Visualizing Goodness of Fit of Probabilistic Regression Models

Achim Zeileis

https://topmodels.R-Forge.R-project.org/
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i$ ($i = 1, \ldots n$).

Regression model: $\mu_i = r(x_i)$
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i \ (i = 1, \ldots n)$.

Regression model: $\mu_i = r(x_i)$
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i (i = 1, \ldots, n)$.

Regression model: $\mu_i = r(x_i)$

LM, GLM

GAM
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i$ ($i = 1, \ldots, n$).

Regression model: $\mu_i = r(x_i)$
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i \ (i = 1, \ldots, n)$.

Regression model: $\mu_i = r(x_i)$
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i (i = 1, \ldots n)$.

Regression model: $\mu_i = r(x_i)$

Often: Full conditional probability distribution is of interest.
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i \ (i = 1, \ldots, n)$.

Regression model: $\mu_i = r(x_i)$

Often: Full conditional probability distribution is of interest.
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i$ ($i = 1, \ldots n$).

Regression model: $\mu_i = r(x_i)$

Often: Full conditional probability distribution is of interest.
Probabilistic regression models

Classical approach: Model conditional expectation $E(y_i|x_i) = \mu_i \ (i = 1, \ldots n)$.

Regression model: $\mu_i = r(x_i)$

Often: Full conditional probability distribution is of interest.
Probabilistic regression models

Formally: Fit distribution with cumulative distribution function $F(y_i | \theta_i)$ and parameter vector θ_i for each observation y_i.
Probabilistic regression models

Formally: Fit distribution with cumulative distribution function $F(y_i|\theta_i)$ and parameter vector θ_i for each observation y_i.

Forecasting: $\hat{\theta}_i = \hat{r}(x_i)$.

- Model fit typically yields distribution parameters.
- Implies all other aspects of the distribution $F(\cdot|\theta_i)$.
- Thus: Moments, quantiles, probabilities, ...
Illustration: Goals in the 2018 FIFA World Cup

Response: Goals scored by the two teams in all 64 matches.

Covariates: Basic match information and prediction of team (log-)abilities (based on bookmakers odds).

```r
R> data("FIFA2018", package = "distributions3")
R> tail(FIFA2018, 2)
goals team match type stage logability difference
127 4 FRA 64 Final knockout 0.8866 0.629
128 2 CRO 64 Final knockout 0.2576 -0.629
```

Model: Poisson GLM with mean λ_i using log link.
Illustration: Goals in the 2018 FIFA World Cup

In R:

R> m <- glm(goals ~ difference, data = FIFA2018, family = poisson)

Forecasting: In-sample for simplicity.

R> tail(procast(m), 2)

<table>
<thead>
<tr>
<th>distribution</th>
<th>127 Poisson distribution (lambda = 1.6044)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>128 Poisson distribution (lambda = 0.9538)</td>
</tr>
</tbody>
</table>
Illustration: Goals in the 2018 FIFA World Cup

In R:
R> m <- glm(goals ~ difference, data = FIFA2018, family = poisson)

Forecasting: In-sample for simplicity.
R> tail(procast(m), 2)

<table>
<thead>
<tr>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>127 Poisson distribution ((\lambda = 1.6044))</td>
</tr>
<tr>
<td>128 Poisson distribution ((\lambda = 0.9538))</td>
</tr>
</tbody>
</table>

Implies:
- Probabilities for match results (assuming independence of goals).
- Corresponding probabilities for win/draw/lose.
Illustration: Goals in the 2018 FIFA World Cup

Example: Probabilities for final France-Croatia.
Example: Probabilities for final France-Croatia. Result 4-2.
Goodness of fit

Idea:

- Use visualizations instead of just summing up scores.
- Gain more insights graphically.
- Reveal different types of model misspecification.
Goodness of fit

Idea:

• Use visualizations instead of just summing up scores.
• Gain more insights graphically.
• Reveal different types of model misspecification.

Questions: Graphics are not new but novel unifying view.

• What are useful elements of such graphics?
• What are relative (dis)advantages?
Goodness of fit

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:
- Observed frequencies.
Goodness of fit

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:
- Observed frequencies.
- Compare: Expected.
Goodness of fit

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:
- Observed frequencies.
- Compare: Expected.

Probabilistic calibration:
- Probability integral
 \[u_i = F(y_i \mid \hat{\theta}_i). \]
- Compare: Uniform.
Goodness of fit

Ideas: Illustrated for FIFA Poisson model.

Marginal calibration:
- Observed frequencies.
- Compare: Expected.

Probabilistic calibration:
- Probability integral
 \[u_i = F(y_i | \hat{\theta}_i). \]
- Compare: Uniform.

Probabilistic calibration:
- Quantile residuals
 \[\Phi^{-1}(u_i). \]
- Compare: Normal
Goodness of fit: Marginal calibration

Observed vs. expected frequencies: Standing, with reference line.
Goodness of fit: Marginal calibration

√Observed vs. √expected frequencies: Standing, with reference line.
Goodness of fit: Marginal calibration

\[\sqrt{\text{Observed vs. expected frequencies}}: \text{Hanging.} \]
Goodness of fit: Marginal calibration

√**Observed vs. √**expected frequencies: Hanging, with confidence interval.
Goodness of fit: Marginal calibration

Rootogram:

- Frequencies on raw or square-root scale.
- Hanging, standing, or suspended styled rootograms.
Goodness of fit: Marginal calibration

Rootogram:
- Frequencies on raw or square-root scale.
- Hanging, standing, or suspended styled rootograms.

Overall:
- *Advantage:* Scale of observations is natural, direct interpretation.
- *Disadvantage:* Needs to be compared with a combination of distributions.
Goodness of fit: Probabilistic calibration

PIT: Randomization 1a.
Goodness of fit: Probabilistic calibration

PIT: Randomization 1a, with reference line.
Goodness of fit: Probabilistic calibration

PIT: Randomization 1a, with reference line and confidence interval.
Goodness of fit: Probabilistic calibration

PIT: Randomization 1b.
Goodness of fit: Probabilistic calibration

PIT: Randomization 1c.
Goodness of fit: Probabilistic calibration

PIT: Randomization 1c, with simulation intervals.
Goodness of fit: Probabilistic calibration

PIT: 10 random draws.
Goodness of fit: Probabilistic calibration

PIT: 100 random draws.
Goodness of fit: Probabilistic calibration

PIT: Expected.
Goodness of fit: Probabilistic calibration

Randomized quantile residuals: Expected.
Goodness of fit: Probabilistic calibration

Randomized quantile residuals: Expected, with reference.
Goodness of fit: Probabilistic calibration

Observed vs. expected quantiles: Q-Q plot.
Goodness of fit: Probabilistic calibration

Observed vs. expected quantiles: Detrended Q-Q plot (worm plot).
Goodness of fit: Probabilistic calibration

PIT histogram:
- Probability scale or transformed to normal scale.
- Randomized or expected for discrete distributions.
Goodness of fit: Probabilistic calibration

PIT histogram:
- Probability scale or transformed to normal scale.
- Randomized or expected for discrete distributions.

Q-Q residuals plot:
- Normal or uniform scale.
- Detrended Q-Q plot (worm plot).
Goodness of fit: Probabilistic calibration

PIT histogram:
- Probability scale or transformed to normal scale.
- Randomized or expected for discrete distributions.

Q-Q residuals plot:
- Normal or uniform scale.
- Detrended Q-Q plot (worm plot).

Overall:
- Advantage: Comparison with only one distribution (uniform or normal).
- Disadvantages: Scale is not so natural. May require randomization.
Illustration: Loss aversion in adolescents

Experiment: Behaviour of adolescents (mostly 11–19).
- **Setup:** Nine rounds of a lottery with positive expectation.
- **Response:** Proportion of invested points across all rounds.
- **Covariates:** Arrangement (single vs. team), gender, age.

Models:
- Ordinary least squares, interpreted as homoscedastic Gaussian model.
- Extended-support beta mixture regression (with point masses for 0 and 1).

Goodness of fit: Similar fitted means but rather different distributions.
Illustration: Loss aversion in adolescents

Experiment: Behaviour of adolescents (mostly 11–19).
- *Setup:* Nine rounds of a lottery with positive expectation.
- *Response:* Proportion of invested points across all rounds.
- *Covariates:* Arrangement (single vs. team), gender, age.

Models:
- Ordinary least squares, interpreted as homoscedastic Gaussian model.
- Extended-support beta mixture regression (with point masses for 0 and 1).
Illustration: Loss aversion in adolescents

Experiment: Behaviour of adolescents (mostly 11–19).

- *Setup:* Nine rounds of a lottery with positive expectation.
- *Response:* Proportion of invested points across all rounds.
- *Covariates:* Arrangement (single vs. team), gender, age.

Models:

- Ordinary least squares, interpreted as homoscedastic Gaussian model.
- Extended-support beta mixture regression (with point masses for 0 and 1).

Goodness of fit: Similar fitted means but rather different distributions.
Illustration: Loss aversion in adolescents

Rootogram:
Illustration: Loss aversion in adolescents

Rootogram:
Illustration: Loss aversion in adolescents

PIT histogram:
Illustration: Loss aversion in adolescents

PIT histogram:
Illustration: Loss aversion in adolescents

PIT histogram:
Illustration: Loss aversion in adolescents

Q-Q residual plot:
Illustration: Loss aversion in adolescents

Q-Q residual plot: Detrended.
Software: topmodels

R package: topmodels. Forecasting and assessment of probabilistic models.

Not yet on CRAN: https://topmodels.R-Forge.R-project.org/

Visualizations:

- `rootogram()` Rootograms of observed and fitted frequencies
- `pithist()` PIT histograms
- `qqrplot()` Q-Q plots for quantile residuals
- `wormplot()` Worm plots for quantile residuals
- `reliagram()` (Extended) reliability diagrams
Software: topmodels

Numeric quantities:

- `procast()`
 Probabilistic forecasts (probabilities, quantiles, etc.)
- `proscore()`
 Evaluate scoring rules for procasts
- `pitresiduals()`
 Probability integral transform (PIT) residuals
- `qresiduals()`
 (Randomized) quantile residuals
Software: topmodels

Numeric quantities:

- `procast()` Proabilistic forecasts (probabilities, quantiles, etc.)
- `proscore()` Evaluate scoring rules for procasts
- `pitresiduals()` Probability integral transform (PIT) residuals
- `qresiduals()` (Randomized) quantile residuals

Object orientation:

- Work with distribution objects (vectorized) from `distributions3`.
- Model classes like `lm`, `glm`, `gamlss`, `bamlss`, `hurdle`, `zeroinfl`, ...
- New model classes can be easily added if distribution can be extracted.
References

Contact

Mastodon: @zeileis@fosstodon.org

X/Twitter: @AchimZeileis

Web: https://www.zeileis.org/