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Abstract

A variety of statistical methods have been suggested for detecting differential item
functioning (DIF) in the Rasch model. Most of these methods are designed for the com-
parison of pre-specified focal and reference groups, such as males and females. Latent
class approaches, on the other hand, allow to detect previously unknown groups exhibit-
ing DIF. However, this approach provides no straightforward interpretation of the groups
with respect to person characteristics. Here, we propose a new method for DIF detection
based on model-based recursive partitioning that can be considered as a compromise be-
tween those two extremes. With this approach it is possible to detect groups of subjects
exhibiting DIF, which are not pre-specified, but result from combinations of observed co-
variates. These groups are directly interpretable and can thus help generate hypotheses
about the psychological sources of DIF. The statistical background and construction of
the new method are introduced by means of an instructive example and extensive sim-
ulation studies are presented to support and illustrate the statistical properties of the
method, that is then applied to empirical data from a general knowledge quiz. A software
implementation of the method is freely available in the R system for statistical computing.

Keywords: item response theory, IRT, Rasch model, differential item functioning, DIF, mea-
surement invariance, structural change, model-based recursive partitioning.

1. Introduction

In educational and psychological testing, the term differential item functioning (DIF) ‘means
that the probability of a correct response among equally able test takers is different for various
racial, ethnic, gender [or other] subgroups. A given educational or psychological test consisting
of many items with significant DIF may be unfair for certain subgroups, and it is important
to identify these items, so that they can be improved or deleted from the test’ (Westers and
Kelderman 1992).

A variety of statistical methods is available for detecting DIF in the Rasch model. While
some of these methods are explicitly designed to detect DIF in individual items, such as the
item-specific Wald test (Fischer and Molenaar 1995), others are global goodness-of-fit tests
for the Rasch model that also respond to DIF, such as the widely used likelihood ratio test
(Andersen 1972; Gustafsson 1980). Most of these methods are based on the comparison of
the item parameter estimates between two or more pre-specified groups of subjects, such as
males and females as focal and reference groups. This class of model tests also includes the
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simple graphical model test as well as the most recent approaches for DIF detection based
on a mixed model representation of the Rasch model (Rijmen, Tuerlinckx, De Boeck, and
Kuppens 2003; Van den Noortgate and De Boeck 2005).

The advantage of model tests for given groups is that, if DIF is detected, the results can be
interpreted straightforwardly in terms of, e.g., which items are easier or harder to solve for
which subjects. This can give valuable hints for generating hypotheses about the psychological
sources of DIF and how it can be eliminated or avoided in future versions of the test.

On the other hand, in all above-mentioned approaches only those groups that are explicitly
proposed by the researcher are tested for DIF. Variables typically proposed for testing include
age, gender, ethnicity and language, depending on the objective of the assessment (cf., e.g.,
Gelin, Carleton, Smith, and Zumbo 2004; Perkins, Stump, Monahan, and McHorney 2006;
Woods, Oltmanns, and Turkheimer 2009; Pedraza, Graff-Radford, Smith, Ivnik, Willis, Pe-
tersen, and Lucas 2009). However, if in later analyses a group difference is found in a variable
that has not been explicitly tested for DIF, it cannot be ruled out that this effect is only
an artifact due to unnoticed DIF. Moreover, in most standard approaches numeric variables,
such as age, need to be discretized prior to testing, which leads to a loss of information.

At the other extreme, the latent class (or mixture) approach of Rost (1990) tests for item
parameter differences between all possible groups of subjects regardless – and even in the
absence – of person covariates (see also Kelderman and MacReady 1990; Mislevy and Verhelst
1990). In this sense, the latent class approach can be considered as a very stringent model
test (even though it has a lower statistical power than tests for given groups when informative
covariates are available, cf. Smit, Kelderman, and Van der Flier 2000). However, the latent
class approach provides no straightforward interpretation of the resulting groups. Therefore,
often latent class approaches are used only as a first step in the analysis, where the second
step is to attempt to describe the latent classes by person covariates for interpretability (see,
e.g., Cohen and Bolt 2005; Hancock and Samuelsen 2007; Maij-de Meij, Kelderman, and
Van der Flier 2008, and the references therein).

Here, we propose a new statistical approach for detecting DIF in the Rasch model that can
be considered as a compromise between the two former approaches – testing only pre-defined
and hence easy to interpret groups vs. testing all possible groups in a latent class approach
and having to give up interpretability. The idea for the new method is to recursively test
all groups that can be defined based on (combinations of) the available covariates – thus
preserving interpretability, but still exploring a very wide set of potential indicators of DIF.

In the next section, the rationale and technical details of the new method are first explained
by means of a simple artificial example. In Section 3 the results of a series of simulation
studies are presented to support and illustrate the statistical properties of the newly proposed
method. Finally, an application to empirical data from a general knowledge quiz is presented
in Section 4. The proposed method is freely available as a software implementation in the
add-on package psychotree (Zeileis, Strobl, Wickelmaier, and Kopf 2012) for the R system
for statistical computing (R Development Core Team 2012).

2. A new method based on recursive partitioning

The new method for detecting groups of subjects with DIF is based on the technique of model-
based recursive partitioning, that employs statistical tests for structural change adopted from
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Variable Summary statistics

Gender male: 99 female: 101

xmin x0.25 xmed x̄ x0.75 xmax

Age 16 30 45 44.27 57 73
Motivation 1 3 4 3.65 5 6

Table 1: Summary statistics for the covariates of the instructive example (artificial data).

econometrics. Model-based recursive partitioning is a semi-parametric approach. The aim
is to detect differences in the parameters of a statistical model between groups of subjects
defined by (combinations of) covariates.

Model-based recursive partitioning is related to – but by means of modern statistical tech-
niques avoids the earlier weaknesses of – the method of classification and regression trees
(CART, Breiman, Friedman, Olshen, and Stone 1984; see Strobl, Malley, and Tutz 2009
for a thorough introduction), where the covariate space is recursively partitioned to identify
groups of subjects with different values of a categorical or numeric response variable. As an
advancement of this approach, in model-based recursive partitioning it is the parameters of a
parametric model – rather than the values of a single response variable – that vary between
groups. Such parameters could be, e.g., intercept and slope parameters in a linear regression
model or, as in our case, the item parameters of a Rasch model that may vary between groups
of subjects.

This principle is now first illustrated by means of an artificial instructive example, before the
technical details are addressed in the next sections. The data for the instructive example
consist of the simulated responses of 200 subjects to 20 items, which can be considered, e.g.,
as questions in a proficiency test. In addition to the responses, the data set includes three
covariates: gender, age, and a motivation score. The summary statistics for the latter are
listed in Table 1.

The data for the instructive example were simulated with DIF between three groups: males
up to the age of 35, males above the age of 35, and females. Item 3 was simulated to be more
difficult for women and younger men, item 11 was simulated to be more difficult only for
women and items 14 and 15 were simulated to be easier only for younger men. (These items
are highlighted in Figure 1 for illustration.) No DIF was generated in the variable motivation.

In order to detect DIF with the new method, the item responses are assessed with respect
to possible group differences related to the three covariates gender, age, and motivation,
as described in detail below. The resulting model, that is partitioned with respect to a
combination of the covariates gender and age, is presented in Figure 1 and will be termed
a Rasch tree from here on. In each of the terminal nodes of the tree, the item parameter
estimates for the 20 items are displayed (a high value indicates a high difficulty of the item).

Following the tree from top to bottom, we find that different item parameters result for males
and females, and within the group of males for those up to the age of 35 and over the age
of 35. For example, the third item is harder for males up to the age of 35 (represented in
node 3) and females (represented in node 5) than for males over the age of 35 (represented in
node 4).

Generally speaking, the mere fact that there is more than one terminal node in Figure 1 means
that the null hypothesis of one joint Rasch model for the entire sample (i.e. measurement
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Figure 1: Rasch tree for the instructive example (artificial data for illustration purposes),
exhibiting DIF between males up to the age of 35, males over the age of 35, and females. In
the terminal nodes, estimates of the item difficulty are displayed for each of the 20 items.

invariance) must be rejected. In this sense, the proposed method is a global test for DIF as
well as an overall model test for the Rasch model. In addition to this, we can see from the
graphical visualization which groups are affected by DIF with respect to which items. This
information can help generate hypotheses about the underlying sources of DIF and guide the
decision how to proceed with the affected items.

Figure 1 also shows that the simulated pattern of covariates associated with DIF was correctly
replicated by the Rasch tree. In particular, the fact that some item parameters differ between
males up to the age of 35 and males above the age of 35 was correctly discovered by the
Rasch tree. As opposed to that, the widely employed approach of arbitrarily splitting a
numeric variable at the median (which in this case would have been at the value 45 and
thus far too high) would not only conceal the actual age at which the parameter change
occurs but may even result in not detecting significant DIF in a numeric variable at all, as
is further illustrated in the simulation studies below. Moreover, the variable motivation was
not selected for splitting (i.e. no DIF was detected with respect to motivation), which also
correctly replicates the simulated pattern.

What is important to note here is that the entire structure identified by the Rasch tree –
i.e. that the DIF groups are formed by this particular combination of the two variables gender
and age, including the location of the cutpoint in the variable age – was not pre-specified and
provided to the algorithm, but was learned from the data in an exploratory way. This is a key
feature of the model-based recursive partitioning approach employed here, that makes it very
flexible for detecting groups with DIF and distinguishes it from parametric regression models,
where only those main effects and interactions that are explicitly included in the specification
of the model are considered.
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Technically, the following consecutive steps are used to infer the structure of a Rasch tree like
that depicted in Figure 1 from the data:

1. Estimate the item parameters jointly for all subjects in the current sample, starting
with the full sample.

2. Assess the stability of the item parameters with respect to each available covariate.

3. If there is significant instability, split the sample along the covariate with the strongest
instability and in the cutpoint leading to the highest improvement of the model fit.

4. Repeat steps 1–3 recursively in the resulting subsamples until there are no more signif-
icant instabilities (or the subsample becomes too small).

These four steps are now explained in more detail.

2.1. Estimating the item parameters

We use the common conditional maximum likelihood approach for estimating the item pa-
rameters (but the method can in principle also be adapted to other maximum likelihood
estimation approaches). Let θi, i = 1, . . . , n, denote the person parameters, βj , j = 1, . . . ,m,
denote the item parameters and uij denote the response of subject i to item j. Since under
the Rasch model

P (Uij = uij |θi, βj) =
euij ·(θi−βj)

1 + eθi−βj

the person raw-scores ri =
∑m

j=1 uij form sufficient statistics for the person parameters, the
item parameters can be estimated by means of iterative procedures from the conditional
likelihood

Lc(β|r1, . . . , rn) =
n∏
i=1

Lc(β|ri) =
n∏
i=1

e−
∑m

j=1 uij ·βj

γri(β)
, (1)

where γri is the symmetric function of order ri (cf., e.g., Fischer and Molenaar 1995). To fix
the origin of the scale, some constraint has to applied, e.g., setting the first item parameter
or the sum of all item parameters to zero, leaving m− 1 free parameters.

2.2. Testing for parameter instability

In order to test whether the item parameters vary between groups of subjects defined by
covariates, we use the approach of structural change tests from econometrics. These tests
are usually employed for detecting, e.g., a drop in stock returns over time, whereas here we
employ the same methodology for detecting parameter changes over person covariates.

The rationale of the employed structural change tests is the following: The item parameters
are first estimated jointly for the entire sample. Then the individual deviations from this
joint model are ordered with respect to a covariate, such as age. If there is systematic DIF
with respect to groups formed by the covariate, the ordering will exhibit a systematic change
in the individual deviations. If, on the other hand, no DIF is present, the values will merely
fluctuate randomly.
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Figure 2: Structural change in the variable age (artificial data for illustration purposes).
In the left plot, the individual score contributions are ordered with respect to the variable.
The dashed lines indicate deviations from the overall mean zero, which are positive before
the structural change and negative afterwards. In the right plot, the positive and negative
deviations are cumulated and the structural change is now noticeable from the peak in the
cumulative sum process.

This rationale is illustrated in Figure 2: The individual contributions of all subjects to the
score function, that is used for the estimation of a parameter (details follow below), are
ordered with respect to the variable age, as visualized in the left hand side of Figure 2. By
definition, the score contributions are zero on average. However, when the score contributions
are ordered with respect to the variable age, it becomes obvious that they do not fluctuate
randomly around the mean zero – which would be the case under the null hypothesis that
one joint parameter estimate is appropriate for the entire sample – but there is a systematic
change at age 35. This systematic change indicates that, instead of one joint parameter
estimate for the entire sample, different parameter estimates should be permitted for subjects
up to the age of 35 and above the age of 35.

For statistically testing structural change in the model parameters, we suggest the usage of
generalized M-fluctuation tests (Zeileis and Hornik 2007) that form the basis of the model-
based recursive partitioning framework of Zeileis, Hothorn, and Hornik (2008). The idea of
this class of tests is to compute the subject-wise score contributions (i.e. the deviations from
a joint model, that are illustrated in the left hand side of Figure 2) and derive test statistics
with known distributions from them.

The individual score function ψ(ui, β̂), for i = 1, . . . , n observations, i.e., the derivative of the
individual contributions to the log-likelihood Ψ(ui, β̂) with respect to the parameter vector,
is a general measure of deviation for likelihood-based models. For the Rasch model these
individual contributions can easily be computed from the conditional likelihood as outlined
below.

For the construction of the test statistic, the individual contributions to the score function
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are cumulated according to the order induced by the variable age, as illustrated in Figure 2,
or any other covariate. The systematic change from positive to negative in the individual
contributions to the score function in the left hand side of Figure 2 is then captured as a
clearly noticeable peak in the cumulative sum process in the right hand side of Figure 2.

The cumulative sum process is defined as

W`(t) = V̂
−1/2

n−1/2

bn·tc∑
i=1

ψ(u(i|`), β̂) (0 ≤ t ≤ 1), (2)

where the index (i|`) denotes the i-th ordered observation with respect to the `-th covariate,
b·c denotes the integer part, V̂ =

∑n
i=1 ψ(ui, β̂)ψ(ui, β̂)> is the outer-product-of-gradients

estimate of the covariance matrix, and t is a fraction of the sample size. Under the null
hypothesis of parameter stability, the cumulative sum process W`(·) can be shown to converge
to an (m− 1)-dimensional Brownian bridge (Zeileis and Hornik 2007), which can be used as
the basis for statistical inference.

The cumulative aggregation runs over the order induced by the `-th covariate: The i = 1, . . . , n
individual deviations are ordered with respect to the covariate and aggregated up to the bn·tc-
th element in each step. When W`(t) is considered as a function of the fraction t of the sample
size, under the null hypothesis of parameter stability the cumulative sum process follows the
path of a random process with constant zero mean (whereas under the alternative hypothesis
of parameter instability the path deviates from this random fluctuation, as illustrated in the
right hand side of Figure 2).

The advantage of this approach is that the model does not have to be reestimated for all
splits in all covariates, because the individual deviations remain the same and only their or-
dering (and the corresponding path of W`(t)) needs to be adjusted for evaluating the different
covariates.

To capture systematic deviations in W`(·), different test statistics can be used depending on
whether the `-th covariate is a numeric or a categorical variable. If it is numeric, Zeileis et al.
(2008) point out that a natural test statistic is

S` = max
i=i,...,ı

(
i

n
· n− i

n

)−1 ∣∣∣∣∣∣∣∣W`

(
i

n

)∣∣∣∣∣∣∣∣2
2

. (3)

This can be interpreted as the maximum Lagrange multiplier statistic (also known as score
statistic) for a single shift alternative over all conceivable cutpoints in [i, ı]. The limiting
distribution is the supremum of a tied-down Bessel process, from which p values can be
computed (for details see Zeileis et al. 2008; Merkle and Zeileis 2013).

If, on the other hand, the `-th covariate is categorical (with values xi` taking categories
q = 1, . . . , Q), it is more natural to use the following test statistic

S` =

Q∑
q=1

n

(
n∑
i=1

I(xi` = q)

)−1 ∣∣∣∣∣∣∣∣∆qW`

(
i

n

)∣∣∣∣∣∣∣∣2
2

, (4)

where ∆q is the increment within the q-th category. This test statistic is invariant to re-
ordering of the Q categories and the subjects within each category. The test statistic captures
the instability over the Q subsamples. Its limiting distribution is χ2 with (Q − 1) · (m − 1)
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Node 1 Node 2 Node 3 Node 4 Node 5

Age Statistic 41.237 48.448 28.924 37.699 25.678
p value 0.171 0.018∗ 0.593 0.208 0.961

Gender Statistic 41.479 — — — —
p value 0.006∗ — — — —

Motivation Statistic 112.368 94.680 84.078 105.762 120.598
p value 0.290 0.740 0.432 0.378 0.077

Table 2: Summary of the parameter instability test statistics and corresponding Bonferroni
adjusted p values for the instructive example. Those variables whose p values are highlighted
with ∗ symbols are selected for splitting in the respective node.

degrees of freedom, from which p values can be computed. This test is employed for both
nominal and ordinal categorical variables. A potential ordering of the categories is accounted
for in the next step, when the cutpoint is selected (see Section 2.4 below).

For the Rasch model, the objective function used for parameter estimation is the conditional
log-likelihood. The individual contributions to the conditional log-likelihood can be easily
computed as logLc(β|ri) (cf. Equation 1), yielding

Ψ(ui,β) = −
m∑
j=1

uij · βj − log (γri(β)) . (5)

For the computation of the structural change tests, the individual contributions to the score
function are derived from Equation 5. The contribution of the i-th subject for the j-th item
parameter is:

ψ(ui,β)j =
∂Ψ(ui,β)

∂βj
= −uij −

1

γri(β)
· ∂γri(β)

∂βj
(6)

The derivatives of the symmetric functions γri(β) are again symmetric functions with certain
terms omitted (cf., e.g., Fischer and Molenaar 1995). In our implementation of the Rasch
tree, the sum algorithm of Liou (1994) is used (by default) for computing these derivatives.

When the individual contributions to the score function of the Rasch model from Equation 6
are ordered with respect to covariate ` and inserted in Equation 2, parameter instabilities in
the item parameters can be statistically tested using the model-based recursive partitioning
approach outlined above.

The results of this procedure are also easy to interpret: The parameter instability test statis-
tics S` with associated (Bonferroni adjusted, cf. Section 2.5) p values are provided for each
candidate variable, as illustrated for the instructive example in Table 2. The test statistics
correspond to Equation 3 for the numeric variable age and to Equation 4 for the categorical
variable gender and the ordered categorical variable motivation. The p values are derived
from the respective limiting distributions.

In the first node, the variable with the smallest p value – in this case gender – is selected for
splitting (cf. Table 2 and Figure 1). In each daughter node the splitting continues recursively:
Here, the variable age is selected for splitting in the second node, whereas no further splits
are found significant in the following nodes.

Note that the variable gender is no longer available for splitting after the first node because it
offers only one possible cutpoint (that has already been used for the first split). As opposed
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to gender, the second splitting variable age offers as many possible cutpoints as it has distinct
values. In this case, it is an important advantage of the model-based recursive partitioning
method that the exact cutpoint does not need to be pre-specified, but is determined in a
data-driven way as described in detail in Section 2.4.

Splitting continues until all p values exceed the significance level (commonly 5%), indicating
that there is no more significant parameter instability, or until the number of observations in
a subsample falls below a given threshold.

2.3. Computational aspects

The model-based recursive partitioning approach outlined here employs a Lagrange multiplier
(LM) or score test – rather than, e.g., a likelihood ratio (LR) or Wald test, that are equally
well established for the Rasch model (cf., e.g., Fischer and Molenaar 1995, Chapter 5) – in
the variable selection step. One reason for this is the general construction of the test statistic
and the resulting differences in the computational burden.

When the LR test is used to test, e.g., whether two or more groups have different item param-
eters, the parameters need to be estimated both for the full sample and for all subsamples.
The full sample likelihood for the full sample item parameter estimates is then compared to
the product of all subsample likelihoods for the subsample item parameter estimates. For the
Wald test, on the other hand, the item parameters need to be estimated for all subsamples
only. The subsample item parameter estimates are then directly compared, so that the Wald
test does not require computation of the full sample item parameter estimates. Finally, the
LM or score test employs only the item parameter estimates from the full sample, and eval-
uates group differences by means of the individual score contributions, as illustrated above.
Asymptotically all three tests are equivalent and hence, in practice, the choice of test is often
guided by computational considerations: The LR test is often found to perform slightly better
in finite samples; however, it also poses the highest computational burden (see also Merkle
and Zeileis 2013, who discuss similarities and differences of the three types of tests in more
detail in a structural change setting).

Therefore, from a computational point of view, basing the variable selection decision of the
model-based recursive partitioning algorithm on a LM statistic has two advantages:

Even for given groups, the LM test is computationally more efficient than either LR or Wald
test. More importantly, however, when the groups are not given a priori, but partitions
of the data based on different covariates are investigated, like in the model-based recursive
partitioning approach presented here, the LM test has the great advantage that the item
parameters have to be estimated only once for the current sample, and tests for all covariates
can be constructed simply by re-ordering the individual score contributions, as outlined above.

Consequently, despite the exploratory exhaustive search character of the model-based recur-
sive partitioning algorithm, the computational burden for each variable selection decision is
much lower than one might expect.

Besides these considerations of computational complexity, it should be noted that for evalu-
ating DIF in the Rasch model both the LM test employed here and the widely known LR test
suggested by Andersen (1972) follow the same principles: Both are global – as opposed to
item-wise – tests for DIF based on the conditional likelihood. The LR test was first suggested
by Andersen (1972) as a test for different slope parameters by means of dividing the subjects
into groups according to their ability raw scores. However, it has long been noted (e.g. by
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Figure 3: Log-likelihood of the partitioned Rasch model for the second split in the covariate
age. The dashed line indicates the location of the optimal cutpoint (at the value 35) while
the dotted line indicates the location of the median (at the value 45).

Gustafsson 1980) that it can also be used as a test for DIF (that was still referred to as “item
bias” by Gustafsson 1980) when the subjects are divided into groups according to covariates
such as gender and social background. Hence, one could easily use the maximum LR statistic
(rather than the maximum LM statistic) in Equation 3 as it has the same asymptotic distri-
bution. However, this would give up the computational advantages of the LM test outlined
above.

2.4. Selecting the cutpoints

After a covariate has been selected for splitting, the optimal cutpoint is determined by max-
imizing the partitioned log-likelihood (i.e., the sum of the log-likelihoods for two separate
models: one for the observations to the left and up to the cutpoint, and one for the obser-
vations to the right of the cutpoint) over all candidate cutpoints within the range of this
variable.

For the first split in the instructive example, the selection of the cutpoint is trivial – since
the binary variable gender only allows for a single split between the subgroups of females
and males. In the second split, however, all possible cutpoints in the variable age for the
male subsample are considered and the associated partitioned log-likelihood is displayed in
Figure 3. The value 35 is selected as the optimal cutpoint, because it shows the highest value
of the partitioned log-likelihood, i.e., the strongest difference in the item parameters exists
between males up to the age of 35 and over the age of 35.

Note that other potential cutpoints close to this value also show a high value of the partitioned
log-likelihood, so that in different random samples from the same data generating process
not always the exact same value for the optimal cutpoint may be detected. However, from
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Figure 3 it is obvious that the median (dotted line), that is often used for pre-specifying the
focal and reference group from a numeric predictor variable, may be far off the maximum
of the partitioned log-likelihood indicating the strongest parameter change. As opposed to
that, the data-driven approach suggested here can not only reliably detect the parameter
instability in the variable age, but it can also identify at what age the strongest parameter
change occurs.

Formally, for a numeric splitting variable ` with values xi` we can define the subsamples
L(ξ) = {i |xi` ≤ ξ} and R(ξ) = {i |xi` > ξ} on the left and right, respectively, of some

cutpoint ξ. For both subsamples, the parameters β̂
(L)

and β̂
(R)

can be estimated separately
as described above. To determine the optimal cutpoint ξ, the partitioned log-likelihood∑

i∈L(ξ)

Ψ
(
ui, β̂

(L)
)

+
∑
i∈R(ξ)

Ψ
(
ui, β̂

(R)
)

is maximized over all candidate cutpoints ξ (typically requiring a certain minimal subsample
size).

While this approach can be applied to numeric and ordered covariates, for unordered cate-
gorical covariates the Q categories can be split into any two groups. From all these candidate
binary partitions, again the one that maximizes the partitioned log-likelihood is chosen.

Note that choosing the optimal cutpoint by maximizing the partitioned (log-)likelihood cor-
responds directly to using the maximum LR statistic of the joint vs. the partitioned model.
Thus, for selecting the optimal cutpoint the computationally more expensive LR test is im-
plicitly used in the Rasch tree algorithm. However, it is not employed in the first step for
testing whether there is significant DIF in a covariate, but only for the second step of esti-
mating where the strongest DIF occurs by obtaining the maximum likelihood estimator for
the cutpoint. Unlike the tests in the previous sections, this computationally costly LR test is
not applied to all potential splitting variables but only to those selected for splitting in the
first place.

From a statistical point of view, this two-step approach – where the variable selection is
made independently from the cutpoint selection – has two important advantages: Not only
does it considerably reduce the computational burden (as is also illustrated in the following
simulation studies), but at the same time it also prevents an artefact termed variable selection
bias (cf., e.g., Dobra and Gehrke 2001; Shih 2004; Hothorn, Hornik, and Zeileis 2006; Strobl,
Boulesteix, and Augustin 2007), that was inherent in earlier recursive partitioning algorithms.

Variable selection bias occurs when first the best cutpoint is determined in each variable and
then the best splitting variable is selected by means of evaluating some splitting criterion
or test statistic, that was computed exactly for the cutpoint producing the highest value
of this criterion or statistic. In this case, variables offering more cutpoints (such as numeric
variables or variables with many categories) have a higher chance of being selected only due to
multiple testing, which does not reflect the actual quality of the splitting variable. Therefore,
with respect to selecting the variable with the strongest parameter instability in the Rasch
model it would be statistically incorrect to select the best splitting variable by means of the
standard LM or LR test (based on the standard χ2 distribution) when the test statistic is
computed in the best cutpoint offered by that variable. The reason is that – due to the optimal
selection of the cutpoint – the asymptotic distribution of this optimally selected statistic is
no longer χ2 (Andrews 1993). Therefore, the correct distribution has to be derived for any
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12 Rasch Trees: A New Method for Detecting DIF in the Rasch Model

optimally selected statistic (cf., e.g., Miller and Siegmund 1982; Koziol 1991; Hothorn and
Lausen 2003; Boulesteix 2006) – as in our case for the optimally selected LM statistic from
Equation 3, that is employed in the variable selection step of the Rasch tree method. This
approach guarantees that the selection of the best splitting variable is not affected by the
number of cutpoints offered by each candidate variable, but can make the test decision a little
conservative in small to moderate samples, as we will see in some of the following simulation
studies.

2.5. Stopping criteria

For creating a Rasch tree, the four basic steps outlined above – (1) estimating the item
parameters of a joint model, (2) testing for parameter instability, (3) selecting the splitting
variable and cutpoint and (4) splitting the sample accordingly – are repeated recursively until
a stopping criterion is reached.

Two kinds of stopping criteria are currently implemented: Splitting continues only as long as
significant parameter instability is detected. If there is no (more) significant instability with
respect to any of the covariates, the splitting stops, as was illustrated in Table 2. Thus, the
significance level – usually set to 5% – serves as the most important stopping criterion.

In addition to that, as a second stopping criterion a minimum sample size per node can be
specified. This minimal node-size should be chosen such as to provide a sufficient basis for
parameter estimation in each subsample, and should thus be increased when the number of
item parameters to be estimated is large. For all our examples, a significance level of 5% and
a minimal node-size of 20 were employed.

Finally, one should keep in mind that when a large number of covariates is available in a data
set, and all those covariates are to be tested for DIF, multiple testing becomes an issue – as
with any statistical test for DIF. To account for the fact that multiple testing might lead to
an increased false-positive rate when the number of available covariates is large, a Bonferroni
adjustment for the p value splitting criterion is applied internally (so that all p values reported
for Rasch trees throughout this paper have already been Bonferroni-corrected unless explicitly
stated otherwise).

Another issue related to stopping criteria in recursive partitioning algorithms is their potential
for overfitting: In classical algorithms (such as CART; Breiman et al. 1984) a pruning step
(i.e. cutting back branches at the bottom of the tree that do not add to the prediction accuracy
in cross-validation) is necessary to make sure that any splits detected for the learning data
do not only reflect random variation but also generalize to other samples from the same
data generating process. As opposed to these classical algorithms, the model-based recursive
partitioning approach employed here is already based on statistical inference tests (rather
than merely descriptive statistics) and uses their p values (together with several precautions
against multiple testing) for stopping before overfitting occurs (cf. also Hothorn et al. 2006).
Therefore, pruning is not necessary in this approach.

Moreover, it is important to note that our model-based recursive partitioning algorithm is not
affected by an inflation of chance due to its recursive nature. Indeed, several statistical tests
are successively conducted in a Rasch tree – but each test is conducted only if the previous
test yielded a significant result. In this sense, the recursive approach forms a closed testing
procedure, which does not lead to an inflation of chance as is well known from the literature
on multiple comparisons (Marcus, Peritz, and Gabriel 1976; Hochberg and Tamhane 1987).
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For the Rasch tree this means that the postulated significance level holds for the entire tree,
not only for each individual split. This ensures that DIF is not erroneously detected as an
artefact of the recursive nature of the algorithm.

These statistical properties are now further illustrated in a series of simulation studies.

3. Simulation studies

The following simulation studies were conducted to empirically support and illustrate the
statistical properties of the newly suggested Rasch tree method and compare it to the behavior
of the established LR test for given groups.

All simulations were conducted in the R system for statistical computing (R Development
Core Team 2012), using our own add-on package psychotree (Zeileis et al. 2012) for the
Rasch tree and the add-on package eRm (Mair and Hatzinger 2007; Mair, Hatzinger, and
Maier 2012) for the LR test. Further information on software and documentation is provided
in the section on computational details at the end of the paper.

3.1. Criterion variables

In order to evaluate whether each method correctly captured the data generating process
and to assess the computational effort, the following criterion variables were recorded in each
simulation study:

� Percentage of significant test results

Under the null hypothesis scenarios, where no DIF is simulated in the data generating
process, the percentage of significant test results reflects the type I error rate of the
method.

Under the alternative scenarios, where DIF is simulated in the data generating process,
the percentage of significant test results reflects the statistical power of the method.

� Root mean squared error (RMSE) of parameter estimation

The RMSE is computed as the root mean squared difference between the true (simu-
lated) and the estimated parameter for the third item, in which DIF is simulated in the
alternative scenarios. Its value thus indicates how well the simulated DIF is recovered
by each method. In particular, a larger RMSE is expected in situations where the true
(simulated) group structure is not recovered.

Therefore, the RMSE is of interest for comparing the performance of the methods only
in those scenarios where DIF is present and the groups are not entirely pre-defined.
Thus, for readability, the RMSE is only presented in the alternative scenarios with DIF
for simulation studies I and III.

� Adjusted Rand index (ARI) of group recovery

The adjusted Rand index (ARI, Hubert and Arabie 1985; Milligan and Cooper 1986)
is a measure for the agreement between two partitions of a data set. It is commonly
used for comparing the results of cluster analyses to each other or to the true class
membership, and is adjusted for agreement by chance.
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14 Rasch Trees: A New Method for Detecting DIF in the Rasch Model

Here, the ARI is used to measure how well the true (simulated) reference and focal
groups are recovered by each method: If the agreement between the true and the re-
covered partition is high, the ARI shows a high value up to the maximum of 1. If
the agreement is poor, the ARI shows a lower value. In particular, the ARI shows the
value 0 in cases where, e.g., two distinct reference and focal groups are simulated but
only a single group is recovered by the method – i.e. in cases where simulated DIF is
not detected.

Therefore, the ARI is also of interest only in those scenarios where DIF is present and
the groups are not entirely pre-defined. Thus, for readability, the ARI is only presented
in the alternative scenarios with DIF for simulation studies I and III as well.

The recovered partition for computing the ARI is derived in the following way: For
the LR test the recovered partition corresponds to the specified reference and focal
groups when the test shows significant DIF, and to one single group when no significant
DIF is detected. For the Rasch tree the recovered partition directly corresponds to the
terminal nodes of the trees, and – like for the LR test – one single group results when
no significant DIF is detected.

� Bias, variance and mean squared error (MSE) of cutpoint estimation

In order to assess the quality of the cutpoint estimation, which is an important aspect
of the group recovery, an additional analysis displaying the bias, variance and MSE of
the cutpoint estimation for a numeric covariate is conducted for simulation study I.

� Computation time

The average computation time for one replication in seconds is reported as an indicator
of the computational complexity of the method. Since the distribution of the compu-
tation times can be very skewed for Rasch tree (especially in those scenarios where the
optimal cupoint needs to be selected for a numeric variable), not only the mean but also
the median and maximum computation times are reported.

For the LR test the computation time was recorded for the testing step only (not for the
estimation of the Rasch model), while for the Rasch tree the entire procedure (including
the estimation of the Rasch model) was timed – which is an agreement in favor of the
LR test. Note, however, that any differences in the computation times may indicate
differences in the implementations rather than theoretical differences between the two
methods.

Computation times for the simulation studies were recorded on a multiprocessor system
with 4 AMD Opteron 6174 processors with 2.2GHz and 12 cores each. Thus, computa-
tion times on a new laptop or desktop computer with a more powerful processor may
be expected to be faster than the ones reported here, as illustrated for the application
example in Section 4.

3.2. Experimental settings

A range of experimental factors was varied in each simulation study, as described in detail
for each study below. The following settings were the same for all experiments:
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Figure 4: Person-item-map for the simulated data under the null hypothesis scenario.

� Number of replications

5000 replications were conducted for each experimental scenario to ensure an appropriate
precision of the estimates for type I error and power.

� Number of items

The number of items was m = 20 for all studies.

� Number of observations

The overall sample size was n = 500 for all studies.

Depending on whether DIF or ability differences were simulated, either all responses
were generated with the same item and person parameters, or with item and person
parameters differing between the groups.

� Item parameters

The item difficulty parameters were arbitrarily chosen to be:

βT = (0,−0.5, 0,−0.5,−1,−2,−3,−2,−1, 0,+1,+2,+3,+2,+1,+2,+1, 0,−1, 0).

This choice of item parameters was intended to ensure an adequate overlap between the
item and person parameter distributions, as illustrated for one sample from a N(0, 1)
person parameter distribution in the person-item-map in Figure 4.

When DIF was simulated, these were the item parameters for the reference group. For
the focal group, the value δ was added to the third item parameter.

The size of δ was varied between 0 and 1.5 in all simulation studies. This choice of δ was
made to ensure well comparable results for the LR test and Rasch tree in all scenarios.

� Person parameters
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16 Rasch Trees: A New Method for Detecting DIF in the Rasch Model

The person ability parameters were drawn from a standard normal distribution N(0, 1)
when no ability difference was simulated.

When an ability difference was simulated, the person parameter distributions for the
reference and focal groups were simulated with a difference of ∆ between their means by
drawing the person ability parameters from N(0− ∆

2 , 1) and N(0 + ∆
2 , 1) respectively.

Negative values of ∆ correspond to a scenario where both the DIF and the ability
difference disadvantage the focal group, whereas positive values of ∆ correspond to a
scenario where the DIF disadvantages the focal group while the ability difference favors
it.

The ability difference ∆ was varied between −0.5 and 0.5 in simulation experiment II
and fixed to 0 in all other experiments.

The choice of 0.5 for ∆ was intended to ensure that there remains an adequate overlap
between the item and person parameter distributions after shifting the person parameter
distributions.

3.3. Simulation study I

Rationale of simulation study I

The aim of simulation study I is to illustrate the performance of the Rasch tree and the LR
test under the null hypothesis of no DIF and the alternative of DIF being present.

An important aspect of this comparison is the difference between LR test and Rasch tree
when handling numeric covariates: For the LR test, reference and focal groups need to be
pre-specified. Usually numeric covariates are split at the median to define the two groups.
This approach was chosen here for the LR test.

As opposed to that, the Rasch tree has to search over all possible binary partitions of the
numeric covariate. This is a disadvantage when compared to the LR test for two given
groups when the groups are correctly specified, but may be an advantage when the correct
specification is not available.

Moreover, the results of this simulation study would show any inflating effect that the ex-
haustive search over all possible cutpoints may have on the type I error rate of the method.

Design of simulation study I

The following experimental factors were varied in this simulation experiment:

� Effect size of DIF

δ = 0 corresponds to the null hypothesis scenario with no DIF, where all responses are
generated with the same item parameters. In this scenario, the percentage of significant
test results reflects the type I error rate of the method.

δ = 1.5 corresponds to the alternative scenario with DIF, where the third item is more
difficult for the focal group. In this scenario, the percentage of significant test results
reflects the statistical power of the method.
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� Predictor type

The type of predictor variable that defines the reference and focal groups was either
binary or numeric. The binary predictor variable was sampled from a Binomial distri-
bution with equal class probabilities. The numeric predictor variable was sampled from
a discrete uniform distribution over the values 0 to 100.

When the predictor type was binary, DIF was simulated between the two groups cor-
responding directly to the two categories of the binary covariate. When the predictor
type was numeric, DIF was simulated between two groups specified by values up to
the cutpoint and above the cutpoint (the choices of which are described below) in the
numeric covariate.

In this simulation experiment only one covariate – either the binary or the numeric one
– was provided to the Rasch tree and LR test (whereas in simulation study III both
covariates are provided so that the selection of the correct splitting variable becomes an
additional part of the task).

� Cutpoint location

For the binary covariate, there is only one possible cutpoint by definition. For the
numeric covariate, the reference and focal groups were created either by splitting at the
median (situated around the value 50) or at the value 80. This variation was chosen to
mimic a pattern of DIF in a numeric variable like age, where the difficulty of an item is
higher for subjects over a certain age – but not necessarily the median age.

� Test specification

For the binary covariate, the groups to be tested for DIF correspond directly to the
two levels of the covariate and were thus directly provided to both the LR test and the
Rasch tree. For the numeric covariate, the LR test was specified such that the groups to
be tested for DIF were defined by a median split, whereas the Rasch tree had to search
for the optimal cutpoint.

Note that in this simulation scenario the LR test has an advantage when the true
cutpoint is the median, because in these scenarios it was provided with the correct
partition, whereas the Rasch tree may have an advantage when the true cutpoint is not
the median (further scenarios where the data-driven cutpoint selection of the Rasch tree
may be an advantage are investigated in simulation study III).

Results of simulation study I

� Type I error and power

As can be seen in Table 3, both the LR test and the Rasch tree roughly hold the specified
5% α-level under the null hypothesis of no DIF. Instead of an artificial inflation of the
type I error rate due to the exhaustive search for the optimal cutpoint, the Rasch
tree even behaves conservatively in the two scenarios involving the numeric covariate.
(This is a known behavior of the underlying maximum LM test, where for moderate
sample sizes the discrete empirical process cannot fluctuate as much as its continuous
asymptotic counterpart, the Brownian bridge, cf. Section 2.2. Besides the sample size,
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Method Predictor Cutpoint Type I error CPU time
med mean max

LR test binary 0.054 2.94 2.98 5.27
numeric median 0.055 2.94 2.99 5.25

80 0.054 2.22 2.26 3.34
Rasch tree binary 0.049 0.68 0.74 2.70

numeric median 0.038 0.72 3.22 146.22
80 0.035 0.48 1.91 72.54

Table 3: Results of simulation study I – no DIF.

Method Predictor Cutpoint Power RMSE ARI CPU time
med mean max

LR test binary 0.998 0.211 0.998 2.66 2.71 4.32
numeric median 0.999 0.213 0.997 2.72 2.76 4.52

80 0.282 0.594 0.047 2.28 2.32 3.51
Rasch tree binary 0.998 0.212 0.998 1.88 1.91 3.38

numeric median 0.979 0.326 0.883 43.18 44.46 103.03
80 0.751 0.410 0.650 41.25 33.13 151.08

Table 4: Results of simulation study I – DIF.

the asymptotic behavior of the maximum LM statistic is also affected by the number of
potential cutpoints. For a more detailed discussion of this issue – and how to address
it if the number of potential cutpoints is very low, e.g., for numeric variables measured
on a coarse grid, but also for ordinal partitioning variables – see Hothorn and Zeileis
(2008) and Merkle, Fan, and Zeileis (2013).)

Under the alternative hypothesis of DIF, Table 4 shows that both the LR test and the
Rasch tree have a very high power when the reference and focal groups correspond to the
two categories of a binary covariate. When the reference and focal groups correspond to
the values up to the median and above the median of a numeric covariate (which directly
corresponds to the specification of the LR test, whereas the Rasch tree needs to search
for the optimal cutpoint), the power of the LR test is somewhat higher than that of the
Rasch tree. However, when the reference and focal groups correspond to values up to
the value 80 and above the value 80 (i.e. when the LR test is misspecified, whereas the
Rasch tree again searches for the optimal cutpoint), the power of the LR test (0.282) is
much lower than for the Rasch tree (0.751). This indicates that the Rasch tree is well
able to identify the DIF, whereas the LR test is misled by the wrong specification of
the median split.

� RMSE and ARI

(Note that for the RMSE low values are good because they indicate that the simulated
item parameters were well recovered, whereas for the ARI high values are good because
they indicate a high overlap between the simulated and detected groups.)

Table 4 shows that under the alternative hypothesis of DIF in the scenario where the
reference and focal groups correspond to the values up to the median and above the
median of a numeric covariate (which again directly corresponds to the specification of
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Avg. estimated
Method Cutpoint Cutpoint Bias Variance MSE

LR test median 50.02 0.00 5.01 5.01
80 50.04 -29.96 5.10 902.42

Rasch tree median 49.94 -0.08 33.09 33.10
80 78.42 -1.58 83.03 85.52

Table 5: Results of simulation study I – Cutpoint estimation in numeric predictor.

the LR test, whereas the Rasch tree needs to search for the optimal cutpoint), the RMSE
of the LR test (0.213) is lower than that of the Rasch tree (0.326) and the ARI of the LR
test (0.997) is slightly higher than that of the Rasch tree (0.883). The reason for this is
that the LR test is provided with the correct specification of the groups corresponding
to the two different item parameter values, whereas the Rasch tree has to search for the
correct groups and in some replications will miss them.

However, in the scenario where the reference and focal groups correspond to values up
to the value 80 and above the value 80 (i.e. when the LR test is misspecified, whereas
the Rasch tree again searches for the optimal cutpoint), the RMSE of the Rasch tree
(0.41) is lower than that of the LR test (0.594) and the ARI of the Rasch tree (0.65) is
much higher than that of the LR test (0.047). This indicates that the Rasch tree is still
able to identify the correct groups corresponding to the two different item parameter
values in many cases, whereas the LR test is misled by the wrong specification of the
median split.

� Cutpoint estimation

Table 5 gives a more detailed analysis of the cutpoint estimation, that is a crucial
part of correctly recovering reference and focal group. For the LR test, where the
median is always specified as the cutpoint in the numeric variable, the average estimated
cutpoint is close to the expected median 50. For the Rasch tree, on the other hand,
the average estimated cutpoint reflects the actual simulation design with an average
estimated cutpoint close to 50 when the true cutpoint is the median and an average
estimated cutpoint close to 80 when the true cutpoint is 80.

Accordingly, the LR test produces an unbiased estimate by definition when the true
cutpoint is the median, but shows a systematic bias when the true cutpoint is not the
median. Due to its data-driven approach, the Rasch tree produces virtually unbiased
estimates in both scenarios. (The slight negative bias in the second scenario is only
due to the fact that the true cutpoint 80 is rather close to the upper boundary of the
partitioning variable, that ranges from 1 to 100. Hence, the sampling distribution of
the cutpoint estimator is somewhat left-skewed so that its mean is slightly lower than
80, whereas its median is exactly 80.)

The variance of the estimation is larger for the Rasch tree than for the LR test, as
expected (for the LR test, the variance over the iterations merely reflects the variance
of the sample median whereas for the Rasch tree, the variance actually includes the
variance of the data-driven cutpoint estimation). However, when considering the com-
bination of squared bias and variance in the MSE, the systematic bias of the LR test in
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the scenario where the true cutpoint is not the median results in the – by far – highest
MSE.

� Computation time

For those scenarios with the binary covariate the computation times for the Rasch tree
are substantially lower than for the LR test in Tables 3 and 4, as is to be expected from
the test construction principles outlined in Section 2.3. On the other hand, in those
scenarios where the Rasch tree needs to search over all possible cutpoints in the numeric
variable, the maximum (and to some extent the mean) computation times are already
increased under the null hypothesis of no DIF, as displayed in Table 3, whereas the
median computation times are notably increased only under the alternative hypothesis
of DIF, as displayed in Table 4. This is to be expected from the construction of the Rasch
tree method, where the computationally expensive selection of the optimal cutpoint is
only conducted in those cases where significant parameter instability is detected in the
first place, as outlined in Sections 2.3 and 2.4. Therefore, the computation times for
the Rasch tree method are high only in those scenarios where significant parameter
instability is present and the tree needs to search over all possible cutpoints in the
numeric covariate, whereas the computational effort is very low in all other scenarios.

Conclusions from simulation study I

From the results of simulation study I it becomes clear that – despite the exhaustive search
for the optimal cutpoint in numeric variables – the Rasch tree approach is not affected by an
inflation of the type I error rate under the null hypothesis. Under the alternative hypothesis,
where DIF is present, it shows a power comparable to that of the LR test when the correct
partition is known and provided to the LR test, but a notably higher power (and also a better
recovery of the simulated reference and focal groups, as indicated by RMSE, ARI and the
quality of the cutpoint estimation) when the correct partition is not known. For practical
applications, this means that the LR test may miss DIF in a numeric variable due to the
wrong – yet very common – specification based on the median split, whereas the Rasch tree
approach has a much higher chance of detecting DIF in this situation.

3.4. Simulation study II

Rationale of simulation study II

The aim of simulation study II is to illustrate the effect of a true ability difference between
reference and focal group on the type I error rate and power of the LR test and Rasch tree.
In particular, a test for DIF should not be misled towards an inflated type I error rate by an
ability difference between reference and focal group when no DIF is present.

Design of simulation study II

The following experimental factors were varied in this simulation experiment:

� Effect size of DIF
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Method Ability difference Type I error CPU time
med mean max

LR test −0.5 0.059 1.84 1.86 2.65
+0.5 0.055 1.88 1.90 2.58

Rasch tree −0.5 0.051 0.56 0.61 1.93
+0.5 0.043 0.58 0.61 1.96

Table 6: Results of simulation study II – no DIF.

δ = 0 again corresponds to the null hypothesis scenario with no DIF, where all re-
sponses are generated with the same item parameters. In this scenario, the percentage
of significant test results reflects the type I error rate of the method.

δ = 1.5 again corresponds to the alternative scenario with DIF, where the third item
is more difficult for the focal group. In this scenario, the percentage of significant test
results reflects the statistical power of the method.

� Ability difference

As opposed to simulation study I, where there was no ability difference between the
groups, now the reference and focal groups also differ in their mean abilities by the
value ∆ = −0.5 or 0.5.

A binary predictor variable, sampled again from a Binomial distribution with equal class
probabilities, was used in all scenarios of simulation study II.

Results of simulation study II

� Type I error and power

As can be seen in Table 6, both the LR test and the Rasch tree roughly hold the specified
5% α-level under the null hypothesis of no DIF. Instead of an artificial inflation of the
type I error rate due to the ability difference between reference and focal group, the
Rasch tree even behaves somewhat conservatively in the scenario where the ability
difference ∆ = 0.5 is in favor of the focal group. (The reason for this seems to be
that with ∆ = 0.5 the extreme item parameters were not well enough covered by the
person distributions in both groups, so that their estimates show a higher variance. The
resulting hetereoskedasticity in the cumulative sum process apparently renders the LM
test employed in the Rasch tree, whose asymptotics do not take effect as quickly as for
the LR test, somewhat conservative.)

Under the alternative hypothesis, where both an ability difference and DIF are present,
Table 7 shows that both the LR test and the Rasch tree have a very high power to
detect the DIF.

� Computation time

The computation times again show an advantage of the Rasch tree in the presence of
the binary covariate, especially in Table 6 under the null hypothesis.
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Method Ability difference Power CPU time
med mean max

LR test −0.5 0.997 2.52 2.52 3.61
+0.5 0.998 2.41 2.41 3.08

Rasch tree −0.5 0.997 1.62 1.61 2.17
+0.5 0.998 1.63 1.62 2.33

Table 7: Results of simulation study II – DIF.

Conclusions from simulation study II

Both the LR test and the Rasch tree approach are not misled towards an increased type I
error rate in the presence of ability differences and still show a high power for detecting DIF
in the alternative scenarios of this simulation study, where the correct partition was provided
by the binary predictor variable.

3.5. Simulation study III

Rationale of simulation study III

Whereas the LR test can only detect DIF in previously specified groups, the Rasch tree
searches over all provided covariates and all possible cutpoints. Therefore, the aim of simula-
tion study III is to illustrate how LR test and Rasch tree perform in the presence of focal and
reference groups that result from non-standard patterns, such as non-median splits, u-shaped
patterns and interactions of covariates – none of which would typically be specified in a LR
test.

Since in this simulation study both covariates are presented at a time, another aspect of
interest is a potential inflating effect that the multiple testing over more than one covariate
may have on the type I error rate of the methods.

Design of simulation study III

The following experimental factors were varied in this simulation experiment:

� Effect size of DIF

δ = 0 again corresponds to the null hypothesis scenario with no DIF, where all re-
sponses are generated with the same item parameters. In this scenario, the percentage
of significant test results reflects the type I error rate of the method.

δ = 1.5 again corresponds to the alternative scenario with DIF, where the third item
is more difficult for the focal group. In this scenario, the percentage of significant test
results reflects the statistical power of the method.

� Pattern of reference and focal groups

When the pattern was binary, DIF was simulated between the two groups corresponding
directly to the two categories of the binary covariate, like in simulation studies I and II.
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When the pattern was numeric, DIF was simulated between two groups specified by a
value of the numeric covariate up to and above a certain cutpoint (the choices of which
are described below), like in simulation study I.

When the pattern was u-shaped, DIF was simulated between two groups specified by
values of the numeric covariate up to the value 20 and from the value 80 vs. values
between 20 and 80. This variation was chosen to mimic a pattern of DIF in a numeric
variable like age, where DIF is present for young and old subjects as opposed to middle-
aged subjects.

When the pattern was interaction, DIF was simulated between two groups specified by
those observations with a value of 1 in the binary covariate and a value of the numeric
covariate above a certain cutpoint (the choices of which are described below) vs. all
other observations. This variation was chosen to mimic a pattern of DIF that depends
on more than one variable, such as a combination of age and gender.

� Cutpoint location

In those patterns involving the numeric covariate, the groups were again created either
by splitting at the median (situated around the value 50) or at the value 80. This vari-
ation was again chosen to mimic a pattern of DIF in a numeric variable like age, where
the difficulty of an item is higher for subjects over a certain age – but not necessarily
the median age.

� Test specification

For the LR test, again two typical specifications were made, where either the two groups
to be tested corresponded directly to the two levels of the binary covariate or the two
groups were specified by a median split in the numeric covariate. These specifications
coincide with the binary pattern and the numeric pattern with median split, whereas
they can be considered as misspecifications for the numeric pattern with a split in
another cutpoint as well as for the u-shaped and the interaction patterns.

For the Rasch tree no specification is necessary.

The binary and numeric covariates were sampled from the same distributions as described
before. Moreover, in this experiment – as opposed to the previous ones – both covariates
were provided to the methods in each replication (one at at time to the LR test and both
simultaneously to the Rasch tree).

Under these circumstances the results for the type I error rate and power of the two methods
would not be directly comparable if the Rasch trees were computed with the suggested Bon-
ferroni adjustment but the LR tests were not, because both methods are provided with both
covariates and are thus equally affected by multiple testing. Therefore, we have implemented
a Bonferroni adjustment for the p values resulting from the LR test, too, and display all
results with and without Bonferroni adjustment for both methods.

Note also that the fact that both covariates are provided in each replication means that for the
Rasch tree the selection of the correct splitting variable(s) is now part of the task, whereas for
the LR test, where a pre-specification of the reference and focal groups is necessary, it means
that in some scenarios the test was computed for the “wrong” variable (which corresponds to
a null hypothesis scenario, so that the reported power actually reflects the type I error rate
in these scenarios).
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Type I error
Method Pattern Cutpoint Specification with Bonf. adj. without Bonf. adj.

LR test binary binary 0.027 0.054
numeric 0.027 0.053

numeric median binary 0.026 0.049
numeric 0.025 0.047

80 binary 0.031 0.054
numeric 0.026 0.047

u-shaped binary 0.030 0.053
numeric 0.025 0.052

interaction median binary 0.028 0.057
numeric 0.031 0.055

80 binary 0.025 0.052
numeric 0.025 0.051

Rasch tree binary 0.038 0.080
numeric median 0.040 0.082

80 0.043 0.088
u-shaped 0.040 0.079
interaction median 0.039 0.088

80 0.037 0.083

Table 8: Results of simulation study III – no DIF.

The last point that should be noted for this experiment is that the power is no longer the
ideal measure to compare the performance of the two methods, especially in those scenarios
where the correct pattern of reference and focal groups can only be replicated by means of
more than one split in one or both covariates, because the way the power is computed for
both methods makes it hard to compare them directly in these complex scenarios: For the
LR test the power is computed as the percentage of replications in which a test for DIF for
the two pre-specified groups returned a significant result. For the Rasch tree, however, the
power is computed as the percentage of replications in which at least one split is made by the
tree – which indicates whether any DIF is detected at all, but does not reflect the fact that
the tree actually provides much more information about the group pattern. Therefore, in this
experiment it is particularly helpful to consider not only the results for the power but also
for RMSE and the ARI, that express how well the simulated group pattern was recovered.

To save space, the computation times will not be presented for this simulation study because
they are no longer comparable due to the fact that the Rasch tree had to process both predictor
variables simultaneously in each scenario, whereas the LR test only processed one variable at
a time.

Results of simulation study III

� Type I error

As can be seen in Table 8 for the type I error rates resulting from the Bonferroni adjusted
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with Bonf. adj. without Bonf. adj.
Method Pattern Cutpoint Specification Power RMSE ARI Power RMSE ARI

LR test binary binary 0.996 0.214 0.996 0.998 0.211 0.998
numeric 0.026 0.765 0.000 0.052 0.766 0.000

numeric median binary 0.025 0.766 0.000 0.050 0.766 0.000
numeric 0.996 0.217 0.993 0.999 0.214 0.996

80 binary 0.029 0.611 0.000 0.052 0.612 0.000
numeric 0.189 0.600 0.032 0.280 0.595 0.047

u-shaped binary 0.027 0.753 0.000 0.051 0.754 0.000
numeric 0.026 0.754 0.000 0.050 0.754 0.000

interaction median binary 0.437 0.628 0.108 0.556 0.616 0.137
numeric 0.439 0.627 0.114 0.551 0.615 0.142

80 binary 0.063 0.472 0.003 0.105 0.473 0.004
numeric 0.058 0.471 0.003 0.109 0.472 0.005

Rasch tree binary 0.995 0.222 0.985 0.998 0.219 0.988
numeric median 0.964 0.339 0.864 0.980 0.333 0.862

80 0.658 0.443 0.560 0.762 0.417 0.624
u-shaped 0.515 0.644 0.277 0.651 0.607 0.354
interaction median 0.514 0.579 0.188 0.650 0.552 0.238

80 0.169 0.469 0.053 0.265 0.466 0.078

Table 9: Results of simulation study III – DIF.

p values (left column for type I error), the Rasch tree does not exceed the specified 5%
α-level but again behaves slightly conservatively when both variables are presented at
a time. The corresponding type I error rates for the LR test have to be added for the
binary and the numeric splitting variable in each scenario for comparison, in which case
the LR test roughly holds the specified 5% α-level when taking both variables together.

If no Bonferroni adjustment is applied, the type I error rates in Table 8 (right column
for type I error) indicate that the Rasch tree shows an exceeded type I error rate of
around 8% when both variables are presented at the same time. The corresponding
results for the LR test show an exceeded type I error rate of about 10% when taking
both variables together.

The results support the widely known fact that Bonferroni adjustment is rather con-
servative (and it may be worth considering other options for the Rasch tree), but that
some type of adjustment is necessary for any method when more than one covariate is
investigated for DIF at the same time.

� Power, RMSE and ARI

As can be seen in Table 9, the power of the LR test depends strongly on the correspon-
dence between the simulated scenario and the specification of the test:

When the reference and focal groups correspond directly to the two categories of the
binary variable and the binary variable is used for specifying the groups in the LR test,
or when the reference and focal groups correspond to values up to the median and above
the median of the numeric variable and a median split is used for specifying the groups
in the LR test, the power is very high, just like in simulation study I.
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If, on the other hand, the wrong variable is provided to the LR test, like in those
scenarios where the simulated pattern is binary but the variable provided to the LR
test is the numeric one and vice versa, its power reflects the type I error rate under the
null hypothesis (of about 2.5% with Bonferroni adjustment, left column for the power,
and about 5% without Bonferroni adjustment, right column for the power in Table 9),
as is to be expected.

The more interesting results correspond to those scenarios where focal and reference
groups are defined by non-median splits, u-shaped patterns and combinations of covari-
ates. (For readability, we will only refer to the results for the unadjusted p values from
the right columns in Table 9 in the following, because the unadjusted results are directly
comparable to those of simulation study I, but of course the Bonferroni adjusted results
show the same pattern):

When the reference and focal groups correspond to a split in the numeric variable that
is not located at the median, the LR test has a much lower power than the Rasch tree
(0.280 vs. 0.762), just like in simulation study I (where any numerical differences in the
criterion variables are only due to random variation).

The disadvantage of the LR test is even more pronounced when the reference and focal
groups are defined by a u-shaped pattern in the numeric variable (0.050 vs. 0.651), in
which case the power of the LR test is at the same level as under the null hypothesis
while the Rasch tree is still able to detect the DIF in many cases.

For the interaction pattern in the scenario where the interaction is formed with a median
split in the numeric variable, the LR test still has a rather large power, no matter
whether it uses the binary or the numeric variable for defining the groups (0.556 using
only the binary and 0.551 using only the numeric variable for defining the groups),
because either split creates one pure group and one group for which about half of the
observations have been generated with a different item parameter, so that the LR test
still has a good chance to detect the DIF based on either variable alone. Yet the power
of the Rasch tree in this scenario is notably higher (0.650).

While the power only reflects whether any DIF was detected at all, however, the cor-
responding RMSE (where lower values indicate better recovery of the simulated item
parameters) and ARI (where higher values indicate better recovery of the simulated
groups) indicate more clearly whether the correct group pattern was recovered:

The RMSE for the Rasch tree (0.552) is notably lower than for the LR test (0.616 using
only the binary and 0.615 using only the numeric variable for defining the groups). The
ARI, on the other hand, is higher for the Rasch tree (0.238) than for the LR test (0.137
using only the binary and 0.142 using only the numeric variable for defining the groups).

For the most complicated interaction pattern, where the interaction is formed with a
split at the value 80 of the numeric variable, the results in Table 9 show that the power
of the LR test is now even lower (0.105 using only the binary and 0.109 using only the
numeric variable for defining the groups). The power of the Rasch tree in this most
complicated scenario is also low (0.265), but more than twice the size of that of the
LR test. (The reason for the low overall power in this scenario is that the number of
observations in the focal group is now only about 50, as compared to about 125 in the
median split scenario. This pattern is harder to detect for both methods but again
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particularly hard for the LR test that cannot search for the optimal cutpoint like the
Rasch tree, but is restricted to the arbitrarily pre-specified median split.)

The RMSE for the Rasch tree (0.466) is again a little lower than for the LR test (0.473
using only the binary and 0.472 using only the numeric variable for defining the groups).
The ARI, on the other hand, is notably higher for the Rasch tree (0.078) than for the LR
test (0.004 using only the binary and 0.005 using only the numeric variable for defining
the groups).

Note that the reported ARI values actually underestimate the group recovery of the
Rasch tree in all settings where the two simulated groups are described by three final
nodes in the recursive partitioning structure of the Rasch tree (i.e., in the u-shaped and
interaction scenarios), because the ARI cannot reach its theoretical maximum of 1 when
the number of simulated and recovered groups is not equal. Yet, the ARI values for the
Rasch tree are still notably higher than those for the LR test, especially in the u-shaped
scenario where the LR test completely fails to detect the group difference.

Conclusions from simulation study III

Due to the suggested Bonferroni adjustment of the p values, the type I error rates for the
Rasch tree method are not inflated even when more than one covariate is presented at the
same time. Since multiple testing affects any test for DIF when more than one covariate is
investigated at the same time, it should be noted that some type of α-adjustment is necessary
for any DIF detection method in this case.

With respect to power, simulation study III has shown that in all scenarios where the typical
specification for the LR test does not correspond to the actual (but in reality unknown)
pattern of DIF present in the data, the more flexible Rasch tree approach clearly outperforms
the standard LR test – both with respect to the power for detecting DIF in the first place
and with respect to correctly recovering the groups with different item parameters, which is
of high interest in practical applications.

To further illustrate the practical importance of this finding, we will now show in a small
application example that a non-standard pattern of DIF – such as an interaction of two
variables – is interesting not only from a theoretical point of view for simulation studies, but
is also a realistic scenario for empirical data.

4. Application example

An online quiz for testing one’s general knowledge was conducted by the weekly German news
magazine SPIEGEL in 2009. Overall, about 700,000 respondents participated in the quiz and
answered a set of sociodemographic questions. The general knowledge quiz consisted of a
total of 45 items from five different domains: politics, history, economy, culture, and natural
sciences. For each domain, four different sets of nine items were available, that were randomly
assigned to the participants. A thorough discussion and analysis of the original data set is
provided in Trepte and Verbeet (2010).

For further illustration of the Rasch tree method, we consider only an exemplary selection of
subjects, covariates and items: To limit the number of participants to a sample size realistic
for psychological research, we included only university students enrolled in the federal state
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Variable Summary statistics

Gender male: 415 female: 641
xmin x0.25 xmed x̄ x0.75 xmax

Age 18 21 23 23.09 25 40

Table 10: Summary statistics for the considered covariates.

of Bavaria, who had been assigned questionnaire number 20. This sample still contains
1056 complete cases, that were employed in the following analysis. To avoid any obvious
multidimensionality (the data were originally analyzed as if they were unidimensional, but
from the construction of the quiz it appears that the different domains should be treated
as separate dimensions), we also limited our consideration to only one domain – history –
with nine items. To test for DIF in this supposedly unidimensional scale, we employed the
covariates gender and age, whose summary statistics are provided in Table 10.

The nine items included in the history knowledge scale (with the correct answers) were:

1. The Roman naval supremacy was established through. . . – . . . the abolition of Carthage.

2. In which century did the Thirty Years’ War take place? – The 17th century.

3. Which form of government is associated with the French King Louis XIV? – Absolutism.

4. What island did Napoleon die on in exile? – St. Helena.

5. How many percent of the votes did the NSDAP receive in the 1928 elections of the
German Reichstag? – About 3 percent.

6. How many Jews were killed by the Nazis during the Holocaust? – About 6 Million.

7. Who is this? – (Picture of Johannes Rau, former German federal president.)

8. Which of the following countries is not a member of the EU? – Croatia1.

9. How did Mao Zedong expand his power in China? – The Long March.

The Rasch tree resulting for this exemplary data set is depicted in Figure 5. The computation
time for this analysis was 1.768 seconds on the server and 1.064 seconds on a laptop with an
Intel Core processor with 2.53GHz.

The mere fact that the Rasch tree displays more than one terminal node means that mea-
surement invariance cannot be assumed and the history knowledge of the participants should
not be compared by means of one joint Rasch model. In particular, Figure 5 shows that DIF
is present between females, males up to the age of 22, and males above the age of 22. The
Rasch tree result thus illustrates that it is an interaction of gender and age that determines
the groups exhibiting DIF in this exemplary data set.

With standard approaches, this pattern could only be detected if the interaction term was
explicitly included in the model or the respective groups (including the correct cutpoint in
the numeric variable) were explicitly provided in the specification of the test. However, in
practice usually only DIF in single variables is investigated, so that an interaction structure
like in this example would not be detected.

1At the time the quiz was conducted, Croatia was not yet a member of the EU.
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Figure 5: Rasch tree for the general knowledge quiz example.

With respect to the items affected by the DIF, it is most prominent from Figure 5 that,
relative to the other items, the third item (that was manually highlighted here for illustration
purposes) is easier for females and younger males as compared to older males. Taking this
item as an example, the content of the item (it refers to the form of government associated
with the French King Louis XIV) together with the information which subjects find the item
easier or harder to solve (it is easier for females and younger males) can help content experts
generate hypotheses about possible sources of the DIF (such as a higher exposure to the figure
or era of Louis XIV in history or french class – or in recent TV shows).

5. Discussion and outlook

We have proposed a new method for detecting DIF in the Rasch model, that combines the
advantages of previous approaches for given groups and latent classes: Groups of subjects
exhibiting DIF are automatically detected, but remain directly interpretable with respect to
their covariate values. In particular, in numeric covariates it is no longer necessary to pre-
specify a cutpoint for defining focal and reference groups, but the cutpoint associated with the
strongest parameter difference is detected automatically. Thus, DIF in a numeric covariate
cannot go unnoticed due to a suboptimal definition of the groups.

Of course, any covariate-based approach can only detect all groups of subjects with DIF
when all relevant covariates are available for the analysis. If a covariate causing DIF has
been missed in the data aquisition, the algorithm has no chance to detect it (yet the DIF
may be detected if another covariate, that is correlated with the missing one, is available
for splitting). Moreover, just like different combinations of covariates can yield the same
prediction in regression models, different combinations of covariates may also predict the
parameter profiles similarly well as the ones selected by a Rasch tree for a given sample.
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Therefore it should be noted that – as with all observational data – a covariate used for
splitting cannot simply be interpreted as the causal source of the observed DIF, because the
observed splitting variable may only serve as a proxy for the unobserved (and potentially
unobservable) true cause. For example, if DIF is detected between men and women, gender
should not be considered as the actual cause of the DIF, but as an indicator of a variety of
educational and social influences.

Beside the use of person covariates to detect groups of subjects with different item parameters,
the method suggested here is also applicable for detecting DIF over time (in the sense of item
drift). For this purpose, the variable time (measured numerically or at two or more discrete
time points) can be employed for splitting just like any other covariate. As a result, one or
more splits in the Rasch tree would indicate an instability in the item parameters over time,
which would need to be accounted for in longitudinal comparisons.

In order to help applied researchers with the interpretation of DIF for specific items and spe-
cific groups, in the future we will try to provide additional means of visualization and post-hoc
item-wise comparisons after the global DIF tests conducted by the Rasch tree. Moreover, we
are currently working on generalizations of the Rasch tree method to extensions of the Rasch
model. In particular, a generalization of the Rasch tree method to the partial credit model
(Masters 1982) will be used to detect both differential item and differential step functioning
(Penfield 2007; Penfield, Alvarez, and Lee 2009). Other interesting extensions that we will try
to address in future work are the generalization to the 2PL or Birnbaum model (Birnbaum
1968), that may prove helpful for the analysis of nonuniform DIF, and the generalization to a
2-parameter logistic model including a location and a guessing parameter, because this would
allow the detection of differential guessing behavior in the case of multiple choice items (also
investigated by Ben-Shakhar and Sinai 1991 and Westers and Kelderman 1992). A related
method for detecting different preferences between groups of subjects in the Bradley-Terry
model (Strobl, Wickelmaier, and Zeileis 2011) is already implemented in the psychotree

package.

Computational details

Our results were obtained using the R system for statistical computing (R Development
Core Team 2012), version 3.2.0, and the add-on package psychotree (Zeileis et al. 2012),
version 0.12-3.

For the simulation studies, we also employed functions from the add-on packages eRm 0.15-4.
(Mair and Hatzinger 2007; Mair et al. 2012) and ltm 1.0-0 (Rizopoulos 2006, 2012). The
person-item-map in Figure 4 was drawn by means of the plotPImap function available in the
eRm package. Package mclust 4.3 (Fraley and Raftery 2002, 2012) was utilized for computing
the adjusted Rand index.

All packages are freely available under the General Public License from the Comprehensive
R Archive Network. A vignette describing the practical application of the Rasch tree method
is available along with the psychotree package at http://CRAN.R-project.org/package=

psychotree/.
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