
R: A Free Software Project in
Statistical Computing

Achim Zeileis

Institut für Statistik & Wahrscheinlichkeitstheorie

http://www.ci.tuwien.ac.at/~zeileis/

http://www.ci.tuwien.ac.at/~zeileis/

Acknowledgments

Thanks:

❆ Alex Smola & Machine Learning Group

❆ John Maindonald

Acknowledgements:

❆ Kurt Hornik & Friedrich Leisch

❆ Alexandros Karatzoglou

Overview

❆ What is R?

❆ Statistical computing with R

❖ S language: programmable and object oriented

❖ interfaces to other languages and environments

❖ production-quality graphics

❖ packaging mechanism for software delivery

❆ Reproducible research

What is R?

❆ R is an interactive computational environment for data anal-

ysis, inference and visualization.

❆ Developed for the Unix, Windows and Macintosh families of

operating systems by an international team.

❆ Highly extensible through user-defined functions and a fast-

growing list of add-on packages.

❆ Based on the award-winning S language which “has forever

altered the way how people analyze, visualize and manipu-

late data ...” (ACM Software System Award 1998 to John

Chambers).

❆ S-Plus is a commercial implementation of S.

What is R?

The “R Development Core Team” with members from New

Zealand, Europe and North America:

Douglas Bates, John Chambers, Peter Dalgaard, Robert Gentle-

man, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch,

Thomas Lumley, Martin Maechler, Guido Masarotto, Paul Mur-

rell, Brian Ripley, Duncan Temple Lang, and Luke Tierney

But R would not be what it is today without the support of all

those, who contributed by donating code, bug fixes and docu-

mentation.

What is R?

History of R

1991: Ross Ihaka and Robert Gentleman begin work on a project

that will ultimately become R.

1993: First binary copies of R on Statlib.

1995: R release of sources under the GPL.

1997: R core group is formed.

1998: Comprehensive R Archive Network (CRAN).

1999: DSC meeting in Vienna, first R core meeting.

2000: R 1.0.0 is released.

2001: R Newsletter launched.

2002: R Foundation established.

Current release is 1.6.1

What is R?

Free software: Open source software like R does not cost

money, but time to learn, and as time is money, this talk

is mostly about free software in the sense of

R is open source, everybody can read the source code, hence

you need not to rely on documentation to infer what the

software really does. More importantly, everybody can use

it, making research reproducible.

No owner? R is not in the public domain, you are given a license

(GPL) to run the software.

S language

Fundamental design principle:

Everything in S is an object.

Or better, make that “should be” . . .

S language

Even the parse tree is an S object:

R> x <- parse(text = "sin(x + 2)")
R> x

expression(sin(x + 2))

R> x[[1]]

sin(x + 2)

R> x[[1]][[1]]

sin

Allows for computations on the language . . .

S language

Formulas:

❆ Models and plots are specified using a formula language.

❆ Model fitting functions return objects, these can be in-

spected, analyzed or visualized using methods for the cor-

responding class:

❖ summary of model

❖ extract residuals or fitted values

❖ predict response for new inputs

❖ get diagnostic plots

❖ use in own functions

S language

x, y . . . numeric variables
a, b . . . categorical variables
y ~ x . . . standard regression
y ~ a . . . 1-way ANOVA
y ~ a + x . . . main effects model
y ~ a*x . . . main and interaction effects
y ~ a*x + b*x. . . main and interaction effects

❆ Unified interface for model fitting functions.

❆ Contrasts for categorical variables can be customized.

❆ Functions for parsing the formula, extracting the response

and design matrix.

Example: dolphins

R> load("dolphins.rda")
R> summary(dolphins)

logweight logheart species
Min. :3.555 Min. :5.347 delph:9
1st Qu.:3.738 1st Qu.:5.531 styx :7
Median :3.932 Median :5.752
Mean :3.916 Mean :5.764
3rd Qu.:4.094 3rd Qu.:5.906
Max. :4.263 Max. :6.263

R> attach(dolphins)
R> class(species)

[1] "factor"

Example: dolphins

R> plot(logheart ~ logweight)

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

3.6 3.7 3.8 3.9 4.0 4.1 4.2

5.
4

5.
6

5.
8

6.
0

6.
2

logweight

lo
gh

ea
rt

Example: dolphins

R> plot(logheart ~ species)

delph styx

5.
4

5.
6

5.
8

6.
0

6.
2

species

lo
gh

ea
rt

Example: dolphins

R> fm <- lm(logheart ~ logweight)

R> fm

Call:

lm(formula = logheart ~ logweight)

Coefficients:

(Intercept) logweight

1.325 1.133

Example: dolphins

R> summary(fm)

Call:
lm(formula = logheart ~ logweight)

Residuals:
Min 1Q Median 3Q Max

-0.158735 -0.082494 0.002735 0.049814 0.218584

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3245 0.5216 2.539 0.0236 *
logweight 1.1335 0.1330 8.523 6.51e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1107 on 14 degrees of freedom
Multiple R-Squared: 0.8384, Adjusted R-squared: 0.8269
F-statistic: 72.63 on 1 and 14 DF, p-value: 6.507e-07

Example: dolphins

R> plot(fm)

5.4 5.6 5.8 6.0

−
0.

2
0.

0
0.

1
0.

2

Fitted values

R
es

id
ua

ls

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

lm(formula = logheart ~ logweight)

Residuals vs Fitted

7

15

1

Example: dolphins

R> plot(fm)

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(formula = logheart ~ logweight)

Normal Q−Q plot

7

15

1

Example: dolphins

R> plot(fm)

5.4 5.6 5.8 6.0

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

lm(formula = logheart ~ logweight)

Scale−Location plot
7

151

Example: dolphins

R> plot(fm)

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

Obs. number

C
oo

k’
s

di
st

an
ce

lm(formula = logheart ~ logweight)

Cook’s distance plot

1

153

Example: dolphins

R> fm2 <- lm(logheart ~ logweight * species)

R> anova(fm2)

Analysis of Variance Table

Response: logheart

Df Sum Sq Mean Sq F value Pr(>F)

logweight 1 0.89060 0.89060 112.6120 1.878e-07 ***

species 1 0.07581 0.07581 9.5854 0.009258 **

logweight:species 1 0.00095 0.00095 0.1204 0.734625

Residuals 12 0.09490 0.00791

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example: dolphins

R> fm3 <- lm(logheart ~ logweight + species)

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

3.6 3.7 3.8 3.9 4.0 4.1 4.2

5.
4

5.
6

5.
8

6.
0

6.
2

logweight

lo
gh

ea
rt

Example: spam mail

R> load("spam.rda")

R> index <- 1:nrow(spam)

R> ntest <- trunc(length(index)/3)

R> testindex <- sample(index, ntest)

Example: spam mail

R> load("spam.rda")

R> index <- 1:nrow(spam)

R> ntest <- trunc(length(index)/3)

R> testindex <- sample(index, ntest)

R> testset <- spam[testindex,]

R> trainset <- spam[-testindex,]

R> type.true <- testset[, 58]

R> testset <- testset[, -58]

Example: spam mail

R> library(rpart)

R> rpart.model <- rpart(type ~ ., data = trainset)

Example: spam mail

R> library(rpart)

R> rpart.model <- rpart(type ~ ., data = trainset)

R> plot(rpart.model)

R> text(rpart.model)

Example: spam mail

|

Example: spam mail

|
charExclamation< 0.0815

remove< 0.02

charDollar< 0.164

capitalAve< 2.837

charDollar< 0.0075

remove< 0.09
free< 0.41

hp>=0.41

nonspam spam
spam

nonspam spam spam
spam

nonspam spam

Example: spam mail

R> type.rpart <- predict(rpart.model, testset, type = "class")

Example: spam mail

R> type.rpart <- predict(rpart.model, testset, type = "class")

R> table(True = type.true, Pred = type.rpart)

Pred
True nonspam spam

nonspam 858 59
spam 90 526

Example: spam mail

R> type.rpart <- predict(rpart.model, testset, type = "class")

R> table(True = type.true, Pred = type.rpart)

Pred
True nonspam spam

nonspam 858 59
spam 90 526

R> (90 + 59)/ntest

[1] 0.09719504

Example: spam mail

R> library(randomForest)
R> rF.model <- randomForest(type ~ ., data = trainset)
R> type.rF <- predict(rF.model, testset)

Example: spam mail

R> library(randomForest)
R> rF.model <- randomForest(type ~ ., data = trainset)
R> type.rF <- predict(rF.model, testset)

R> table(True = type.true, Pred = type.rF)

Pred
True nonspam spam

nonspam 892 25
spam 57 559

Example: spam mail

R> library(randomForest)
R> rF.model <- randomForest(type ~ ., data = trainset)
R> type.rF <- predict(rF.model, testset)

R> table(True = type.true, Pred = type.rF)

Pred
True nonspam spam

nonspam 892 25
spam 57 559

R> (57 + 25)/ntest

[1] 0.05348989

Interfaces

Try not to reinvent the wheel by interfacing to other programs

❆ Execute code in virtually any other language (C, C++, For-

tran, Java, Perl, . . .).

❆ Use relational databases for storing your data (Oracle,

ODBC, . . .).

❆ Connections allow URLs, pipes or sockets to be treated like

local files in many situations (read data, . . .).

or interface from other programs

❆ R can be embedded in other languages or programs like Post-

gres databases or the Apache web server.

Packages

❆ R features a modern package management system
(inspired by Linux package managers).

❆ Packages provide a convenient form of distributing data an-
alytic methodology.

❆ An R source package typically contains

❖ R code (and optionally C, C++ or Fortran code)
❖ help pages with executable examples
❖ datasets for examples
❖ optional further documentation

❆ Packages can be automatically installed and updated over
the Internet.

Packages

❆ The central network of package repositories CRAN currently

provides more than 170 packages (and the list is growing

fast). Binaries for Windows, Mac and several Linux distribu-

tions are provided by platform maintainers.

❆ You develop on your favorite platform, submit the package to

CRAN (keeping the copyright), and the CRAN maintainers

take care of all the other platforms, if possible.

❆ Several repositories can be used simultaneously, users can

easily create their own package archives (and share them

locally or globally).

❆ Many of the popular books on data analysis with S(-Plus)

have corresponding R packages: MASS, boot, nlme, survival.

Packages

❆ Additionally

❖ Omegahat:

Web-based software, interfaces.

http://www.omegahat.org/

❖ Bioconductor:

“Infrastructure” for the analysis and comprehension of ge-

nomic data.

http://www.bioconductor.org/

http://www.omegahat.org/
http://www.bioconductor.org/

Reproducible research

❆ Lawrence: “Online or Invisible?

(Nature, 2001) shows that free online availability of papers

increases the number of citations significantly.

❆ Equivalent “Online or Unused?” for data analytic tech-

niques?

❆ We need to encourage (very strongly) writers of methodology

to provide code that implements their methodology.

❆ The mathematical or theoretical description of a data ana-

lytic technique is a sufficient condition for being able to use

it, but at least one implementation is necessary.

❆ Given the description of an excellent method and code for a

good one, you choose . . . ?

Reproducible research

Are data and toolbox for favorite programming environment suf-

ficient?

Reproducible research

Are data and toolbox for favorite programming environment suf-

ficient?

Not really:

❆ Data preprocessing, weighting, meta-information and exact

relation between different data sources, . . .

❆ Many analyses depend crucially on settings of hyperparame-

ters or seed of random number generator.

❆ Recreation often hard (or at least time consuming) even

given a complete description of the analysis.

Reproducible research

Are data and toolbox for favorite programming environment suf-

ficient?

Not really:

❆ Data preprocessing, weighting, meta-information and exact

relation between different data sources, . . .

❆ Many analyses depend crucially on settings of hyperparame-

ters or seed of random number generator.

❆ Recreation often hard (or at least time consuming) even

given a complete description of the analysis.

→ code and text should be one tightly coupled bundle

Reproducible research

Sweave: mixing LATEX and S/R code.

Source code for next slide:

We compare the dolphins species using a Kruskal-Wallis test:

<<example>>=

kruskal.test(logheart ~ species)

@

which shows a significant difference between the two species.

Reproducible research

We compare the dolphins species using a Kruskal-Wallis test:

R> kruskal.test(logheart ~ species)

Kruskal-Wallis rank sum test

data: logheart by species

Kruskal-Wallis chi-squared = 3.8631, df = 1, p-value = 0.04936

which shows a significant difference between the two species.

Summary

R is a general purpose environment for data analysis with support

for a wide variety of techniques including:

❆ linear and generalized linear models, nonlinear regression,

random and mixed effects, multinomial logit

❆ classical parametric and nonparametric tests

❆ time series: ARIMA, GARCH, filter, spectrum

❆ clustering: hierarchical, partitioning, parametric mixtures,

fuzzy

❆ regression and classification trees, bagging, random forests

❆ neural networks, support vector machines

❆ smoothing, generalized additive models, MARS

❆ bootstrap

❆ . . .

Summary

❆ Using a language-based environment may feel uncomfortable

if used to GUIs, but offers a lot more flexibility.

❆ Learn language while using the software.

❆ Full power of a modern programming language for imple-

menting new ideas, working directly with statistical data

types (nominal, ordinal, quantitative, missing values, . . .).

❆ Free software ideal for teaching, students do not need a li-

cense to use at home.

Summary

❆ Works on all common operating system platforms

❆ Open Source (GPL)

For more information...

http://www.R-project.org/

http://cran.R-project.org/

http://www.R-project.org/
http://cran.R-project.org/

