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Abstract. The two most popular classification tree algorithms in machine learning
and statistics—C4.5 and CART—are compared in a benchmark experiment together
with two other more recent constant-fit tree learners from the statistics literature
(QUEST, conditional inference trees). The study assesses both misclassification error
and model complexity on bootstrap replications of 18 different benchmark datasets.
It is carried out in the R system for statistical computing, made possible by means of
the RWeka package which interfaces R to the open-source machine learning toolbox
Weka. Both algorithms are found to be competitive in terms of misclassification
error—with the performance difference clearly varying across data sets. However,
C4.5 tends to grow larger and thus more complex trees.

1 Introduction

Due to their intuitive interpretability, tree-based learners are a popular tool
in data mining for solving classification and regression problems. Tradition-
ally, practitioners with a machine learning background use the C4.5 algorithm
(Quinlan, 1993) while statisticians prefer CART (Breiman, Friedman, Olshen
and Stone, 1984). One important reason for this is that free reference im-
plementations have not been easily available within an integrated computing
environment. RPart, an open-source implementation of CART, has been avail-
able for some time in the S/R package rpart (Therneau and Atkinson, 1997)
while the open-source implementation J4.8 for C4.5 became available more re-
cently in the Weka machine learning package (Witten and Frank, 2005) and
is now accessible from within R by means of the RWeka package (Hornik,
Zeileis, Hothorn and Buchta, 2007). With these software tools available, the
algorithms can be easily compared and benchmarked on the same comput-
ing platform: the R system for statistical computing (R Development Core
Team 2006). The principal concern of this contribution is to provide a neutral
and unprejudiced review, especially taking into account classical beliefs (or
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preconceptions) about performance differences between C4.5 and CART and
heuristics for the choice of hyper-parameters. With this in mind, we carry out
a benchmark comparison, including different strategies for hyper-parameter
tuning as well as two further constant-fit tree models—QUEST (Loh and Shih,
1997) and conditional inference trees (Hothorn, Hornik and Zeileis, 2006).
The learners are compared with respect to misclassification error and model
complexity on each of 18 different benchmarking data sets by means of simul-
taneous confidence intervals (adjusted for multiple testing). Across data sets,
the performance is aggregated by consensus rankings.

2 Design of the Benchmark Experiment

The simulation study includes a total of six tree-based methods for classifica-
tion. All learners were trained and tested in the framework of Hothorn, Leisch,
Zeileis and Hornik (2005) based on 500 bootstrap samples for each of 18 data
sets. All algorithms are trained on each bootstrap sample and evaluated on
the remaining out-of-bag observations. Misclassification rates are used as pre-
dictive performance measures, while model complexity requirements of the
algorithms under study are measured by the number of estimated parameters
(number of splits plus number of leafs). Performance and model complexity
distributions are assessed for each algorithm on each of the datasets. In our
setting, this results in 108 performance distributions (6 algorithms on 18 data
sets), each of size 500. For comparison on each individual data set, simultane-
ous pairwise confidence intervals (Tukey all-pair comparisons) are used. For
aggregating the pairwise dominance relations across data sets, median linear
order consensus rankings are employed following Hornik and Meyer (2007). A
brief description of the algorithms and their corresponding implementation is
given below.

CART/RPart: Classification and regression trees (CART, Breiman et al.,
1984) is the classical recursive partitioning algorithm which is still the
most widely used in the statistics community. Here, we employ the
open-source reference implementation of Therneau and Atkinson (1997)
provided in the R package rpart. For determining the tree size, cost-
complexity pruning is typically adopted: either by using a 0- or 1-standard-
errors rule. The former chooses the complexity parameter associated with
the smallest prediction error in cross-validation (RPart0), whereas the lat-
ter chooses the highest complexity parameter which is within 1 standard
error of the best solution (RPart1).

C4.5/J4.8: C4.5 (Quinlan, 1993) is the predominantly used decision tree al-
gorithm in the machine learning community. Although source code imple-
menting C4.5 is available in Quinlan (1993), it is not published under an
open-source license. Therefore, the Java implementation of C4.5 (revision
8), called J4.8, in Weka is the de-facto open-source reference implemen-
tation. For determining the tree size, a heuristic confidence threshold C
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Table 1. Artificial [?] and non artificial benchmarking data sets

Data set # of obs. # of cat. inputs # of num. inputs

breast cancer 699 9 -
chess 3196 36 -
circle ? 1000 - 2
credit 690 - 24
heart 303 8 5
hepatitis 155 13 6
house votes 84 435 16 -
ionosphere 351 1 32
liver 345 - 6
Pima Indians diabetes 768 - 8
promotergene 106 57 -
ringnorm ? 1000 - 20
sonar 208 - 60
spirals ? 1000 - 2
threenorm ? 1000 - 20
tictactoe 958 9 -
titanic 2201 3 -
twonorm ? 1000 - 20

is typically used which is by default set to C = 0.25 (as recommended
in Witten and Frank, 2005). To evaluate the influence of this parame-
ter, we compare the default J4.8 algorithm with a tuned version where
C and the minimal leaf size M (default: M = 2) are chosen by cross-
validation (J4.8(cv)). A full grid search for C = 0.01, 0.05, 0.1, . . . , 0.5 and
M = 2, 3, . . . , 10, 15, 20 is used in the cross-validation.

QUEST: Quick, unbiased and efficient statistical trees are a class of deci-
sion trees suggested by Loh and Shih (1997) in the statistical litera-
ture. QUEST popularized the concept of unbiased recursive partitioning,
i.e., avoiding the variable selection bias of exhaustive search algorithms
(such as CART and C4.5). A binary implementation is available from
http://www.stat.wisc.edu/~loh/quest.html and interfaced in the R
package LohTools which is available from the authors upon request.

CTree: Conditional inference trees (Hothorn et al., 2006) are a framework of
unbiased recursive partitioning based on permutation tests (i.e., condi-
tional inference) and applicable to inputs and outputs measured at arbi-
trary scale. An open-source implementation is provided in the R package
party.

The benchmarking datasets shown in Table 1 were taken from the popular
UCI repository of machine learning databases (Newman, Hettich, Blake and
Merz, 1998) as provided in the R package mlbench.
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3 Results of the Benchmark Experiment

3.1 Results on Individual Datasets: Pairwise Confidence Intervals

Here, we exemplify—using the well-known Pima Indians diabetes and breast
cancer data sets—how the tree algorithms are assessed on a single data set. Si-
multaneous confidence intervals are computed for all 15 pairwise comparisons
of the 6 learners. The resulting dominance relations are used as the input for
the aggregation analyses in Section 3.2.
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Fig. 1. Simultaneous confidence intervals of pairwise performance differences (left:
misclassification, right: complexity) for Pima Indians diabetes (top) and breast can-
cer (bottom) data.

As can be seen from the performance plots for Pima Indian diabetes in
Figure 1, standard J4.8 is outperformed (in terms of misclassification as well as
model complexity) by the other tree learners. All other algorithm comparisons
indicate equal predictive performances, except for the comparison of RPart0
and J4.8(cv), where the former learner performs slightly better than the latter.
On this particular dataset tuning enhances the predictive performance of J4.8,
while the misclassification rates of the differently tuned RPart versions are
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Fig. 2. Distribution of J4.8(cv) parameters obtained through cross validation on
Pima Indians diabetes and breast cancer data sets.

not subject to significant changes. In terms of model complexity J4.8(cv)
produces larger trees than the other learners. Looking at the breast cancer
data yields a rather different picture: Both RPart versions are outperformed
by J4.8 or its tuned alternative in terms of predictive accuracy. Similar to
Pima Indians diabetes, J4.8 and J4.8(cv) tend to build significantly larger
trees than RPart. On this dataset, CTree has a slight advantage over all other
algorithms except J4.8 in terms of predictive accuracy. For J4.8 as well as
RPart, tuning does not promise to increase predictive accuracy significantly. A
closer look at the differing behavior of J4.8(cv) under cross validation for both
data sets is provided in Figure 2. In contrast to the breast cancer example, the
results based on the Pima Indians diabetes dataset (on which tuning of J4.8
caused a significant performance increase) show a considerable difference in
choice of parameters. The multiple inference results gained from all datasets
considered in this simulation experiment (just like the results derived from
the two datasets above) form the basis on which further aggregation analyses
of Section 3.2 are built upon.

3.2 Results Across Data Sets: Consensus Rankings

Having 18 × 6 = 108 performance distributions of the 6 different learners
applied to 18 bootstrap data settings at hand, aggregation methods can do a
great favor to allow for summarizing and comparing algorithmic performance.
The underlying dominance relations derived from the multiple testing are
summarized by simple sums in Table 2 and by the corresponding median
linear order rankings in Table 3. In Table 2, rows refer to winners, while
columns denote the losers. For example J4.8 managed to outperform QUEST
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on 11 datasets and 4 times vice versa, i.e., on the remaining 3 datasets, J4.8
and QUEST perform equally well.

Table 2. Summary of predictive performance dominance relations across all 18
datasets based on misclassification rates and model complexity (columns refer to
losers, rows are winners).

Misclassification J4.8 J4.8(cv) RPart0 RPart1 QUEST CTree
P

J4.8 0 2 9 10 11 8 40
J4.8(cv) 4 0 8 9 11 9 41
RPart0 5 6 0 7 10 7 35
RPart1 6 4 1 0 8 6 25
QUEST 4 2 2 5 0 7 20

CTree 7 6 7 8 9 0 37P
26 20 27 39 49 37

Complexity J4.8 J4.8(cv) RPart0 RPart1 QUEST CTree
P

J4.8 0 1 0 0 2 0 3
J4.8(cv) 17 0 0 0 5 3 25
RPart0 18 18 0 0 13 15 64
RPart1 18 18 16 0 14 15 81
QUEST 15 13 5 4 0 10 47

CTree 18 14 3 2 8 0 45P
86 64 24 6 42 43

Table 3. Median linear order consensus rankings for algorithm performance

Misclassification Complexity

1 J4.8(cv) RPart1
2 J4.8 RPart0
3 RPart0 QUEST
4 CTree CTree
5 RPart1 J4.8(cv)
6 QUEST J4.8

The median linear order for misclassification reported in Table 3 suggests
that tuning of J4.8 instead of using the heuristic approach is worth the effort.
A similar conclusion can be made for the RPart versions. Here, the median
linear order suggests that the common one standard error rule performs worse.
For both cases, the underlying dominance relation figures of Table 2 catch our
attention. Regarding the first case, J4.8(cv) only dominates J4.8 in four of six
data settings, in which a significant test decision for performance differences
could be made. In addition the remaining 12 data settings yield equivalent
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performances. Therefore superiority of J4.8(cv) above J4.8 is questionable. In
contrast the superiority of RPart0 vs. RPart1 seems to be more reliable but
still the number of data settings producing tied results is high. A compari-
son of the figures of CTree and the RPart versions confirms previous findings
(Hothorn et al., 2006) that CTree and RPart often perform equally well. The
question concerning the dominance relation between J4.8 and RPart cannot
be answered easily: Overall, the median linear order suggests that the J4.8
decision tree versions are superior to the RPart tree learners in terms of pre-
dictive performance. But still, looking at the underlying relations of the best
performing versions of both algorithms (J4.8(cv) and RPart0) reveals that
a confident decision concerning predictive superiority cannot be made. The
number of differences in favor of J4.8(cv) is only two and no significant dif-
ferences are reported on four data settings. A brief look at the complexity
ranking (Table 3) and the underlying complexity dominance relations (Ta-
ble 2, bottom) shows that J4.8 and its tuned version produce more complex
trees than the RPart algorithms. While analogous analyses of comparing J4.8
versions to CTree do not indicate confident predictive performance differences,
superiority of the J4.8 versions versus QUEST in terms of predictive accuracy
is evident.
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Fig. 3. Medians of the J4.8(cv) tuning parameter distributions for C and M

To aggregate the tuning results from J4.8(cv), Figure 3 depicts the me-
dian C and M parameters chosen for each of the 18 parameter distributions.
It confirms the finding from the individual breast cancer and Pima Indians
diabetes results (see Figure 2) that the parameter chosen by cross-validation
can be far off the default values for C and M .
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4 Discussion and Further Work

In this paper, we present results of a medium scale benchmark experiment
with a focus on popular open-source tree-based learners available in R. With
respect to our two main objectives—performance differences between C4.5 and
CART, and heuristic choice of hyper-parameters—we can conclude: (1) The
fully cross-validated J4.8(cv) and RPart0 perform better than their heuristic
counterparts J4.8 (with fixed hyper-parameters) and RPart1 (employing a 1-
standard-error rule). (2) In terms of predictive performance, no support for
the claims of (clear) superiority of either algorithm can be found: J4.8(cv)
and RPart0 lead to similar misclassification results, however J4.8(cv) tends to
grow larger trees. Overall, this suggests that many beliefs or preconceptions
about the classical tree algorithms should be (re-)assessed using benchmark
studies. Our contribution is only a first step in this direction and further steps
will require a larger study with additional datasets and learning algorithms.
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