
Data Structures: Times, Dates, Ordered
Observations . . . and Beyond

Achim Zeileis Kurt Hornik

http://statmath.wu-wien.ac.at/∼zeileis/

http://statmath.wu-wien.ac.at/~zeileis/


Overview

• Data structures
– Principles
– Object orientation

• Times and dates
– years, quarters, months
– days
– intra-day times

• Time series
– (Numerical) Observations ordered/indexed by time
– Operations on time series

• Re-use in more complex objects
– Empirical fluctuation processes



Data structures

To collaboratively work on a project, communicate and exchange
information, participants of the project need to find a common
language.

Luckily, for the participants of this workshop this question is set-
tled: the lingua franca is R.

However, to talk about complex data, quantitative methods and
analyses, a common basic language is not enough. We need
a precise terminology to assure we are talking about the same
things. (Just as mathematicians and economists do not neces-
sarily understand each other just because they talk English).



Data structures: Principles

In terms of software, this means that we need common data
structures and functions that can be employed by everybody and
that always mean the same thing.

Many basic building blocks are already available in R or con-
tributed packages, but new or advanced tools are required for
many concepts.



Data structures: Principles

Available building blocks:

• re-use this existing infrastructure,
• possibly by providing common interfaces to different object

types denoting similar conceptual entities,
• if this is open-source infrastructure: improve it (rather than

re-invent it),

Creating new data structures:

• modular design that reflects underlying concepts,
• build on and provide re-usable components,
• flexible user interface, e.g., via object orientation.



Data structures: Object orientation

Important: useful/intuitive object structures, i.e., implementa-
tions of objects that capture all necessary information of under-
lying conceptual entities.

More important: functional interfaces, i.e., accessor functions
for relevant information and functions that carry out typical anal-
ysis steps.

In the S3 world, these can be generated with minimal overhead
even if the interfaced class was generated by someone else.



Time and dates

In finance, business and economics, time-annotated data is ubiq-
uitous. Therefore, a fundamental building block for more complex
structures in finance/business/economics are times and dates.

In (macro-)economics, the most important types of times
are/were years, quarters and months.

In finance, required times are more often at the daily or intra-day
level.



Time and dates

Typical actions and operations: (and R functions/generics)

• set up time from numeric or character input,
: class constructors

• extract underlying numeric scale, : as.numeric() method
• produce character label,

: format() and as.character() method
• use for plotting, : input for plot(), e.g., Axis() method
• sequences of times with given spacing, : seq() method
• time differences, : group generic functions or difftime()
• move forward/backward on time scale,

: group generic functions
• comparison (less/greater). : group generic functions



Time and dates

Typical actions and operations (and R functions/generics):

• set up time from numeric or character input:
class constructors,

• extract underlying numeric scale: as.numeric() method,
• produce character label:
format() and as.character() method,

• use for plotting: input for plot(), e.g., Axis() method,
• sequences of times with given spacing: seq() method,
• time differences: group generic functions or difftime(),
• move forward/backward on time scale:

group generic functions,
• comparison (less/greater): group generic functions.



Time: Years

Example: 1997, 1998, 2002, 2004, . . .

Class: “numeric” or (even better) “integer”

R> ty <- c(1997, 1998, 2002, 2004)

R> ty

[1] 1997 1998 2002 2004



Time: Years

R> as.character(ty)

[1] "1997" "1998" "2002" "2004"

R> ty[2] - ty[1]

[1] 1

R> ty + 1

[1] 1998 1999 2003 2005



Time: Quarters

Example: 2000 Q1, 2001 Q3, 2002 Q2, 2002 Q3, . . .

Class: “numeric” (first attempt)

R> tq <- c(2000, 2001.5, 2002.25, 2002.5)

R> tq

[1] 2000.00 2001.50 2002.25 2002.50



Time: Quarters

R> tq[2] - tq[1]

[1] 1.5

R> tq + 1/4

[1] 2000.25 2001.75 2002.50 2002.75

R> as.character(tq)

[1] "2000" "2001.5" "2002.25" "2002.5"



Time: Quarters

Class: “yearqtr” (improved)

R> tq <- as.yearqtr(tq)

R> as.character(tq)

[1] "2000 Q1" "2001 Q3" "2002 Q2" "2002 Q3"

R> as.numeric(tq)

[1] 2000.00 2001.50 2002.25 2002.50

R> tq[2] - tq[1]

[1] 1.5

R> tq + 1/4

[1] "2000 Q2" "2001 Q4" "2002 Q3" "2002 Q4"



Time: Quarters

Idea: “numeric” vector with class attribute that handles match-
ing/rounding correctly and provides coercion to many other
classes.

Class constructor:

yearqtr <- function(x)

structure(floor(4*x + .001)/4, class = "yearqtr")

provided in package zoo.



Time: Months

Example: Jan 2000, Oct 2001, Dec 2001, Aug 2002, . . .

Class: “yearmon” (analogous to “yearqtr”)

R> tm <- yearmon(c(2000, 2001, 2001, 2002) + c(0, 9, 11,

+ 7)/12)

R> tm

[1] "Jan 2000" "Oct 2001" "Dec 2001" "Aug 2002"

R> as.yearmon(2000)

[1] "Jan 2000"

R> as.yearmon("2000 Jan", format = "%Y %b")

[1] "Jan 2000"



Time: Days

Example: 1970-01-01, 2001-07-12, 2005-03-24, . . .

Class: “Date” (number of days since 1970-01-01)

R> td <- as.Date(c("1970-01-01", "2001-07-12", "2005-03-24"))

R> td

[1] "1970-01-01" "2001-07-12" "2005-03-24"

R> as.numeric(td)

[1] 0 11515 12866

R> as.character(td)

[1] "1970-01-01" "2001-07-12" "2005-03-24"



Time: Days

R> format(as.Date(td), "%B %d, %Y")

[1] "January 01, 1970" "July 12, 2001" "March 24, 2005"

R> td[2] - td[1]

Time difference of 11515 days

R> td + 1

[1] "1970-01-02" "2001-07-13" "2005-03-25"

R> as.Date(2)

[1] "1970-01-03"



Time: Intra-day

Example: 1970-01-01 00:00:00, 2001-07-12 12:23:59, . . .

Class: “chron” (days since 1970-01-01, without time zone or
daylight savings time)

R> tc <- chron(c(0, 11515 + 12/24 + 23/1440 + 59/86400))

R> tc

[1] (01/01/70 00:00:00) (07/12/01 12:23:59)

R> as.character(tc)

[1] "(01/01/70 00:00:00)" "(07/12/01 12:23:59)"



Time: Intra-day

R> as.numeric(tc)

[1] 0.00 11515.52

R> paste(format(as.Date(dates(tc))), format(times(tc)%%1))

[1] "1970-01-01 00:00:00" "2001-07-12 12:23:59"

R> tc[2] - tc[1]

Time in days:

[1] 11515.52



Time: Intra-day

Example: 1970-01-01 00:00:00 GMT,
2001-07-12 12:23:59 GMT, . . .

Class: “POSIXct” (seconds since 1970-01-01, with time zone
and daylight savings time)

R> tp <- structure(c(0, 994940639), class = c("POSIXt",

+ "POSIXct"), tzone = "GMT")

R> tp

[1] "1970-01-01 00:00:00 GMT" "2001-07-12 12:23:59 GMT"

R> as.numeric(tp)

[1] 0 994940639



Time: Intra-day

R> as.character(tp)

[1] "1970-01-01 00:00:00" "2001-07-12 12:23:59"

R> format(tp, "%B %d, %Y (%H:%M:%S)")

[1] "January 01, 1970 (00:00:00)" "July 12, 2001 (12:23:59)"

R> tp[2] - tp[1]

Time difference of 11515.52 days



Time and dates: Summary and outlook

• many time/date classes already available,
• existing infrastructure can be leveraged for customizing (sim-

ilar to “yearqtr”/“yearmon”),
• use time/date class that is appropriate for your data (and not

more complex),
• coercions between the classes allow for conversions be-

tween time/date formats,
• intra-day data is more complicated, especially with time

zones and daylight savings times.



Time and dates: Summary and outlook

R> as.Date(tq)

[1] "2000-01-01" "2001-07-01" "2002-04-01" "2002-07-01"

R> as.POSIXct(tq)

[1] "2000-01-01 01:00:00 CET" "2001-07-01 02:00:00 CEST"

[3] "2002-04-01 02:00:00 CEST" "2002-07-01 02:00:00 CEST"

R> as.yearqtr(td)

[1] "1970 Q1" "2001 Q3" "2005 Q1"

R> as.yearqtr(tp)

[1] "1970 Q1" "2001 Q3"

R> as.Date(tp)

[1] "1970-01-01" "2001-07-12"



Time and dates: Summary and outlook

R> as.chron(tp)

[1] (01/01/70 00:00:00) (07/12/01 12:23:59)

attr(,"tzone")

[1] GMT

R> as.POSIXct(td)

[1] "1970-01-01 01:00:00 CET" "2001-07-12 02:00:00 CEST"

[3] "2005-03-24 01:00:00 CET"

R> as.POSIXct(tc)

[1] "1970-01-01 01:00:00 CET" "2001-07-12 14:23:58 CEST"



Time and dates: Summary and outlook

If the local time zone is set to "GMT", such problems do not occur.
However, working with time zones requires a lot of care and is
typically dependent on the operating system. See Grothendieck
& Petzoldt (2004) for more information.

The class “timeDate” in package fCalendar tries to address this
problem by leveraging available POSIX structures but using fi-
nancial centers rather than time zones to account for differences
between different locations.

However, the interface of “timeDate” is somewhat different than
that of the classes above. Hence, a leaner implementation is
planned (but not much code has been written yet).



Time series: Structure

Time/date objects are usually not interesting as standalone ob-
jects but are used to annotate other data.

The most important application of this are time series where
there is for each time point a vector of (typically numeric) ob-
servations.

The observations are most easily arranged in a vector (of
length n) or an n × k matrix whose elements are ordered and
indexed by a time vector of length n.



Time series: Structure

A time series can either be irregular (unequally spaced), strictly
regular (equally spaced) or have an underlying regularity, i.e., be
created from a regular series by omitting some observations.

For strictly regular series, the whole vector of time vector can be
reconstructed from start, end and time difference between two
observations. The reciprocal value of the time difference is also
called frequency.



Time series: Operations

Typical operations for time series: (and suitable R generics)

• visualization, plot(),
• extraction of observations or associated times,
time() (and coredata()),

• lags and differences, lag() and diff(),
• subsets in a certain time window window(),
• union and intersection of several time series, merge(),
• aggregation along a coarser time grid, aggregate(),
• rolling computations such as means or standard deviations.

(rollapply()).



Time series: Operations

Typical operations for time series (and suitable R generics):

• visualization: plot(),
• extraction of observations or associated times:
time() (and coredata()),

• lags and differences: lag() and diff(),
• subsets in a certain time window: window(),
• union and intersection of several time series: merge(),
• aggregation along a coarser time grid: aggregate(),
• rolling computations such as means or standard deviations:

(rollapply()).



Time series: Implementations

There are many implementations for time-series data in R.

Virtually all of them are focused on numeric data and fix some
particular class for the time index:

• “ts”: regular “numeric” time index (e.g., annual, quarterly,
monthly),

• “its”: irregular time index of class “POSIXct”,
• “irts”: irregular time index of class “POSIXct”,
• “timeSeries”: irregular time index of class “timeDate”,
• “zoo”: regular or irregular time index of arbitrary class.



Time series: Implementations

How can an arbitrary time index work?

To provide the desired functionality, few actions are required:

• ordering, ORDER() (by default calling the non-generic
order()),

• matching, MATCH() (by default calling the non-generic
match()),

• combining, c(),
• subsetting, [,,
• querying length n. length().



Time series: Implementations

How can an arbitrary time index work?

To provide the desired functionality, few actions are required:

• ordering: ORDER() (by default calling the non-generic
order()),

• matching: MATCH() (by default calling the non-generic
match()),

• combining: c(),
• subsetting: [,,
• querying length n: length().



Time series: Implementations

If suitable methods are available for the chosen time index (in-
cluding all time/date classes above), all tasks (merging, aggre-
gating, etc.) can be performed without any knowledge about the
particular time index class.

For some special operations, further methods are use-
ful/necessary, e.g., axis()/Axis(), as.numeric(),
as.character().

If the time index is of a particular class, coercions to and from
other time series classes can be easily provided.



Time series: Implementations

Simple example of using zoo for data from an external text file.
Each row looks like

10 Feb 2005|43.78

R> pr <- read.zoo(system.file(file.path("doc", "demo1.txt"),

+ package = "zoo"), sep = "|", format = "%d %b %Y")

R> plot(pr)

R> lines(rollapply(pr, 5, mean), col = 4)



Time series: Implementations

43
.6

0
43

.6
5

43
.7

0
43

.7
5

43
.8

0
43

.8
5

Index

pr

Feb 11 Feb 16 Feb 21 Feb 26 Mar 03 Mar 08



Time series: Implementations

R> rt <- 100 * diff(log(pr))

R> z <- merge(pr, rt)

R> window(z, end = as.Date("2005-02-15"))

pr rt

2005-02-10 43.78 NA

2005-02-11 43.79 0.02283887

2005-02-14 43.72 -0.15998175

2005-02-15 43.76 0.09144948

See Zeileis & Grothendieck (2005) and Shah, Zeileis,
Grothendieck (2007) for more background information and
hands-on examples.



More complex objects

Just as time/date classes are re-used in “zoo” series, these can
be re-used in more complex objects.

Example: empirical fluctuation processes (original motivation for
starting the zoo project)

Idea: Empirical fluctuation processes capture systematic param-
eter instabilities in time-series models by computing a cumulative
sum process of model deviations.



More complex objects

Application: changes in mean and/or variance of Dow Jones
Industrial Average returns

R> djia <- 100 * diff(log(DJIA))

R> plot(djia)

R> djia_lm <- lm(djia ~ 1)



More complex objects

−
6

−
4

−
2

0
2

4
6

Index

dj
ia

1972 1973 1974



More complex objects

Capture deviations from overall mean (residuals) and variance
(centered squared residuals):

R> mvscore <- function(obj) cbind("(Intercept)" = residuals(obj),

+ "(Variance)" = residuals(obj)^2 - mean(residuals(obj)^2))

R> djia_efp <- gefp(djia_lm, fit = NULL, scores = mvscore)

R> plot(djia_efp, aggregate = FALSE)

Here, there is a significant increase in the variance while the
mean remains constant.



More complex objects

(I
nt

er
ce

pt
)

−
0.

2
0.

2
0.

4
0.

6
0.

8
−

2.
5

−
1.

5
−

0.
5

0.
0

(V
ar

ia
nc

e)

1972 1973 1974

Time

M−fluctuation test



More complex objects

The empirical fluctuation process object contains several meta-
informations such as the fitted model or the actual process
(among many others):

R> class(djia_efp)

[1] "gefp"

R> names(djia_efp)

[1] "process" "nreg" "nobs" "call"

[5] "fit" "scores" "fitted.model" "par"

[9] "lim.process" "type.name" "order.name" "J12"



More complex objects

The object is completely object-oriented concerning the model
class tested (see Zeileis, 2005). Here, a simple “lm” object is
re-used. Other components are re-used and stored as well:

R> class(djia_efp$process)

[1] "zoo"

R> class(djia_efp$fitted.model)

[1] "lm"

R> class(djia_efp$scores)

[1] "function"



Summary and outlook

Available data structures:

• many time/date classes available,
• working with time zones and daylight savings times requires

care,
• flexible time-series class(es) available,
• many suitable generics for typical tasks.



Summary and outlook

Creating new data structures:

• if possible, re-use existing structures for creating new ones,
• functional interfaces can keep approaches modular,
• identify typical tasks and suitable R representations/functions

for them,
• R objects (including functions) should reflect what we think

the underlying entities do conceptually.



Summary and outlook

Required data structures:

• meta information objects for financial information,
• annotated time series, e.g., stock prices/returns or exchange

rates,
• portfolios,
• . . .



References

ZGrothendieck G, Petzoldt T (2004). “R Help Desk: Date and Time
Classes in R.” R News, 4(1), 29–32.

Ripley BD, Hornik K (2001). “Date-Time Classes.” R News, 1(2), 8–11.

Shah A, Zeileis A, Grothendieck G (2007). “zoo Quick Reference.”
Package vignette. Version 1.3-2.

Zeileis A (2005). “Implementing a Class of Structural Change Tests: An
Econometric Computing Approach.” Computational Statistics & Data
Analysis, 50(11), 2987–3008. doi:10.1016/j.csda.2005.07.001

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular
and Irregular Time Series.” Journal of Statistical Software, 14(6), 1–
27. URL http://www.jstatsoft.org/v14/i06/. Updated version con-
tained as vignette in zoo package.

http://dx.doi.org/10.1016/j.csda.2005.07.001
http://www.jstatsoft.org/v14/i06/

	Overview
	Data structures
	Data structures: Principles
	Data structures: Object orientation
	Time and dates
	Time: Years
	Time: Quarters
	Time: Months
	Time: Days
	Time: Intra-day
	Time and dates: Summary and outlook
	Time series: Structure
	Time series: Operations
	Time series: Implementations
	More complex objects
	Summary and outlook
	References

