Quizzes, OLAT Assessments, and Beyond." *Journal of Statistical Software*, 58(1), 1–36. doi:10.18637/jss.v058.i01
- Grün B, Zeileis A (2009). "Automatic Generation of Exams in R." *Journal of Statistical Software*, **29**(10), 1–14. doi:10.18637/jss.v029.i10