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f(y)

Zero-and/or-one-inflated beta distribution
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Reading skills

R packages:

® crch for censored (and truncated) regression with conditional
heteroscedasticity (default: normal).

® petareg for beta regression, including XBX as default for responses with 0
and/or 1 (since version 3.2-0).

® topmodels (from R-Forge or R-universe) for probabilistic predictions and
diagnostic plots.
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Reading skills

R packages:

® crch for censored (and truncated) regression with conditional
heteroscedasticity (default: normal).

® petareg for beta regression, including XBX as default for responses with 0
and/or 1 (since version 3.2-0).

® topmodels (from R-Forge or R-universe) for probabilistic predictions and
diagnostic plots.

Application: Reading skills data.
R> rsil <- crch(accuracyl ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,

+ left = 0, right = 1)
R> rs2 <- betareg(accuracyl ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills)
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Reading skills

Comparison: Similar effects for expectations.
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Reading skills

Comparison: Similar fitted distributions in hanging rootograms.
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Loss aversion

Behavioral economics experiment: Glatzle-Rutzler at al. (2015).
® Determinants of loss aversion in high-school students.
® Proportion of tokens invested in risky lottery with positive expected payouts.

60
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Average invested proportion (over 9 rounds)
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Loss aversion

Original analysis: Normal linear regression model with grade (lower vs.
upper), arrangement (single vs. team of two), male (at least one), age.

R> la_ols <- glm(invest ~ grade * (arrangement + age) + male, data = LossAversion)
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Loss aversion

Original analysis: Normal linear regression model with grade (lower vs.
upper), arrangement (single vs. team of two), male (at least one), age.

R> la_ols <- glm(invest ~ grade * (arrangement + age) + male, data = LossAversion)

Alternatively: Probabilistic models to simultaneously model expected
investments and probability to behave like a rational homo oeconomicus.

® CN: Heteroscedastic censored normal model.
® B: Beta regression after ad-hoc scaling to the open unit interval.
e XBX: Extended-support beta mixture model.

R> la_xbx <- betareg(invest ~ grade * (arrangement + age) + male |
+ arrangement + male + grade, data = LossAversion)

etc.
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Loss aversion

sqrt(Frequency)
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Proportion of tokens invested
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Loss aversion

Model =——@=— Empirical =® = N =0 CN =8 = B =—8— XBX

E(Y) P(Y > 0.95)
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Theory

More formally: XB(u, ¢, u) is a beta distribution B(u, ¢) with support extended
to (—u,u) and censored at 0 and 1.
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y+u
1+ 2u

f(XB)(y ’ s ¢7 U) = f(B) <

1 .
H,¢) T30’ ify € (0,1)
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Theory

More formally: XB(u, ¢, u) is a beta distribution B(u, ¢) with support extended
to (—u,u) and censored at 0 and 1.

( u
F ify —
(B)<1+2u‘ﬂvd)>7 ify=0
y+u 1 )
fxe) (Y | o @, u) = fie) <1+2u u,¢> 1120 ify € (0,1)
14u ,
1_F(B)<1+2u u,cb), ify=1

Special cases: Beta (u = 0) and censored normal (u — oo) distributions.
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Theory

Shrinkage: XBX(u, ¢,v) is a continuous mixture of XB(u, ¢, u) with u ~ Exp(v).
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Theory

Shrinkage: XBX(u, ¢,v) is a continuous mixture of XB(u, ¢, u) with u ~ Exp(v).

oo
f(XBX)(y | 122 QS’ V) = Vl/ f(XB)(y | M, ¢7 U) 67U/Vdu
0
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Bluesky: @zeileis.org
Web: https://www.zeileis.org/
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