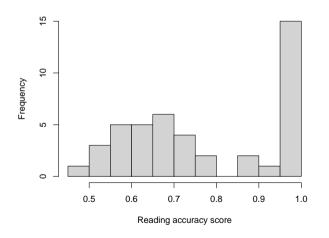
universität innsbruck

Regression Models for [0,1] Responses Using betareg

Ioannis Kosmidis, Achim Zeileis

https://www.zeileis.org/

Motivation

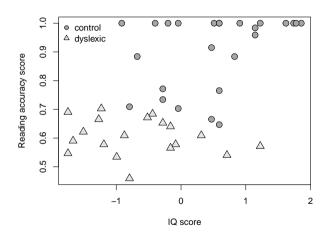


Goal: Model limited response variables in unit interval.

Examples: Fractions or proportions (not from independent Bernoulli trials).

Illustration: Reading accuracy of 44 primary school children, explained by dyslexia status and iq score.

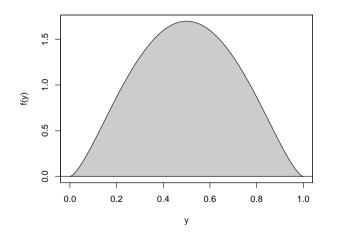
Motivation



Goal: Model limited response variables in unit interval.

Examples: Fractions or proportions (not from independent Bernoulli trials).

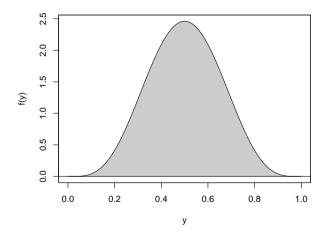
Illustration: Reading accuracy of 44 primary school children, explained by dyslexia status and iq score.



Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

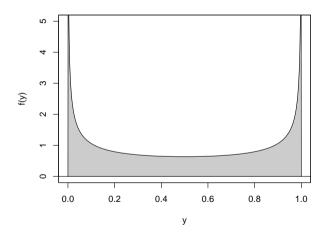
Advantage: Flexible shape, full likelihood.



Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

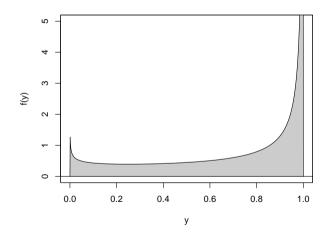
Advantage: Flexible shape, full likelihood.



Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

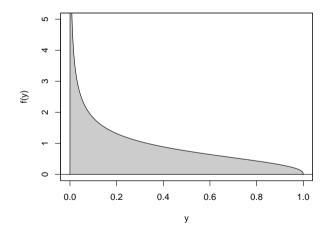
Advantage: Flexible shape, full likelihood.



Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

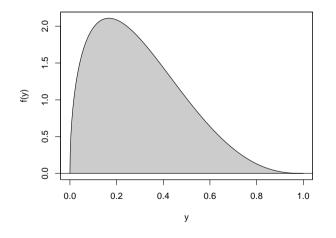
Advantage: Flexible shape, full likelihood.



Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

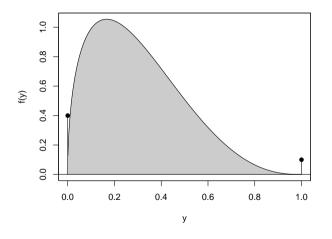


Parameters: Mean μ , precision ϕ .

Regression: Link both parameters to predictors.

Advantage: Flexible shape, full likelihood.

Zero-and/or-one-inflated beta distribution

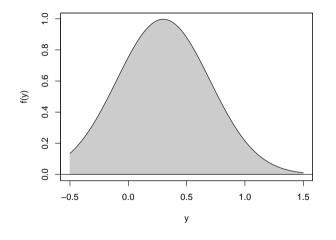


Parameters: Mean μ , precision ϕ , point masses π_0 , π_1 .

Regression: Link all four parameters to predictors.

Advantage: Keep flexibility, accomodate boundaries.

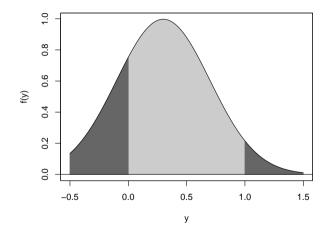
Disadvantage: Many parameters, separate determinants for boundaries.



Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

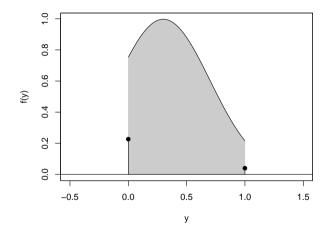
Advantage: No additional determinants for boundaries.



Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

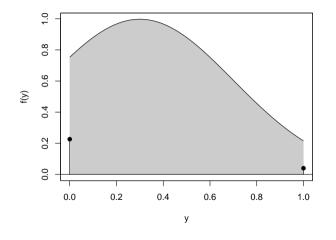
Advantage: No additional determinants for boundaries.



Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

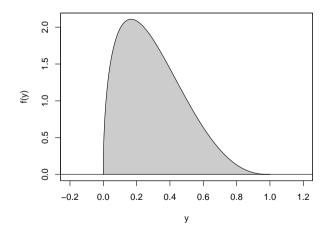
Advantage: No additional determinants for boundaries.



Parameters: Mean μ , variance σ^2 .

Regression: Link both parameters to predictors.

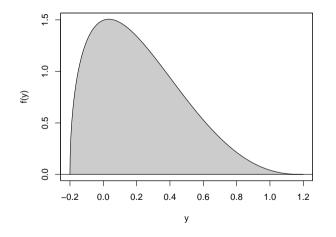
Advantage: No additional determinants for boundaries.



Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

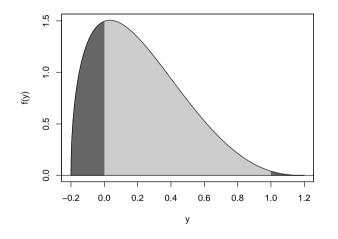
Advantage: Single parameter ν links normal and beta.



Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

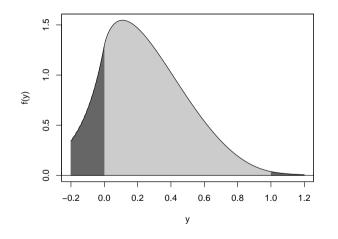
Advantage: Single parameter ν links normal and beta.



Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

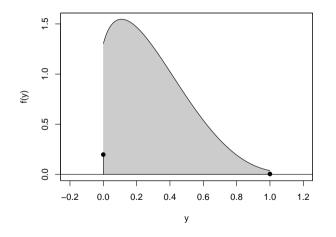
Advantage: Single parameter ν links normal and beta.



Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

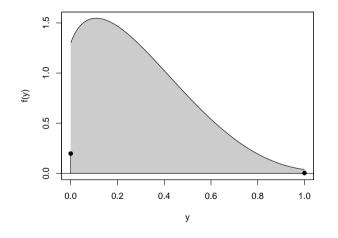
Advantage: Single parameter ν links normal and beta.



Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.



Parameters: Mean μ , precision ϕ , exceedence ν .

Regression: Link only μ and ϕ to predictors.

Advantage: Single parameter ν links normal and beta.

R packages:

- crch for censored (and truncated) regression with conditional heteroscedasticity (default: normal).
- betareg for beta regression, including XBX as default for responses with 0 and/or 1 (since version 3.2-0).
- topmodels (from R-Forge or R-universe) for probabilistic predictions and diagnostic plots.

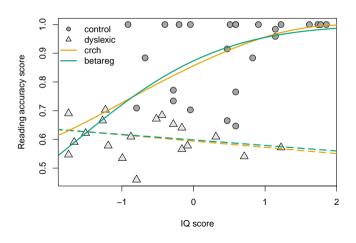
R packages:

- crch for censored (and truncated) regression with conditional heteroscedasticity (default: normal).
- betareg for beta regression, including XBX as default for responses with 0 and/or 1 (since version 3.2-0).
- topmodels (from R-Forge or R-universe) for probabilistic predictions and diagnostic plots.

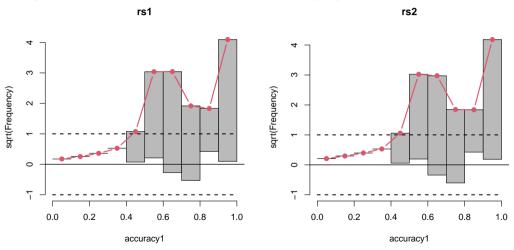
Application: Reading skills data.

```
R> rs1 <- crch(accuracy1 ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,
+ left = 0, right = 1)
R> rs2 <- betareg(accuracy1 ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills)</pre>
```

Comparison: Similar effects for expectations.

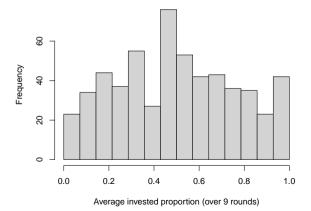


Comparison: Similar fitted distributions in hanging rootograms.



Behavioral economics experiment: Glätzle-Rützler at al. (2015).

- Determinants of loss aversion in high-school students.
- Proportion of tokens invested in risky lottery with positive expected payouts.



Original analysis: Normal linear regression model with grade (lower vs. upper), arrangement (single vs. team of two), male (at least one), age.

```
R> la_ols <- glm(invest ~ grade * (arrangement + age) + male, data = LossAversion)
```

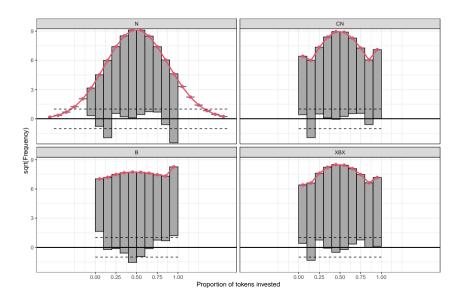
Original analysis: Normal linear regression model with grade (lower vs. upper), arrangement (single vs. team of two), male (at least one), age.

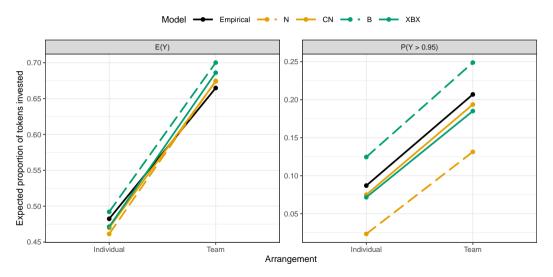
```
R> la_ols <- glm(invest ~ grade * (arrangement + age) + male, data = LossAversion)
```

Alternatively: Probabilistic models to simultaneously model expected investments *and* probability to behave like a rational *homo oeconomicus*.

- CN: Heteroscedastic censored normal model.
- B: Beta regression after ad-hoc scaling to the open unit interval.
- XBX: Extended-support beta mixture model.

```
R> la_xbx <- betareg(invest ~ grade * (arrangement + age) + male |
+ arrangement + male + grade, data = LossAversion)
etc.</pre>
```





More formally: $XB(\mu, \phi, u)$ is a beta distribution $B(\mu, \phi)$ with support extended to (-u, u) and censored at 0 and 1.

More formally: $XB(\mu, \phi, u)$ is a beta distribution $B(\mu, \phi)$ with support extended to (-u, u) and censored at 0 and 1.

$$f_{(\mathsf{XB})}(y\mid\mu,\phi,u) = f_{(\mathsf{B})}\left(rac{y+u}{1+2u}\mid\mu,\phi
ight)rac{1}{1+2u}\,, \quad \mathsf{if}\ y\in(0,1)$$

More formally: $XB(\mu, \phi, u)$ is a beta distribution $B(\mu, \phi)$ with support extended to (-u, u) and censored at 0 and 1.

$$f_{(\mathsf{XB})}(y\mid\mu,\phi,u) \quad = \quad \left\{ \begin{array}{l} F_{(\mathsf{B})}\left(\frac{u}{1+2u}\mid\mu,\phi\right)\,, & \text{if } y=0 \\ \\ f_{(\mathsf{B})}\left(\frac{y+u}{1+2u}\mid\mu,\phi\right)\frac{1}{1+2u}\,, & \text{if } y\in(0,1) \\ \\ 1-F_{(\mathsf{B})}\left(\frac{1+u}{1+2u}\mid\mu,\phi\right)\,, & \text{if } y=1 \end{array} \right.$$

More formally: $XB(\mu, \phi, u)$ is a beta distribution $B(\mu, \phi)$ with support extended to (-u, u) and censored at 0 and 1.

$$f_{(\mathsf{XB})}(y \mid \mu, \phi, u) \quad = \quad \left\{ \begin{array}{l} F_{(\mathsf{B})}\left(\frac{u}{1+2u} \mid \mu, \phi\right) \,, & \text{if } y = 0 \\ \\ f_{(\mathsf{B})}\left(\frac{y+u}{1+2u} \mid \mu, \phi\right) \frac{1}{1+2u} \,, & \text{if } y \in (0,1) \\ \\ 1 - F_{(\mathsf{B})}\left(\frac{1+u}{1+2u} \mid \mu, \phi\right) \,, & \text{if } y = 1 \end{array} \right.$$

Special cases: Beta (u = 0) and censored normal ($u \to \infty$) distributions.

Shrinkage: XBX(μ , ϕ , ν) is a continuous mixture of XB(μ , ϕ , u) with $u \sim \text{Exp}(\nu)$.

Shrinkage: $XBX(\mu, \phi, \nu)$ is a continuous mixture of $XB(\mu, \phi, u)$ with $u \sim Exp(\nu)$.

$$f_{(XBX)}(y \mid \mu, \phi, \nu) = \nu^{-1} \int_0^\infty f_{(XB)}(y \mid \mu, \phi, u) e^{-u/\nu} du$$

References

Cribari-Neto F, Zeileis A (2010). "Beta Regression in R." *Journal of Statistical Software*, **34**(2), 1–24. doi:10.18637/jss.v034.i02

Messner JW, Mayr GJ, Zeileis A (2016). "Heteroscedastic Censored and Truncated Regression with crch." The R Journal, 8(1), 173–181. doi:10.32614/RJ-2016-012

Kosmidis I, Zeileis A (2024). "Extended-Support Beta Regression for [0, 1] Responses." arXiv.org E-Print Archive, arXiv:2409.07233. doi:10.48550/arXiv.2409.07233

Software:

https://topmodels.R-Forge.R-project.org/crch/ https://topmodels.R-Forge.R-project.org/betareg/

Mastodon: @zeileis@fosstodon.org

Bluesky: @zeileis.org

Web: https://www.zeileis.org/