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Abstract

Cognitive diagnosis models (CDMs) are an increasingly popular method to assess
mastery or nonmastery of a set of fine-grained abilities in educational or psychological
assessments. Several inference techniques are available to quantify the uncertainty of
model parameter estimates, to compare different versions of CDMs or to check model
assumptions. However, they require a precise estimation of the standard errors (or the
entire covariance matrix) of the model parameter estimates. In this article, it is shown
analytically that the currently widely used form of calculation leads to underestimated
standard errors because it only includes the item parameters, but omits the parameters
for the ability distribution. In a simulation study, we demonstrate that including those
parameters in the computation of the covariance matrix consistently improves the quality
of the standard errors. The practical importance of this finding is discussed and illustrated
using a real data example.
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1. Introduction

Cognitive diagnosis models (CDMs) are restricted latent class models that can be used to
analyze response data from educational or psychological tests. In the educational context,
they are becoming a popular method for measuring mastery or nonmastery of a set of fine-
grained abilities (called attributes) that can be used, for example, to support teachers to
recognize strengths and weaknesses of students. Lee, Park, and Taylan (2011) and Li (2011)
are examples of cognitive diagnostic analyses of mathematics and language skills in large-scale
assessments. However, the method has also been suggested to identify the presence or absence
of psychological disorders (de la Torre, van der Ark, and Rossi 2015; Templin and a Henson
2006), or can be used for a detailed measurement of fluid intelligence using abstract reasoning
tasks (Yang and Embretson 2007; Rupp, Templin, and Henson 2010).

The field of cognitive diagnostic assessments has also become a popular area for methodolog-
ical research over the past 20 years. Many different versions of CDMs have been proposed
to analyze responses from tests with various characteristics (e.g., models for dichotomous
and polytomous responses, compensatory and noncompensatory processes). See Rupp et al.
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2 Estimation of Standard Errors in CDMs

(2010) for a taxonomy of CDMs. Many of these models can be subsumed within a more
general framework, such as the generalized deterministic input, noisy “and” gate (G-DINA;
de la Torre 2011) model, the log-linear CDM (LCDM; Henson, Templin, and Willse 2009),
or the general diagnostic model (GDM; von Davier 2008). Aside from Bayesian approaches,
which are presented in the literature for different versions of CDMs (see e.g., Culpepper
2015), the model parameters are usually estimated via marginal maximum likelihood esti-
mation (MMLE) using, for example, the EM algorithm (Dempster, Laird, and Rubin 1977;
McLachlan and Krishnan 2007). In the marginal formulation of the model, a probability
distribution that models the attribute space is imposed in conjunction with the traditional
item response function, that models the conditional probability of a correct response given
the attributes.

An important step of any practical analysis is to assess the uncertainty of the estimated model
parameters using confidence intervals or significance tests. Furthermore, several techniques
are available to investigate the model fit or to check the model assumptions of a CDM,
including tests for (item-level) model comparisons (de la Torre and Lee 2013) and to detect
differential item functioning (Hou, de la Torre, and Nandakumar 2014). These methods
require a precise estimation of the model parameters and their standard errors (or the entire
covariance matrix).

However, according to the CDM literature (see e.g., Chen and de la Torre 2013; George
2013; Rojas 2013; Song, Wang, Dai, and Ding 2012; de la Torre 2009, 2011) and open source
software implementations (e.g., in the R package cdm, version 4.991-1), it is common to
compute the standard errors only for the parameters which are used to specify the item
response function while ignoring the parameters used to specify the joint distribution of the
attributes. Consequently, this approach is frequently applied in substantive as well as in many
methodological research applications.

Unfortunately, this widely used approach can lead to underestimated standard errors, as we
will demonstrate in this paper. The aim of this article is to provide detailed guidance on how
standard errors for cognitive diagnosis models should be computed correctly. In addition to
analytic arguments, we will investigate the quality of the standard errors using simulations.

The severity of the underestimation varies considerably depending on some known factors
(e.g., test length and number of attributes in the assessment), as well as unknown factors
(e.g., parameters of the item response function and distribution of the attributes). In some
situations, the incremental improvement with the correct approach may become negligibly
small (e.g., for high test lengths). However, because the factors potentially causing under-
estimation are manifold, practioners cannot know upfront whether the data being analyzed
is subject to underestimation of standard errors, and how severe the underestimation might
be. Given that the necessary computations are straightforward, using the correct approach
presented in this article is recommended to be on the“safe side”. The additional computations
only involve components that are already provided by the results of the estimation routine,
and we provide free and open-source software for obtaining the results in practice.

In many situations the underestimation can seriously deteriorate the quality of confidence
intervals and statistical tests. Hou et al. (2014), for example, proposed the Wald test to detect
differential item functioning in CDMs, and encountered serious Type I error inflation (up to
18%). Li and Wang (2015) later found that this was caused by a substantial underestimation
of the standard errors with the marginal maximum likelihood estimation (MMLE) approach.
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Although it is not clear whether the underestimation they observed in their study was caused
by the incorrect computation of the standard errors or otherwise, it demonstrates how the
performance of the Wald test can be negatively affected by underestimated standard errors
(or the entire covariance matrix). Several studies in the field of item response theory (IRT)
have also demonstrated the influence of the estimation approach on the quality of procedures
that require a covariance matrix. Woods, Cai, and Wang (2012), for example, found better
controlled Type I error in the Wald test to detect differential item functioning in the Rasch
model if the covariance matrix was computed using the supplemented EM algorithm (Cai
2008).

Other statistical issues might also cause biases in standard errors for CDMs when using
MMLE. Similar to traditional latent class analysis, for example, parameter estimates some-
times converge towards the boundary of the parameter space for small data sets. This causes
numerical problems in the calculation of the information matrix, which is inverted to get the
covariance matrix. Posterior mode (PM) estimation has been suggested to overcome these
problems (DeCarlo 2011; Garre and Vermunt 2006). However, in the CDM literature and in
some frequently used software packages, the traditional maximum likelihood (ML) estimation
is prevalent. Therefore, we will focus on the estimation of standard errors in this framework
for this article.

The rest of the article is organized as follows. The next section contains a short formal
introduction of CDMs before the correct estimation of the standard errors is discussed in
detail. Later in that section, the G-DINA model will be introduced for the remaining aspects
discussed in the article. In the section after next, the quality of the standard errors is inves-
tigated using simulation studies and a real data example. The last section concludes with
a discussion. To simplify notation and language, we will focus on CDMs for dichotomous
responses in the context of educational assessments for the rest of the article. Please note,
however, that the calculation of the standard errors described here holds for all types of CDMs
estimated via MMLE.

2. Cognitive diagnosis models

The primary goal in cognitive diagnosis modeling is to infer mastery or nonmastery of K
attributes from the responses of each individual to J items in an assessment. For this task
a J × K Q-matrix (Tatsuoka 1983) must be specified to identify the cognitive specification
of the items, where Q = {qjk} and qjk = 1 if attribute k (k = 1, . . . ,K) is required to solve
item j (j = 1, . . . , J), and 0 otherwise. The Q-matrix requires domain-specific knowledge,
and should ideally be specified together with experts from the field for which the assessment
will be needed.

Let Xi = {Xij} be the binary response pattern of individual i (i = 1, . . . , N). The conditional
probability of a correct response to item j given the unobserved attribute profile αi = {αik}
is parametrized using a specific item response function, denoted by Pj(αi) = Pr(Xij = 1|αi).
Furthermore, let δj denote the vector of all parameters used to specify Pj(αi) and, let δ =

(δ1, . . . , δJ)> denote the vector of parameters that contains all item parameters. For reasons of
consistency, it is usually suggested to estimate δ and αi using a marginal maximum likelihood
approach (de la Torre 2009; Neyman and Scott 1948). The marginal probability is given by
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the sum over all L = 2K possible attribute patterns, called latent classes:

Pr(Xi = xi) =
L∑
l=1

p(αl) · Pr(Xi = xi|αl),

where Pr(Xi = xi|αl) =
∏J

j=1 Pj(αl)
xij [1− Pj(αl)]

1−xij .

A distribution p(αl) is imposed to specify a prior probability for each latent class. Let π
be the vector of all parameters used in the model that specifies p(αl). For this article, we
choose a saturated model by estimating a probability πl = p(αl) for each latent class, where
πL = 1−

∑L−1
l=1 πl. Different models can be assumed to reduce the number of parameters (de

la Torre and Douglas 2004; Rupp et al. 2010).

Thus, let ϑ = (δ,π)> be the complete vector of all model parameters of a CDM, and further
p = dim(δ) and q = dim(π). The marginal log-likelihood that is maximized to estimate ϑ
given the data sample X = {xi} for individuals i = 1, . . . , N , is given by

`(ϑ;X) = log [L(ϑ;X)] = log
N∏
i=1

L∑
l=1

πl · Pr(Xi = xi|αl),

and can be maximized using the EM algorithm as described in de la Torre (2009). The

estimation procedure provides the posterior probability for each latent class, P̂r(αl|xi), that
can be used to find π̂ and the attribute profiles α̂i. However, the aim of this article is to
discuss the estimation of standard errors for the estimated model parameters ϑ̂, which will
be the focus of the next section.

2.1. Theory and estimation of standard errors

The standard errors of the estimated model parameters ϑ̂ =
(
δ̂, π̂

)>
can be computed as the

square root of the diagonal elements of the covariance matrix of ϑ̂. Regarding the two types
of parameters, δ and π, the covariance matrix of ϑ̂ can be divided into four blocks:

Cov(ϑ̂) = Vϑ =

(
Vδ Vδ,π
Vπ,δ Vπ

)
,

where Vδ = Cov(δ̂) is the covariance matrix of the parameters used to specify the item
response function, Vπ = Cov(π̂) is the covariance matrix of the parameters used to specify
the distribution of the latent classes and Vδ,π = V >π,δ = Cov(δ̂, π̂) is the covariance matrix
between the two types of parameters.

Complete and incomplete information matrix

The (asymptotic) covariance matrix of ϑ̂ is equal to the inverse of the information matrix,
Vϑ = I−1ϑ , which is defined as

Iϑ = E
[
ψ(ϑ)ψ(ϑ)>

]
, (1)

where

ψ(ϑ) =
(
ψ(δ), ψ(π)

)>
=

(
∂`(ϑ;x)

∂δ1
, . . . ,

∂`(ϑ;x)

∂δp
,
∂`(ϑ;x)

∂π1
, . . . ,

∂`(ϑ;x)

∂πq

)>
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is the score function (i.e., the partial derivatives of the log-likelihood with respect to all model
parameters).

Similar to the covariance matrix, the information matrix can be divided into four blocks:

Iϑ =

(
Iδ Iδ,π
Iπ,δ Iπ

)
= E

[(
ψ(δ)ψ(δ)> ψ(δ)ψ(π)>

ψ(π)ψ(δ)> ψ(π)ψ(π)>

)]
,

where Iδ is the information matrix for the parameters used to specify the item response
function, Iπ is the information matrix for the parameters used to specify the distribution of
the latent classes and Iδ,π = I>π,δ is the information matrix for the two types of parameters.

In many practical applications (e.g., tests for differential item functioning) researchers are
primarily interested in the parameters δ, and thus they incorrectly compute the covariance
matrix for δ̂ via the inverse of the incomplete information matrix Iδ. This approach, however,
considers only a submatrix of the complete information matrix including all model parameters
Iϑ. It is important to note that, since δ and π are generally not mutually independent in
CDMs (i.e., Iδ,π = I>π,δ 6= 0), inverting the incomplete information matrix Iδ systematically

underestimates the standard errors for δ̂. In some cases, only the item-wise information
matrix Iδj (a submatrix of Iδ) is computed and inverted to get the covariance matrix of
the parameter vector δj . However, similar to traditional IRT models (Yuan, Cheng, and
Patton 2014), Iδ is not block-diagonal. And thus, inverting the item-wise information matrix
underestimates the standard errors even stronger compared to the incomplete information
matrix approach.

The above statement can be derived in a formal way using matrix algebra. Let (Iδ)−1 be
the covariance of δ̂, based on the incomplete information matrix and let Vδ be the covariance
of δ̂, based on the complete information matrix. From blockwise matrix inversion (see e.g.,
Banerjee and Roy 2014), it follows, that

Vδ = (Iδ)−1 + ∆, (2)

with ∆ = (Iδ)−1Iδ,πVπIπ,δ(Iδ)−1. If the inverse of Iϑ exists1 and Iδ,π = I>π,δ 6= 0, then the
diagonal elements of all terms in (2) are positive (see Appendix A), which implies,√[

Vδ
]
r,r

>
√[

(Iδ)−1
]
r,r

r = 1, . . . , p.

This means that the standard errors of the estimated parameters δ̂ are consistently underes-
timated if the incomplete or the item-wise – instead of the complete – information matrix is
used. Later, in Section 3, we will demonstrate by means of simulations that standard errors
computed using the complete information matrix are of better quality. But first, we will
discuss two important techniques to estimate the information matrix.

Estimating the information matrix and standard errors

Computing the (expected) information matrix by evaluating the expected value at the max-
imum likelihood estimate is infeasible for large assessments. The expectation must be taken

1The inverse exists in many practical cases. However, it does not exist, e.g., when the parameters lie at
the boundary of the parameter space (but estimating standard errors for such parameters is not meaningful
anyway), or when the latent classes are not completely identified by the items in the test.
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over the support of the random response vector xi, which becomes very large even if J (the
number of items) is only moderately large (e.g., J = 25) and computation becomes very slow
due to memory limitation.

Thus, the information matrix is often estimated by the empirical counterpart of Equation 1,
given by

Jϑ,OPG =
1

N

[
N∑
i=1

ψ(ϑ;xi)ψ(ϑ;xi)
>

] ∣∣∣∣∣
ϑ=ϑ̂

, (3)

also known as the “outer product of gradients” (OPG) estimator, where ψ(ϑ;xi) is the con-
tribution of individual i to the score function.

Another estimator follows from the fact that under the true parameter values and standard
regularity conditions the information matrix (as defined in Equation 1) is equivalent to the
expected value of the negative Hessian matrix of the log-likelihood. Thus, the information
matrix may also be estimated via

Jϑ,Hess = − 1

N

[
N∑
i=1

∂2`(ϑ;xi)

∂ϑ∂ϑ>

] ∣∣∣∣∣
ϑ=ϑ̂

. (4)

In practice, however, (3) and (4) are evaluated at the estimated parameter values and, thus,
the two estimators differ by

Jϑ,Hess − Jϑ,OPG =
1

N

[
N∑
i=1

1

L(ϑ;xi)

∂2L(ϑ;xi)

∂ϑ∂ϑ>

] ∣∣∣∣∣
ϑ=ϑ̂

.

Often (3) is easier to compute, but (4) promises a better finite sample approximation of the
information matrix (McLachlan and Krishnan 2007).

From the above definitions, the standard error for the parameter ϑr (r = 1, . . . , p + q), can
be computed via the inverse of the complete information matrix, using

ŝe(ϑ̂r) =
√[

(Jϑ,OPG)−1
]
r,r

or ŝe(ϑ̂r) =
√[

(Jϑ,Hess)−1
]
r,r
,

estimated via the outer-products of gradients or the Hessian matrix, respectively. Since the
differences between the OPG and the Hessian approach turned out to be negligibly small for
simple CDMs (i.e., for the DINA model introduced below, but results are not shown), we will
only consider the OPG estimator for the rest of the article.

In Section 3, the improvement of the quality of the standard errors by using the inverse of
the complete information matrix will be illustrated using three specific versions of CDMs.
Therefore, we will briefly introduce the generalized DINA model framework proposed by de
la Torre (2011), which covers other CDMs as special cases. For a comprehensive description
of the framework, its relation to other general CDMs and parameter estimation, we refer the
reader to the original article.

2.2. The G-DINA model

A comprehensive and very flexible version of a CDM is the generalized deterministic input,
noisy “and” gate (G-DINA) model (de la Torre 2011). Due to its general formulation, it
includes many other (more restrictive) CDMs as special cases.
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For each item in the assessment, the individuals are separated into 2K
∗
j latent groups, where

K∗j is the number of attributes required by item j (i.e., the sum of the jth row in the Q-
matrix). Presence or absence of all the other attributes does not affect the group membership
of an individual. Consequently, the attribute vector αi can be reduced to the attributes
required by the particular item.

Let α∗ij = (αi1, . . . , αiK∗j
) denote the reduced attribute vector of individual i for item j. The

conditional probability to answer item j correctly is then defined by the item response function

Pj(α
∗
ij) = h−1

δj0 +

K∗j∑
k=1

δjkαik +

K∗j−1∑
k=1

K∗j∑
k′=k+1

δjkk′αikαik′ + . . .+ δj12...K∗j

K∗j∏
k=1

αik

 ,

where h(·) is a link function, such as identity, log or logit.

The δj are the model parameters of item j. In case of the identity link, δj0 represents the
baseline probability for correctly answering item j when none of the required attribute has
been mastered (i.e., a lucky guess); δjk is the main effect that increases (or in rare cases
decreases) the probability for correctly answering item j when attribute k has been mastered;
and the rest of the parameters represent interaction terms that can increase or decrease the
response probability when two or more of the required attributes have been mastered.

Other CDMs can be obtained by restricting the parameters in the G-DINA model. An
intuitive, simple and parsimonious CDM is the deterministic input, noisy “and” gate (DINA;
Haertel 1989; Junker and Sijtsma 2001) model. In the DINA model the individuals are
separated into two latent groups, depending on whether they have mastered all the attributes
required to solve the item or not. Thus, the DINA model is a completely noncompensatory (or
conjunctive) model, which means that having mastered only part of the required attributes
does not increase the probability of answering the item correctly. It can be obtained from the
G-DINA model by restricting all parameters except δj0 and δj12...K∗j to zero. Thus, = gj is
called the guessing probability, since individuals that have not mastered all attributes required
by the item can only guess the correct response. On the other hand, 1− (δj0 + δj12...K∗j ) = sj
is called the slip probability, since in this probabilistic model individuals that have mastered
all attributes required by the item may still slip and give the wrong response.

Another CDM that can be obtained from the G-DINA model is the additive CDM (A-CDM).
It is slightly more flexible than the DINA model because the conditional response probability
can increase (or in some cases decrease) for each attribute that has been mastered. It can be
obtained from the G-DINA model by restricting all interaction parameters to zero.

Score contributions for parameters in the G-DINA model

To estimate the information matrix of the model parameters of the G-DINA model via OPG,
the contributions of individual i to the score function, ψ(ϑ;xi), are required. They are given
by the first-order derivative of the casewise log-likelihood contribution with respect to the
model parameters:

ψ(ϑ;xi) =
∂`(ϑ;xi)

∂ϑ
=

∂ logL(ϑ;xi)

∂ϑ

=
1

L(ϑ;xi)
· ∂L(ϑ;xi)

∂ϑ
=

1

L(ϑ;xi)
· ∂
∂ϑ

(
L∑
l=1

πl · Pr(xi|αl)

)
.
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Using formula (A6) from the Appendix in de la Torre (2009) for the partial derivative of the
conditional likelihood, the score contributions of the parameters of item j can be computed via

∂`(ϑ;xi)

∂δj
=

L∑
l=1

Pr(αl|xi) ·

[
xij − Pj(α

∗
lj)

Pj(α∗lj)(1− Pj(α∗lj))

]
·
∂Pj(α

∗
lj)

∂δj
. (5)

To estimate the score contributions, we plug-in the estimated parameters δ̂j to get Pj(α
∗
lj)

and use Pr(αl|xi) that is also available from the estimation procedure. The last term in
Equation (5) depends on the type of CDM that is used. It is also possible to compute the
score contributions directly for the conditional response probabilities. In this case, the last
term in Equation (5) needs to be derived with respect to the conditional response probability
of interest.

For the score contributions of the latent class probabilities, the constraint πL = 1−
∑L−1

l=1 πl
must be taken into account, and thus,

∂`(ϑ;xi)

∂πl
=

1

L(ϑ;xi)

∂

∂πl

(
L−1∑
l=1

πl · Pr(xi|αl) + πL · Pr(xi|αL)

)

=
1

L(ϑ;xi)

∂

∂πl

(
L−1∑
l=1

πl · Pr(xi|αl) +

(
1−

L−1∑
l=1

πl

)
· Pr(xi|αL)

)

=
1

L(ϑ;xi)

∂

∂πl

(
L−1∑
l=1

πl ·
(

Pr(xi|αl)− Pr(xi|αL)
)

+ Pr(xi|αL)

)

=
1

L(ϑ;xi)

(
Pr(xi|αl)− Pr(xi|αL)

)
.

Since the parameters in the last iteration of the EM algorithm are computed from the posterior
values Pr(αl|xi), it is more precise to also compute the score function for the latent class
probabilities using the posterior values, via

∂`(ϑ;xi)

∂πl
=

1

πl

(
Pr(αl|xi)− Pr(αL|xi)

)
.

Nonidentifiability of latent classes

In the theory about standard errors of parameters that is presented above, it is assumed that
the inverse of the complete information matrix Iϑ exists. This, however, is not always the
case in practical applications due to different causes. The most common cause has previously
been discussed in Haertel (1989) as the nonidentifiability of latent classes. The problem arises
whenever a test does not involve a single-attribute item for each of the K attributes (see
Chiu, Douglas, and Li 2009, for a theoretical discussion of the completeness of a Q-matrix
in the DINA model, and Chiu and Köhn 2015, for CDMs in general). The G-DINA model
can still be estimated, but some of the latent classes are not identified and the estimates of
the corresponding latent class probabilities are equivalent. Moreover, when computing the
covariance matrix using the complete information matrix, the corresponding columns and rows
in the information matrix are alike (i.e., they are linearly dependent). Thus, the information
matrix is nonsingular and cannot be inverted.
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To avoid problems of identification in practice, it is therefore recommended that, whenever
possible a single-attribute item is included for each of the K attributes when developing new
tests for cognitive diagnostic assessment. For researchers who perform a cognitive diagnostic
analysis of data from an existing assessment (so-called retrofitting), the inversion problem can
be circumvented by pooling latent classes that cannot be separated from each other.

3. Illustrations

Following the theoretical derivation of the underestimation of the standard errors – resulting
from the inversion of the incomplete or the item-wise information matrix – the goal of this
section is to illustrate the extent of this underestimation, and its effect on confidence intervals
for the parameter estimates. In addition, we show for an exemplary real data set how much
the standard errors may be underestimated in practice when the wrong methods are used.
For both illustrations, the OPG estimator was used to estimate the covariance matrix of the
model parameter estimates.

3.1. Coverage study

In the first study, we compare the quality of the standard error estimates based on the
complete, the incomplete, and the item-wise information matrix, by estimating the coverage
probability of the true parameter in a Wald-type confidence interval that uses a normal

approximation given by
[
ϑ̂± zα

2
· ŝe(ϑ̂)

]
, and by computing the empirical bias of the standard

errors.

Four different sample sizes (N = 500, 1000, 2000, 5000) were investigated using the Q-matrix
given in Table 1. The Q-matrix included five attributes and was constructed such that each
attribute was measured equally often (equal row sums in the table) and that the number of
items that required the same number of attributes was equally distributed (i.e., five single-
attribute items, five two-attribute items, and five three-attribute items). Thus, the Q-matrix
represented a test with J = 15 items.

The DINA model and the A-CDM were used to generate response data. For each item, the
true value of the baseline parameter (δj0) was set to 0.2. In case of the DINA model, the
true value of the interaction parameter between all attributes required by the item (δj12...K∗j )
was set to 0.6. Therefore, the guessing and the slip probabilities were both equal to 0.2. In
case of the A-CDM, the main effect parameters were set to δjk = 0.6/K∗j . Thus, with each
additionally mastered attribute, the conditional response probability increased by the same
amount. The K attributes for each individual were sampled independently from a Bernoulli

Table 1: Transposed Q-matrix used in the simulation study.

Items

Attributes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

k

α1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 6
α2 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 6
α3 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 6
α4 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 6
α5 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 6∑

j 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
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Figure 1: Coverage probabilities of 95% Wald-type confidence intervals for data generated
under the DINA model are illustrated (on the y-axis) separately for parameters of items that
require the same number of attributes (= parameter groups on the x-axis) using three different
calculation methods for the standard errors. For ease of readability, values sufficiently close
to the nominal coverage probability are depicted as solid circles, all others as empty circles.

distribution with probability Pr(αk = 1) = 0.5, for all k = 1 . . .K. The joint distribution of
the attributes (i.e., the latent class distribution) is then given by a categorical distribution with
equal probabilities πl = Pr(αl) = 1/(2K). Responses that were simulated under the DINA
model were analyzed using the DINA and the G-DINA model using the identity link. Note,
that the G-DINA is also correct for data that were generated under the DINA model. It was
fitted in addition to the DINA model because in practice the true model is usually unknown.
However, in this situation the G-DINA model is overspecified, due to the many additional
parameters estimated, for which the true values are zero according to the data generating
model. Responses that were simulated under the A-CDM were accordingly analyzed using
the A-CDM and the G-DINA model using the identity link. Again, the G-DINA is also correct
– yet overspecified – for data generated under the A-CDM. To estimate the models and the
standard errors, the EM algorithm was implemented in R (R Core Team 2016) based on the
description in de la Torre (2009), but including our new suggestions on how the standard
errors should be estimated.

Figures 1 and 2 illustrate the coverage probabilities for the data generated under the DINA
model and the A-CDM, respectively. For all sample sizes and models, the coverage prob-
abilities were computed for the δ parameters using standard errors based on the complete
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Table 2: Coverage probabilities of 95% Wald-type confidence intervals and average estimated
bias of the standard errors for data generated under the DINA model and fitted to the DINA
model.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.9261 0.7877 0.7571 0.0061 0.0248 0.0275
1 0.9315 0.8902 0.8662 0.0056 0.0147 0.0191
00 0.9468 0.9148 0.8974 0.0004 0.0037 0.0050
11 0.9256 0.9057 0.8849 0.0044 0.0094 0.0136
000 0.9541 0.9397 0.9312 −0.0006 0.0007 0.0014
111 0.9334 0.9010 0.8796 0.0036 0.0127 0.0173

5000 0 0.9556 0.8467 0.8289 −0.0005 0.0051 0.0057
1 0.9511 0.9328 0.9228 −0.0002 0.0016 0.0024
00 0.9511 0.9213 0.9126 0.0000 0.0009 0.0011
11 0.9504 0.9399 0.9299 0.0000 0.0008 0.0016
000 0.9504 0.9423 0.9394 0.0000 0.0002 0.0003
111 0.9494 0.9313 0.9262 0.0000 0.0019 0.0024

information matrix Jϑ (correct approach), and the incomplete information matrix Jδ and the
item-wise information matrix Jδj (incorrect approaches). It turned out that the asymptoti-
cally expected standard errors of the item parameters are identical across items that require
the same number of attributes. In the DINA model, for example, the baseline (guessing)
probabilities of all single-attribute items share the same asymptotic standard error, no mat-
ter which of the attributes is required. This also holds for other item parameters, items
that require more attributes and different models. Therefore, the coverage probabilities were
averaged over the parameters within those groups, which are illustrated on the x-axis of
the graph. The parameter group “0”, for example, represents the baseline probability of all
single-attribute items. The parameter group “111” represents the parameter of the three-way
interaction of all three-attribute items.

By definition, the coverage probability of a 95% confidence interval has an expected nominal
coverage rate of 95%. However, due to sampling error, the estimated coverage probabilities
may randomly deviate from this nominal value. To achieve a high precision of the esti-
mated coverage probabilities, each configuration was repeated 10,000 times. Assuming an
exact binomial distribution for the coverage probabilities, the sampling error was equal to√

0.95·0.05
10,000 ≈ 0.002. Thus, based on a Wald-type confidence interval, we would consider cov-

erage probabilities within
[
94.6%, 95.4%

]
as sufficiently close to the nominal rate. Numbers

within this interval are depicted with solid circles (otherwise empty circles) in Figures 1 and 2.

Additionally, Tables 2 to 5 list the exact values of the coverage probabilities and the empirical
bias of the standard errors for the smallest (N = 500) and the largest (N = 5000) sample
sizes (the intemediate sample sizes were omitted for brevity, but can be requested from the
corresponding author) and each parameter group (labeled by η). The average empirical bias
corresponds to the average of the empirical biases over all replications, that were computed
by subtracting the estimated standard errors ŝe(ϑ̂r) from the empirical standard error of the
estimated parameter values over all replications.

Figure 1 shows the coverage probabilities for the data generated under the DINA model. When
the DINA model was used to analyze the data (see left column in Figure 1 and exact values
reported in Table 2), the coverage probabilities for the standard errors based on the complete
information matrix (solid line) were reasonably close to the expected coverage rate for small
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12 Estimation of Standard Errors in CDMs

Table 3: Coverage probabilities of 95% Wald-type confidence intervals and average estimated
bias of the standard errors for data generated under the DINA model and fitted to the
overspecified G-DINA model.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.7666 0.6343 0.5850 0.0304 0.0440 0.0482
1 0.8162 0.7782 0.7198 0.0346 0.0403 0.0483
00 0.8715 0.8403 0.8121 0.0194 0.0231 0.0269
10 0.8244 0.7861 0.7465 0.0441 0.0512 0.0583
01 0.8265 0.7871 0.7477 0.0444 0.0515 0.0587
11 0.8250 0.7960 0.7527 0.0622 0.0702 0.0824
000 0.9040 0.8335 0.7982 0.0443 0.0643 0.0712
100 0.8981 0.8413 0.8022 0.0505 0.0790 0.0903
010 0.8969 0.8368 0.7984 0.0534 0.0854 0.0973
001 0.8973 0.8383 0.7993 0.0508 0.0801 0.0917
110 0.8920 0.8415 0.8041 0.0548 0.0980 0.1159
101 0.8829 0.8312 0.7906 0.0643 0.1069 0.1252
011 0.8913 0.8407 0.8014 0.0549 0.0994 0.1175
111 0.9130 0.8820 0.8603 0.0411 0.0999 0.1270

5000 0 0.9449 0.8213 0.7910 0.0004 0.0063 0.0073
1 0.9444 0.9319 0.9082 0.0006 0.0018 0.0036
00 0.9451 0.9423 0.9394 0.0004 0.0005 0.0007
10 0.9429 0.9304 0.9243 0.0009 0.0024 0.0030
01 0.9432 0.9301 0.9235 0.0010 0.0025 0.0031
11 0.9426 0.9402 0.9327 0.0014 0.0019 0.0030
000 0.9402 0.9361 0.9342 0.0017 0.0019 0.0021
100 0.9399 0.9377 0.9357 0.0027 0.0029 0.0033
010 0.9391 0.9369 0.9348 0.0028 0.0030 0.0034
001 0.9390 0.9370 0.9348 0.0028 0.0030 0.0034
110 0.9368 0.9337 0.9313 0.0044 0.0051 0.0057
101 0.9365 0.9340 0.9314 0.0046 0.0053 0.0059
011 0.9394 0.9363 0.9340 0.0039 0.0047 0.0053
111 0.9366 0.9355 0.9329 0.0061 0.0066 0.0077

data samples, and converged quickly toward the nominal rate with increasing sample size N .
The coverage rates for the standard errors based on the incomplete (dashed line) or the item-
wise (dotted line) information matrix, however, were systematically smaller than the nominal
coverage probability, particularly for the first parameter groups. Even for the largest sample
size considered, their coverage probability does not converge towards the nominal rate. This is
caused by the structural underestimation of the standard errors discussed earlier. We observed
the largest underestimation for the baseline probabilities of single-attribute items (parameter
group“0”). For the other parameters, the difference to the correct approach is smaller, but still
lower than for the correct approach and notably below the nominal rate. A similar pattern
can be observed when the G-DINA model was used to analyze the data generated under the
DINA model (see right column in Figure 1 and exact values reported in Table 3). However, for
smaller sample sizes the coverage probabilities were generally estimated considerably below
the nominal coverage rate of 95%. This artifact may be explained by several circumstances.
First, the normal approximation underlying the Wald-type confidence intervals might fail,
particularly for the baseline probabilities that are restricted between zero and one. Second,
for smaller data sets and more complex models, the conditional response probabilities and the
parameters used to specify the attribute distribution are often estimated on the boundary of
the parameter space. As mentioned earlier, this causes numerical problems in the calculation
of the information matrix. Finally, the ratio between the number of estimated parameters
per observation is larger for more general models. Thus, inferior asymptotic convergence
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Figure 2: Coverage probabilities of 95% Wald-type confidence intervals for data generated
under the A-CDM are illustrated (on the y-axis) separately for parameters of items that
require the same number of attributes (= parameter groups on the x-axis) using three different
calculation methods for the standard errors. For ease of readability, values sufficiently close
to the nominal coverage probability are depicted as solid circles, all others as empty circles.

has to be reckoned with the G-DINA when compared to the DINA model. Nevertheless, the
complete information matrix approach clearly provided more accurate results in all conditions
considered.

Similar and related conclusions can be drawn from the average empirical biases reported in
Tables 2 and 3. They were (in absolute terms) always smaller when the complete informa-
tion matrix instead of the incomplete or the item-wise information matrix approaches were
used. Please note, that when the correct DINA model was fitted to the simulated data (see
values reported in Table 2), and when the standard errors were estimated with the complete
information matrix approach, the bias almost completely vanished for the larger sample size,
whereas with the two incorrect approaches still had significant biases at the larger sample
size. This, however, was not the case when the overspecified G-DINA model was fitted to
the data simulated under the DINA model (see values reported in Table 3). The average
estimated biases reported for the complete information matrix approach did not coverage
zero, although it was always smaller than for the incomplete and the item-wise approaches.
Despite this finding, the complete information matrix approach provided the most accurate
standard error estimates of all estimation approaches considered in this study.

Figure 2 shows the coverage probabilities for the data generated under the A-CDM (for exact
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14 Estimation of Standard Errors in CDMs

Table 4: Coverage probabilities of 95% Wald-type confidence intervals and average estimated
bias of the standard errors for data generated under the A-CDM and fitted to the A-CDM.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.6698 0.5205 0.4813 0.0496 0.0633 0.0678
1 0.7137 0.6659 0.6030 0.0687 0.0757 0.0843
00 0.7999 0.7179 0.6852 0.0268 0.0352 0.0382
10 0.8463 0.8096 0.7778 0.0252 0.0308 0.0350
01 0.8484 0.8124 0.7817 0.0247 0.0302 0.0343
000 0.8817 0.8153 0.7923 0.0139 0.0243 0.0270
100 0.8971 0.8526 0.8299 0.0134 0.0217 0.0250
010 0.8972 0.8521 0.8304 0.0142 0.0225 0.0258
001 0.8973 0.8525 0.8294 0.0137 0.0220 0.0252

5000 0 0.9343 0.7922 0.7111 0.0016 0.0099 0.0127
1 0.9340 0.9307 0.8597 0.0025 0.0029 0.0087
00 0.9380 0.8411 0.8200 0.0009 0.0061 0.0069
10 0.9424 0.9341 0.9102 0.0007 0.0014 0.0031
01 0.9442 0.9357 0.9119 0.0006 0.0013 0.0029
000 0.9439 0.8878 0.8815 0.0005 0.0041 0.0044
100 0.9483 0.9403 0.9296 0.0003 0.0010 0.0017
010 0.9453 0.9373 0.9258 0.0004 0.0011 0.0019
001 0.9471 0.9394 0.9300 0.0002 0.0008 0.0016

Table 5: Coverage probabilities of 95% Wald-type confidence intervals and average estimated
bias of the standard errors for data generated under the A-CDM and fitted to the overspecified
G-DINA model.

Coverage probabilities Average estimated bias

N η Complete Incomplete Item-wise Complete Incomplete Item-wise

500 0 0.7126 0.5377 0.4815 0.0453 0.0614 0.0678
1 0.7497 0.6909 0.6029 0.0639 0.0720 0.0843
00 0.8160 0.7332 0.6877 0.0322 0.0412 0.0464
10 0.8017 0.7649 0.7190 0.0679 0.0762 0.0853
01 0.8027 0.7663 0.7225 0.0680 0.0762 0.0854
11 0.7604 0.7300 0.6874 0.1240 0.1344 0.1476
000 0.8890 0.8336 0.7918 0.0228 0.0405 0.0479
100 0.8622 0.7997 0.7579 0.0612 0.0913 0.1048
010 0.8583 0.7933 0.7516 0.0642 0.0957 0.1095
001 0.8587 0.7978 0.7562 0.0628 0.0922 0.1056
110 0.8312 0.7598 0.7120 0.1125 0.1642 0.1867
101 0.8344 0.7640 0.7145 0.1136 0.1649 0.1873
011 0.8269 0.7573 0.7087 0.1168 0.1676 0.1899
111 0.8049 0.7044 0.6430 0.1607 0.2422 0.2772

5000 0 0.9417 0.7945 0.7111 0.0008 0.0098 0.0127
1 0.9355 0.9322 0.8597 0.0023 0.0027 0.0087
00 0.9453 0.9013 0.8898 0.0005 0.0040 0.0047
10 0.9402 0.9335 0.9234 0.0015 0.0024 0.0037
01 0.9393 0.9332 0.9226 0.0016 0.0025 0.0038
11 0.9393 0.9340 0.9300 0.0029 0.0041 0.0048
000 0.9410 0.9219 0.9184 0.0017 0.0039 0.0042
100 0.9372 0.9299 0.9262 0.0038 0.0051 0.0058
010 0.9365 0.9283 0.9244 0.0042 0.0056 0.0063
001 0.9362 0.9290 0.9253 0.0040 0.0053 0.0060
110 0.9315 0.9267 0.9243 0.0081 0.0095 0.0103
101 0.9323 0.9275 0.9247 0.0081 0.0094 0.0102
011 0.9299 0.9254 0.9228 0.0087 0.0101 0.0109
111 0.9259 0.9234 0.9207 0.0166 0.0178 0.0189
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values, see Tables 4 and 5). For the same reasons as discussed above, the coverage probabilities
were estimated below the nominal rate for smaller samples. As the sample size increased, the
coverage probabilities computed with the standard errors based on the complete information
matrix again approached the nominal rate for the A-CDM and the G-DINA model. The
coverage probabilities computed with the standard errors based on the incomplete or the
item-wise information matrix, however, were again systematically underestimated. Overall,
the complete information matrix approach again provided more accurate results across all
conditions considered.

The average empirical biases reported in Tables 4 and 5 were again always smaller with
the complete information approach for all parameter groups and sample sizes. However, as
discussed above for the data simulated under the DINA model, the bias did not converge
toward zero for the larger sample size, when the overspecified G-DINA model was used to
estimate the data simulated under the A-CDM (see values reported in Table 5).

3.2. Empirical example

To illustrate the practical importance of estimating standard errors via the complete infor-
mation matrix, data from a real assessment was analyzed using CDMs. The data stem from
a learning experiment at the University of Tuebingen in Germany and is available in the R
package pks (Heller and Wickelmaier 2013). The participants were required to answer 12
items about elementary probability theory. For example, “A box contains 30 marbles in the
following colors: 8 red, 10 black, 12 yellow. What is the probability that a randomly drawn
marble is yellow?”. Four different attributes (concepts) were tested: How to calculate

� the classic probability of an event (pb),

� the probability of the complement of an event (cp),

� the probability of the union of two disjoint events (un),

� the probability of two independent events (id).

These concepts were combined to form the 12 items. Therefore, the Q-matrix (see Table 6)
was defined by the design of the items. The first four items required only one attribute, the
items 5 to 10 required two attributes and the items 11 and 12 required three attributes. For
this illustration, the responses of 504 participants from the first part of the experiment were
analyzed.

Table 6: Transposed Q-matrix used for analyzing the elementary probability theory
data.

Items

Attributes 1 2 3 4 5 6 7 8 9 10 11 12
∑

k

pb 1 0 0 0 1 1 1 1 1 0 1 1 8
cp 0 1 0 0 1 1 0 0 0 1 1 0 5
un 0 0 1 0 0 0 1 1 0 0 0 1 4
id 0 0 0 1 0 0 0 0 1 1 1 1 5∑

j 1 1 1 1 2 2 2 2 2 2 3 3
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Table 7: Estimates and standard errors of parameters for the elementary probability theory
data. Numbers in brackets correspond to the relative change to the standard errors based on
the complete information matrix.

Standard errors

Item Attribute Estimate Complete Incomplete Item-wise

1 baseline 0.224 0.065 0.061 (−0.071) 0.052 (−0.203)
pb 0.710 0.067 0.063 (−0.061) 0.055 (−0.186)

2 baseline 0.275 0.105 0.080 (−0.241) 0.068 (−0.356)
cp 0.699 0.105 0.081 (−0.232) 0.069 (−0.346)

3 baseline 0.097 0.060 0.055 (−0.082) 0.048 (−0.194)
un 0.864 0.061 0.056 (−0.082) 0.050 (−0.188)

4 baseline 0.125 0.038 0.035 (−0.072) 0.032 (−0.159)
id 0.837 0.039 0.037 (−0.064) 0.034 (−0.140)

5 baseline 0.201 0.067 0.055 (−0.187) 0.048 (−0.288)
pb 0.364 0.116 0.101 (−0.130) 0.094 (−0.191)
cp 0.293 0.125 0.111 (−0.116) 0.103 (−0.181)

6 baseline 0.194 0.062 0.058 (−0.058) 0.051 (−0.185)
pb 0.462 0.085 0.080 (−0.053) 0.074 (−0.125)
cp 0.308 0.083 0.081 (−0.021) 0.077 (−0.071)

7 baseline 0.278 0.071 0.068 (−0.049) 0.062 (−0.126)
pb 0.292 0.095 0.088 (−0.078) 0.083 (−0.127)
un 0.372 0.116 0.105 (−0.094) 0.097 (−0.164)

8 baseline 0.430 0.087 0.076 (−0.132) 0.063 (−0.277)
pb 0.065 0.095 0.066 (−0.297) 0.059 (−0.371)
un 0.462 0.111 0.088 (−0.212) 0.079 (−0.293)

9 baseline 0.116 0.045 0.043 (−0.042) 0.038 (−0.145)
pb 0.510 0.084 0.079 (−0.060) 0.074 (−0.113)
id 0.154 0.075 0.070 (−0.065) 0.065 (−0.124)

10 baseline 0.083 0.050 0.044 (−0.115) 0.037 (−0.248)
cp −0.056 0.060 0.055 (−0.086) 0.048 (−0.190)
id 0.781 0.036 0.035 (−0.027) 0.034 (−0.062)

11 baseline 0.053 0.049 0.045 (−0.086) 0.038 (−0.229)
pb 0.010 0.106 0.086 (−0.184) 0.080 (−0.244)
cp −0.037 0.094 0.084 (−0.109) 0.078 (−0.173)
id 0.672 0.034 0.033 (−0.030) 0.032 (−0.060)

12 baseline 0.000 0.039 0.036 (−0.090) 0.029 (−0.269)
pb 0.140 0.469 0.191 (−0.592) 0.169 (−0.640)
un 0.000 0.452 0.181 (−0.600) 0.162 (−0.643)
id 0.660 0.046 0.042 (−0.067) 0.042 (−0.084)

Note. Strongest relative changes are printed in bold letters for better readability.

The data was fitted using the DINA, the A-CDM and the G-DINA model with the resulting
BIC values of 5200.46 (df = 39), 5154.58 (df = 49) and 5241.70 (df = 63), respectively. The
results of the A-CDM – which had the lowest BIC value – are illustrated in Table 7. The
table summarizes the estimated parameters, the corresponding standard errors based on the
complete, the incomplete and the item-wise information matrix, and the relative change in
the standard errors between the correct and the two incorrect approaches (in parentheses).

For each item, the first parameter estimate represents the baseline probability (i.e., the prob-
ability of correctly answering the item when the attributes required by the item have not been
mastered). Thus, large values for this guessing probability are unusual. For item 8, however,
a value of over 0.4 is reported. A possible explanation is that the item – “What is the prob-
ability of obtaining an odd number when throwing a dice?” – was not very difficult, even
for individuals without knowledge in basic probability theory. Further parameter estimates
represent the amount of increase (or seldom decrease) in probability of answering an item
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correctly when the corresponding attribute had been mastered. For example, the probability
of answering item 1 increased by 0.71 when attribute “pb” had been mastered.

The relative change between the standard errors based on the complete and the incomplete
information matrix showed substantial differences (highlighted by bold letters in Table 7) for
both parameters of the single-attribute item 2, for some of the parameters of the two-attribute
items 5, 8 and 10, and for some of the parameters of the three-attribute items 11 and 12. The
underestimation of the standard errors based on the item-wise information matrix was even
worse. For 30 out of 34 item parameters the standard error was underestimated.

It should be noted that ten out of 48 conditional response probabilities and four out of 16
parameters of the latent class probabilities were estimated at the boundary of the parameter
space (not displayed in Table 7). As mentioned earlier, this can cause numerical problems
in computing the information matrix. According to the previous simulation study, where
a similar scenario was investigated (see top-left panel in Figure 2 for the same model and
a nearly equal sample size), it must be assumed that some of the standard errors reported
for this data are generally underestimated. Nevertheless, just like in the simulation study –
and as expected from our theoretical considerations – the additional severe underestimation
caused by the wrong computation of the information matrix can easily be avoided by using
the complete information matrix.

4. Discussion

Standard errors are an important measure to quantify the uncertainty of an estimate. They
are required for many different statistical techniques to evaluate model fit or to check model
assumptions. It is therefore crucial in practical research to estimate standard errors as pre-
cisely as possible. In the commonly used approach for computing standard errors in CDMs,
however, the information matrix is based only on those parameters which are used to spec-
ify the item response function. The parameters used to specify the joint distribution of the
attributes (i.e., latent class distribution) are not incorporated in the computation.

In this article, we have shown that with this approach, the standard errors for the parame-
ters of the item response function are systematically underestimated. We therefore strongly
recommend to compute the standard errors based on the complete information matrix, which
also includes the parameters used to specify the latent class distribution. In addition to the
clear theoretical result, we have also illustrated by means of simulations that our approach
leads to a higher quality of Wald-type confidence intervals and lower empirical bias. An ad-
ditional benefit of using the complete instead of the incomplete information matrix is that it
also provides the information required to compute standard errors for the parameters used to
specify the latent class distribution.

We assume that the incomplete information matrix approaches have only become widely used
in the CDM literature because previous authors might have assumed that the off-diagonal
elements of the information matrix would have negligible impact under certain conditions.
With respect to the item-wise computation of the standard errors, the CDM literature may
be partially influenced by the traditional IRT literature, where approaches exist that lead
to block diagonal information matrices (e.g., in Thissen and Wainer 1982), in which case an
item-wise computation of the standard errors is possible. However for CDMs, as we showed
analytically and illustrated with examples, the complete information matrix approach clearly
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generates better standard errors than the incomplete and the item-wise approaches and is
computationally well feasible. Similar to our results, Yuan et al. (2014) showed that the item-
wise computation of the standard errors in IRT models also leads to undersized standard
errors.

In the simulation study, we did not specifically vary design factors, such as the Q-matrix,
the true values of the item parameters, or the latent class distribution. Varying these factors
might positively or negatively affect the severity of underestimation. In a preliminary study
with the DINA model, we found that longer tests and highly discriminating items can alle-
viate the underestimation. It should be highlighted, however, that the proposed method for
estimating the standard errors cannot make the quality of the standard errors worse. In prac-
tical situations, however, it is difficult (or even impossible) to control the factors that have
a large impact on the underestimation. As such it is always preferable to compute standard
errors using the complete information matrix.

We note that differences between the approaches are not only expected for the standard errors,
but for the entire covariance matrix of the model parameters (although not generally in the
same direction). Thus, many techniques used to investigate a fitted model may be affected.
The impact of under- or overestimation of the entire covariance matrix will be multiplied
for multivariate methods. It is therefore worth in any circumstances to estimate standard
errors (and also the entire covariance matrix) from the complete information matrix. As we
did not specifically investigate the impact of misestimating the entire covariance matrix on
multivariate techniques, it will be interesting for future research to investigate how much the
quality of the covariance matrix can be improved by using the complete information matrix
in computing it.

The results of the simulation study revealed problems of asymptotic convergence when more
complex models were fitted to smaller data sets. This might partially be caused by boundary
problems that often occur for smaller data sets. DeCarlo (2011) suggested posterior mode
(PM) estimation to overcome these problems. Whether PM estimation leads to more accurate
parameter and standard error estimates than the traditional ML approach in CDMs was not
the scope of this work, but something that can be investigated in future research. Moreover,
the normal approximation of the ML estimates might be more accurate on the real line under
the logit link rather than on the (bounded) probability scale under the identity link. However,
this not only concerns the estimation of standard errors but of the model parameters in gen-
eral. Therefore, this is beyond the scope of this manuscript and is not pursued here. It might
be of interest for future research, though, to explore the potential benefits of different link
functions. In general, the results from our simulation study suggest that it is recommended
to use simpler models whenever possible and appropriate because it may avoid boundary
problems or problems with asymptotic convergence.

Finally, in the present article, we assumed that the Q-matrix is known or well specified for
an assessment. However, in practice (especially when retrofitting CDMs to existing data),
the Q-matrix may be unknown or misspecified, which can affect parameter estimation and
classification accuracy (de la Torre 2008; Rupp and Templin 2007). To minimize the impact
of a misspecified Q-matrix, several methods have been proposed. De la Torre (2008) proposed
an iterative procedure to evaluate the correctness of the Q-matrix specification in the context
of the DINA model. The approach was extended by de la Torre and Chiu (2016) to apply
generally to other CDMs. Other recent approaches include that of Chen, Liu, Xu, and Ying
(2015), which estimates the Q-matrix of the DINA model using regularization, whereas Chiu
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(2013) proposed a nonparametric approach to Q-matrix validation that does not require
specifying the exact form of the CDM, only that the underlying process is conjunctive in
nature. Future research should examine the extent of the impact of Q-matrix mispecifications
on standard error estimation, and whether specific steps can be taken to minimize such an
impact.

Computational details

The estimation routines used in this study were written in the free and open-source software
R (R Core Team 2016) for statistical computing. Functions to estimate the parameters and
the standard errors in the G-DINA model are provided in the form of the add-on package
Rcdm, available online at https://github.com/mphili/cdm under the terms of the GNU
General Public License (Version 2 or 3).
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A. Blockwise matrix inversion

The following statements about blockwise matrix inversion of a symmetric matrix can be used
to establish the inequality between standard errors based on the complete and the incomplete
information matrix discussed in the section on the estimation of the standard errors. The
corresponding theorems (and proofs) can be found in Chapter 13 of Banerjee and Roy (2014),
if not stated otherwise.

Let A be a positive definite (p.d.) symmetric matrix, i.e. the inverse A−1 exists and is also
p.d.. Suppose A is partitioned as

A =

(
A11 A12

A>12 A22

)
,

where A11 is p × p, A12 is p × q and A22 is q × q. Then its principal submatrices A11 and
A22 are also invertible and p.d.. Let B = A−1 be partitioned (similar to A) as

B =

(
B11 B12

B>12 B22

)
,

where B11 =
(
A11 −A12A

−1
22 A

>
12

)−1
and B22 =

(
A22 −A>12A

−1
11 A12

)−1
are given by the

inverse of the Schur complements of A22 and A11, respectively, which are also p.d.. By the
Sherman-Woodbury-Morrison formula (see e.g., Banerjee and Roy 2014, p. 82),(

A11 −A12A
−1
22 A

>
12

)−1
= A−111 +A−111 A12

(
A22 −A>12A−111 A12

)−1
A>12A

−1
11

B11 = A−111 +A−111 A12B22A
>
12A

−1
11

B11 = A−111 +C>B22C.

where C = A>12A
−1
11 = (A−111 A12)

>. For the diagonal elements, we have

diag(B11) = diag(A−111 ) + diag(C>B22C),

where B11 and A−111 are both positive definite, i.e., their diagonal elements are positive.

Lemma 1. If B22 and A−111 are positive definite and A12 6= 0, then each diagonal element of
C>B22C is positive.

Proof. SinceB22 is positive definite, x>B22x > 0 whenever x 6= 0. Choosing x = Cei reveals
that

x>B22x = e>i C
>B22Cei > 0,

where ei is the ith unit vector that is used to extract the ith diagonal element from C>B22C.
Hence, the diagonal elements in C>B22C are also positive.

So, if A12 6= 0, all diagonal elements in C>B22C are positive and therefore,

diag(B11)r > diag(A−111 )r ∀ r ∈ {1, . . . , p}.

To obtain the inequality of the standard errors as stated in the section on the estimation of
the standard errors, use A = Iϑ and B = Vϑ and let Iβ,π 6= 0.
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Please note, that the symmetric information matrix Iϑ is only positive semidefinite. A positive
semidefinite symmetric matrix is, however, positive definite if and only if it is nonsingular (see
e.g., Harville 2008, Corollary 14.3.12). Thus, the inequality holds if Iϑ is invertible, which is
required anyway to compute the standard errors.
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8050 Zürich, Switzerland
E-mail: Michel.Philipp.mp@gmail.com, Carolin.Strobl@uzh.ch
URL: http://www.psychologie.uzh.ch/methoden.html

Jimmy de la Torre
Faculty of Education
The University of Hong Kong
E-mail: j.delatorre@hku.hk
URL: http://web.edu.hku.hk/staff/academic/j.delatorre

Achim Zeileis
Department of Statistics
Faculty of Economics and Statistics
Universität Innsbruck
Universitätsstr. 15
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