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Recursive Partitioning

Morgan and Sonquist (1963): Automated Interaction Detection.

Many variants have been (and still are) published, the majority of which are special

cases of a simple two-stage algorithm:

Step 1: partition the observations by univariate splits in a recursive way

Step 2: fit a constant model in each cell of the resulting partition.

Most prominent representatives: ‘CART’ (Breiman et al., 1984) and ‘C4.5’ (Quinlan,

1993), both implementing an exhaustive search.



Two Fundamental Problems

Overfitting: Mingers (1987) notes that the algorithm

[. . . ] has no concept of statistical significance, and so cannot distinguish

between a significant and an insignificant improvement in the information

measure.

Selection Bias: Exhaustive search methods suffer from a severe selection bias

towards covariates with many possible splits and / or missing values.



A Statistical Approach

We enter at the point where White and Liu (1994) demand for

[. . . ] a statistical approach [to recursive partitioning] which takes into account

the distributional properties of the measures.

and present a unified framework embedding recursive binary partitioning into the well

defined theory of

Part I: permutation tests developed by Strasser and Weber (1999),

Part II: tests for parameter instability in (parametric) regression models.



The Regression Problem

The distribution of a (possibly multivariate) response Y ∈ Y is to be regressed on a

m-dimensional covariate vector X = (X1, . . . , Xm) ∈ X = X1 × · · · × Xm:

D(Y|X) = D(Y|X1, . . . , Xm) = D(Y|f(X1, . . . , Xm)),

based on a learning sample of n observations

Ln = {(Yi, X1i, . . . , Xmi); i = 1, . . . , n}.

possibly with case counts w = (w1, . . . , wn). We are interested in estimating f .



A Generic Algorithm

1. For case weights w test the global null hypothesis of independence between any

of the m covariates and the response. Stop if this hypothesis cannot be rejected.

Otherwise select the covariate Xj∗ with strongest association to Y.

2. Choose a set A∗ ⊂ Xj∗ in order to split Xj∗ into two disjoint sets A∗ and Xj∗ \
A∗. The case weights wleft and wright determine the two subgroups with wleft,i =
wiI(Xj∗i ∈ A∗) and wright,i = wiI(Xj∗i 6∈ A∗) for all i = 1, . . . , n (I(·) denotes

the indicator function).

3. Recursively repeat steps 1 and 2 with modified case weights wleft and wright,

respectively.



Recursive Partitioning by Conditional Inference

In each node identified by case weights w, the global hypothesis of independence is

formulated in terms of the m partial hypotheses Hj
0 : D(Y|Xj) = D(Y) with global

null hypothesis H0 =
⋂m

j=1 Hj
0 .

Stop recursion when H0 can not be rejected at a pre-specified level α.

Otherwise: Measure the association between Y and each of the covariates Xj, j =
1, . . . ,m, by test statistics or P -values indicating the deviation from the partial

hypotheses Hj
0 .



Linear Statistics

Use a (multivariate) linear statistic

Tj(Ln,w) = vec

(
n∑

i=1

wigj(Xji)h(Yi, (Y1, . . . ,Yn))>
)
∈ Rpjq

with gj a transformation of Xj and influence function h : Y × Yn → Rq. This type

of statistics was suggested by Strasser and Weber (1999).



Conditional Expectation and Covariance under Hj
0

µj = E(Tj(Ln,w)|S(Ln,w)) = vec

((
n∑

i=1

wigj(Xji)

)
E(h|S(Ln,w))>

)
,

Σj = V(Tj(Ln,w)|S(Ln,w))

=
w·

w· − 1
V(h|S(Ln,w))⊗

(∑
i

wigj(Xji)⊗ wigj(Xji)>
)

− 1
w· − 1

V(h|S(Ln,w))⊗

(∑
i

wigj(Xji)

)
⊗

(∑
i

wigj(Xji)

)>

with w· =
∑n

i=1 wi.



Test Statistics

A (multivariate) linear statistic Tj can now be used to construct a test statistic for

testing Hj
0 , for example via

cmax(t, µ,Σ) = max
k=1,...,pq

∣∣∣∣∣(t− µ)k√
(Σ)kk

∣∣∣∣∣
or

cquad(t, µ,Σ) = (t− µ)Σ+(t− µ)>



Variable Selection and Stopping Criteria

Test H0 based on P1, . . . , Pm,

Pj = P
H

j
0
(c(Tj(Ln,w), µj,Σj) ≥ c(tj, µj,Σj)|S(Ln,w))

conditional on all permutations S(Ln,w) of the data. This solves the overfitting

problem.

When we can reject H0 in step 1 of the generic algorithm we select the covariate with

minimum P -value

Pj = P
H

j
0
(c(Tj(Ln,w), µj,Σj) ≥ c(tj, µj,Σj)|S(Ln,w))

of the conditional test for Hj
0 . This prevents a variable selection bias.



Splitting Criteria

The goodness of a split is evaluated by two-sample linear statistics which are special

cases of the linear statistic T. For all possible subsets A of the sample space Xj∗ the

linear statistic

TA
j∗(Ln,w) = vec

(
n∑

i=1

wiI(Xj∗i ∈ A)h(Yi, (Y1, . . . ,Yn))>
)

induces a two-sample statistic and we implement the best split

A∗ = argmaxAc(tA
j∗, µ

A
j∗,Σ

A
j∗).



Examples: Tree Pipit Abundance

The occurrence of tree pipits was recorded several times at n = 86 stands and the

impact of nine environmental factors on the abundance is of special interest here.

R> library("party")

R> data("treepipit", package = "coin")

R> tptree <- ctree(counts ~ ., data = treepipit)

R> plot(tptree, terminal_panel = node_hist(tptree,

+ breaks = 0:6 - 0.5, ymax = 65, horizontal = FALSE,

+ freq = TRUE))
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Examples: Glaucoma & Laser Scanning Images

Laser scanning images taken from the eye background are expected to serve as the

basis of an automated system for glaucoma diagnosis. For 98 patients and 98 controls,

matched by age and gender, 62 covariates describing the eye morphology are available.

R> data("GlaucomaM", package = "ipred")

R> gtree <- ctree(Class ~ ., data = GlaucomaM)

R> plot(gtree)
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Examples: Glaucoma & Laser Scanning Images

Interested in the class distribution in each inner node? Want to explore the process of

the split statistics in each inner node?

R> plot(gtree, inner_panel = node_barplot)
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Examples: Glaucoma & Laser Scanning Images

R> cex <- 1.6

R> inner <- nodes(gtree, 1:3)

R> layout(matrix(1:length(inner), ncol = length(inner)))

R> out <- sapply(inner, function(i) {

+ splitstat <- i$psplit$splitstatistic

+ x <- GlaucomaM[[i$psplit$variableName]][splitstat >

+ 0]

+ plot(x, splitstat[splitstat > 0], main = paste("Node",

+ i$nodeID), xlab = i$psplit$variableName,

+ ylab = "Statistic", ylim = c(0, 10),

+ cex.axis = cex, cex.lab = cex, cex.main = cex)

+ abline(v = i$psplit$splitpoint, lty = 3)

+ })
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Examples: Node Positive Breast Cancer

Evaluation of prognostic factors for the German Breast Cancer Study Group (GBSG2)

data, a prospective controlled clinical trial on the treatment of node positive breast

cancer patients. Complete data of seven prognostic factors of 686 women are used for

prognostic modeling.

R> data("GBSG2", package = "ipred")

R> stree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

R> plot(stree)
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Examples: Mammography Experience

Ordinal response variables are common in investigations where the response is a

subjective human interpretation. We use an example given by Hosmer and Lemeshow

(2000), p. 264, studying the relationship between the mammography experience

(never, within a year, over one year) and opinions about mammography expressed

in questionnaires answered by n = 412 women.

R> data("mammoexp", package = "party")

R> mtree <- ctree(ME ~ ., data = mammoexp, scores = list(ME = 1:3,

+ SYMPT = 1:4, DECT = 1:3))

R> plot(mtree)



SYMPT
p < 0.001

1

≤ Agree > Agree

Node 2 (n = 113)

Never Within a YearOver a Year

0

0.2

0.4

0.6

0.8

1

PB
p = 0.012

3

≤ 8 > 8

Node 4 (n = 208)

Never Within a YearOver a Year

0

0.2

0.4

0.6

0.8

1

Node 5 (n = 91)

Never Within a YearOver a Year

0

0.2

0.4

0.6

0.8

1



Benchmark Experiments

Hypothesis 1: Conditional inference trees with statistical stop criterion perform as

good as an exhaustive search algorithm with pruning.

Hypothesis 2: Conditional inference trees with statistical stop criterion perform as

good as parametric unbiased recursive partitioning (QUEST,GUIDE, Loh, 2002, is a

starting point).

Equivalence measured by ratio of misclassification or mean squared error with a

equivalence margin of ±10% and Fieller confidence intervals.
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ctree vs. QUEST / GUIDE
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Summary

The separation of variable selection and split point estimation first implemented in

‘CHAID’ (Kass, 1980) is the basis for unbiased recursive partitioning for responses and

covariates measured at arbitrary scales.

The statistical internal stop criterion ensures that interpretations drawn from such trees

are valid in a statistical sense, i.e., with appropriate control of type I errors.

Even the algorithm has no concept of prediction error, the performance is at least

equivalent to established procedures.

We are committed to reproducible research, see

R> vignette(package = "party")
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