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Model-based recursive partitioning

Starting point: Recursive partitioning algorithms (including
conditional inference trees) learn a partition/segmentation
from data and then fit a naive model in each terminal node,
e.g., a mean, relative frequencies or a Kaplan-Meier curve.

Idea: Employ parametric models in each node.

Goal: Algorithm for constructing segmented parametric
models by recursive partitioning.



Parametric models

Consider models M(Y, θ) with (possibly vector-valued) ob-
servations Y ∈ Y and a k-dimensional vector of parameters
θ ∈ Θ.

Given n observations Yi (i = 1, . . . , n) the model can be fit
by minimizing some objective function Ψ(Y, θ) yielding the
parameter estimate θ̂

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(Yi, θ).



Parameter estimation

Under mild regularity conditions it can be shown that the
estimate θ̂ can also be computed by solving the first order
conditions

n∑
i=1

ψ(Yi, θ̂) = 0,

where

ψ(Y, θ) =
∂Ψ(Y, θ)

∂θ

is the score function or estimating function corresponding
to Ψ(Y, θ).



Parameter estimation

This type of estimators includes maximum likelihood (ML),
ordinary least squares (OLS), Quasi-ML and further M-type
estimators.

Example: M(Y, θ) could be a multivariate normal model
for Y ∼ N (µ,Σ) such that θ = (µ,Σ).

Example: M(Y, θ) could be a generalized linear model for
Y = (y, x)> such that

g(E(y)) = x>θ.



Segmented models

Idea: In many situations, it is unreasonable to assume that
a single global model M(Y, θ) can be fit to all n observa-
tions. But it might be possible to partition the observations
with respect to covariates Z = (Z1, . . . , Zl) such that a fit-
ting model can be found in each cell of the partition.

Goal: Learn partition via recursive partitioning with respect
to Zj ∈ Zj (j = 1, . . . , l).



Segmented models

Example: Regression trees.
The parameter θ describes the mean of the univariate ob-
servations Yi and is estimated by OLS or equivalently ML in
a normal model. The variables Zj are the regressors con-
sidered for partitioning.

Example: Changepoint or structural change analysis.
A (generalized) linear regression model with Yi = (yi, xi)>

and regression coefficients θ is segmented with respect to
a single variable Z1 (i.e., l = 1), typically time.



Segmented models

Given a partition, the estimation of the parameters θ

that minimize the corresponding global objective function∑B
b=1

∑
i∈Ib Ψ(Yi, θ(b)) can be easily achieved by computing

the locally optimal parameter estimates θ̂(b) in each seg-
ment b (with corresponding indices Ib).

If it is unknown, minimization of Ψ is more complicated (if
trivial partitions are excluded). But it is easily possible to
optimally split the observations with respect to only a single
variable Z1 into B segments. Typically B = 2 is chosen.



Segmented models

A single optimal split into B = 2 partitions can easily be
computed in O(n) by exhaustive search.

For B > 2, when an exhaustive search would be of or-
der O(nB−1), the optimal partition can be found using a
dynamic programming approach of order O(n2) (Hawkins,
2001; Bai & Perron, 2003) or via iterative algorithms
(Muggeo, 2003).

Various algorithms for adaptively choosing the number of
segments B are available, e.g., via information criteria.



The recursive partitioning algorithm

The generic recursive partitioning algorithm presented in
Part I can be used almost directly.

The only difference is that now each node is associated with
a parametric model.

Question: How should we assess the association of a fitted
model with a covariate Zj?

Answer: Test for instability of the parameters of the model
with respect to this variable Zj.



The recursive partitioning algorithm

1. Fit the model once to all observations in the current
node by estimating θ̂ via minimization of Ψ.

2. Assess whether the parameter estimates are stable with
respect to every ordering Z1, . . . , Zl. If there is some
overall instability, select the variable Zj associated with
the highest parameter instability, otherwise stop.

3. Compute the split point(s) that locally optimize Ψ (either
for a fixed number of splits, or choose the number of
splits adaptively).

4. Split this node into daughter nodes and repeat the pro-
cedure.



Tests for parameter instability

Generalized M-fluctuation tests (Zeileis & Hornik, 2003) can
be used for assessing whether the parameter estimates θ̂
are stable over a certain variable or not.

The basic idea is to use an empirical fluctuation process of
cumulative scores for a particular ordering of the observa-
tions

W (t, θ̂) = Ĵ−1/2n−1/2
bntc∑
i=1

ψ(Yi, θ̂) (0 ≤ t ≤ 1)

which is governed by a functional central limit theorem
(FCLT). It converges to a Brownian bridge W 0.



Tests for parameter instability

A test statistic can be derived by applying a scalar functional
λ(·) to the fluctuation process, the limiting distribution is
just the same functional (or its asymptotical counterpart)
applied to the limiting process λ(W 0(·)).

Advantage: The model just has to be estimated once. For
testing, the scores of the fitted model ψ̂ just have to be re-
ordered for each variable.

Let Wj(t) be the fluctuation process for the observations
ordered by Zj.



Assessing numerical variables

The most intuitive functional for assessing the stability with
respect to a numerical partitioning variable Zj is the supLM
statistic of Andrews (1993).

λsupLM(Wj) = max
i=i,...,ı

(
i

n
·
n− i

n

)−1 ∣∣∣∣∣
∣∣∣∣∣Wj

(
i

n

)∣∣∣∣∣
∣∣∣∣∣
2

2
.

This gives the maximum of the single changepoint LM
statistics over all possible changepoints in [i, ı].

The limiting distribution is given by the supremum of a
squared, k-dimensional tied-down Bessel process.



Assessing categorical variables

To assess the stability of a categorical variable with C lev-
els, a χ2 statistics is most intuitive

λχ2(Wj) =
C∑
c=1

∣∣∣∣∣Icn
∣∣∣∣∣
−1 ∣∣∣∣∣

∣∣∣∣∣∆IcWj

(
i

n

)∣∣∣∣∣
∣∣∣∣∣
2

2

because it is insensitive to re-ordering of the levels and the
observations within the levels.

It essentially captures the instability when splitting the
model into C groups.

The limiting distribution is χ2 with k · (C − 1) degrees of
freedom.



Pruning

The algorithm described so far employs a pre-pruning
strategy, i.e., uses an internal stopping criterion: if no vari-
able exhibits significant association, i.e., significant param-
eter instability, the algorithm stops.

Alternatively/additionally, a post-pruning strategy can be
used. This seems particularly attractive if ML is used for
parameter estimation. Then a ML tree can be grown which
is consequently associated with a segmented ML model.
This can be pruned afterwards using information criteria for
example.



Example: Artificial data

Artificial data from a segmented univariate linear regres-
sion. The segmentation is explained by 2 numerical parti-
tioning variables. Furthermore, 2 numerical and 2 categori-
cal variables with additional “noise” are in the data set.

The data-generating mechanism is:

a ≤ 1 : y = 1 + x+ ε,

a > 1, b ≤ 1 : y = 2 + x+ ε,

a > 1, b > 1 : y = 2 + ε,

where x ∼ U(0,2) and ε ∼ N (0,1).



Example: Artificial data
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Example: Artificial data
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Example: Artificial data
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Example: Artificial data

R> fm <- mob(y ~ x | a + b + e + f + g + h, data = dat1)

-------------------------------------------
Fluctuation tests of splitting variables:

a b e f g h
statistic 2.310366e+01 10.0350125 7.8502106 1.609714 3.8000510 2.7036527
p value 3.576589e-04 0.1142662 0.2584384 1.000000 0.4337418 0.6085756

Best splitting variable: a
Perform split? yes
-------------------------------------------

Node properties:
) a <= 1.106652; criterion = 1, statistic = 23.104
) a > 1.106652

.

.

.

R> plot(fm)



Example: Artificial data

a
p < 0.001
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p = 0.003

3

≤ 0.999 > 0.999
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Example: Artificial data

Artificial data from a segmented quadratic regression. The
segmentation is explained by 2 categorical and 1 numerical
variables, plus 4 additional “noise” variables.

The data-generating mechanism is:

a = a1, b = b2 : y = 0 + 4 · x+ 0 · x2 + ε,

a = a1, b 6= b2 : y = 2 + 1 · x+ 1 · x2 + ε,

a 6= a1, d ≤ 1 : y = 1 + 3 · x+ 0 · x2 + ε,

a 6= a1, d > 1 : y = 1.5 + 0 · x+ 1.5 · x2 + ε,

where x ∼ U(0,2) and ε ∼ N (0,0.5).



Example: Artificial data
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Example: Boston housing data

Goal: Explain median value of houses in suburbs of Boston
by various numerical covariates.

Here: Segment a linear regression with explanatory vari-
ables log(average number of rooms) and log(lower status
percentage). All remaining variables are used as partition-
ing variables.



Example: Boston housing data

dis
p < 0.001

1

≤ 2.496 > 2.496

tax
p < 0.001

2

≤ 403 > 403

Node 3 (n = 61)

●●●●●
●
●●

●
●
●

●
●
●

●
●

●●

●
●

●
●

●

●
●
●

●

●

●●

●

●●●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

1.2 1.6 2 2.2

10

20

30

40

50

Node 4 (n = 126)

●●●
●

●
●

●

●●

●

●
●

●● ●

●

●

●●

●
●●

●

●

●

●
●

● ●●●●

●●
●●●●

● ●●●●

●
●

●

●
●

●

●

●

●

●● ●●

●

●
●●

●

●

●●

●

●

●

●

●

●
●●

●

● ●●
●

● ●

●
●

●

●
●

●
●●●

●

●●
●
●

●
●

●●●

●
●

●
●

●

● ●

●
●
●●●

●●
●

●●● ●

●

●
●

●

●

●●

●

●

1.2 1.6 2 2.2

10

20

30

40

50

tax
p < 0.001

5

≤ 265 > 265

crim
p = 0.006

6

≤ 0.062 > 0.062

Node 7 (n = 45)

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●●

●

●●

●
●●

●●
●
●●

●

1.2 1.6 2 2.2

10

20

30

40

50

Node 8 (n = 29)

●

●
●●

●
●●

●
●

●●
●

●

●
●

●

●

●

●●

●●

●

●
●

●

●
●

●

1.2 1.6 2 2.2

10

20

30

40

50

crim
p < 0.001

9

≤ 0.63 > 0.63

Node 10 (n = 193)

●●

●

●
●

●

●
●
●●●●
●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●
●●

●●
●
●●
●●

●

●●
● ●

●

●●●
●

●

●

●

●

●

●

●●

●●●
● ●

●
●

●●

● ●●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●
●
●

●●

●

●

●
●

●●

●

●

●●

●

●
●●

●●
●

●
●

●
●

●

●
●

●

●

●
●●

●
●

●
●
●

●
●

●●
●

●

●●
●●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●
●

●●
●

●

●
●
●

●

1.2 1.6 2 2.2

10

20

30

40

50

Node 11 (n = 52)

●

●

●
●

●

●

●

●●●●
●
●

●
●

●
●
●●●

●

●●●●
●

●●
●

●

●
●
●●
●

●●●●●●●

●

●

● ●
●

●
●●
●

●

1.2 1.6 2 2.2

10

20

30

40

50



Example: Boston housing data

dis
p < 0.001

1

≤ 2.496 > 2.496

tax
p < 0.001

2

≤ 403 > 403

Node 3 (n = 61)

● ●●●●
●
●●

●
●

●

●
●
●

●
●

● ●

●
●

●
●

●

●
●
●
●

●

●●

●

●● ●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

0.5 1.5 2.5 3.5

10

20

30

40

50

Node 4 (n = 126)

●● ●
●

●
●

●

●●

●

●
●
●●●

●

●

● ●

●
●●

●

●

●

●
●

●●● ●●

●●
● ●●●

●●●●
●

●
●

●

●
●

●

●

●

●

●●●●

●

●
●●

●

●

● ●

●

●

●

●

●

●
● ●
●

●●●
●

●●

●
●

●

●
●

●
●● ●

●

●●
●

●
●

●

● ●●

●
●

●
●

●

●●

●
●
●●●
●●
●
●●● ●

●

●
●

●

●

●●

●

●

0.5 1.5 2.5 3.5

10

20

30

40

50

tax
p < 0.001

5

≤ 265 > 265

crim
p = 0.006

6

≤ 0.062 > 0.062

Node 7 (n = 45)

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●●

●
●●

●●
●
●●

●

0.5 1.5 2.5 3.5

10

20

30

40

50

Node 8 (n = 29)

●

●
●●

●
● ●

●
●

●●
●

●

●
●

●

●

●

●●

●●

●

●
●

●

●
●

●

0.5 1.5 2.5 3.5

10

20

30

40

50

crim
p < 0.001

9

≤ 0.63 > 0.63

Node 10 (n = 193)

● ●

●

●
●

●

●
●

●●●●●

●

●

●
●

● ●
●

●
●

●

●
●

●

●

●
●● ●●

●
●●●●

●

●●●●

●

●●●
●

●

●

●

●

●

●

●●

●●●
●●

●
●

● ●

●●●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●
●

● ●

●

●

●
●

●●

●

●

● ●

●

●
●●

●●
●

●
●

●
●

●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●●
●

●

●●
● ●

●

●
●

●
●

●

●

●

●

●●

●
●
●

●
●

●●
●

●

●
●
●

●

0.5 1.5 2.5 3.5

10

20

30

40

50

Node 11 (n = 52)

●

●

●
●
●

●

●

●●●
●

●
●

●
●

●
●

●●●
●

● ●●●
●

●●
●

●

●
●
●●
●
●●●●●●●

●

●

●●
●

●
●●
●

●

0.5 1.5 2.5 3.5

10

20

30

40

50



Example: Boston housing data
sq

rt
(M

S
E

)

mob ctree rpart

20
40

60
80

10
0



Example: Boston housing data
sq

rt
(M

S
E

)

mob ctree rpart

20
40

60
80

10
0

●

●
●

●

●

●
●
●
●●
●

●

●

●

●●●
●
●
●

●

●

●

●

●

●
●

●
●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●●

●

●

●



Summary

Model-based recursive partitioning:

• based on well-established statistical models,
• aims at minimizing a clearly defined objective function

(and not certain heuristics),
• unbiased due to separation of variable and cutpoint se-

lection,
• statistically motivated stopping criterion,
• employs general class of tests for parameter instability.
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