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Motivation: Trees

Breiman (2001, Statistical Science) distinguishes two cultures of
statistical modeling.

Data models: Stochastic models, typically parametric.
→ Classical strategy in statistics. Regression models are still the
workhorse for many empirical analyses.

Algorithmic models: Flexible models, data-generating process
unknown. → Still few applications in many fields, e.g., social
sciences or economics.

Classical example: Trees, i.e., modeling of dependent variable y by
“learning” a recursive partition w.r.t explanatory variables z1, . . . , zl .



Motivation: Leaves

Key features:
1 Predictive power in nonlinear regression relationships.
2 Interpretability (enhanced by visualization), i.e., no “black box”

methods.

Typically: Simple models for univeriate y , e.g., mean.

Idea: More complex models for more complex y , e.g., regression
models, multivariate normal model, item responses, etc.

Here: Synthesis of parametric data models and algorithmic tree
models.

Goal: Fitting local models by partitioning of the sample space.



Recursive partitioning

Model-based (MOB) algorithm:

1 Fit the parametric model in the current subsample.
2 Assess the stability of the parameters across each partitioning

variable zj .
3 Split sample along the zj∗ with strongest instability: Choose

breakpoint with highest improvement of the model fit.
4 Repeat steps 1–3 recursively in the subsamples until some

stopping criterion is met.



Recursive partitioning

Example: Logistic regression, assessing differences in the effect of
“preferential treatment” (“women and children first”?) in the Titanic
survival data.

In R: Generalized linear model tree with binomial family (and default
logit link).

R> mb <- glmtree(Survived ~ Treatment | Age + Gender + Class,
+ data = ttnc, family = binomial, alpha = 0.05, prune = "BIC")
R> plot(mb)
R> print(mb)

Result: Log-odds ratio of survival given treatment differs across
classes (slope), as does the survival probability of male adults
(intercept).



Recursive partitioning
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Recursive partitioning

Generalized linear model tree (family: binomial)

Model formula:
Survived ~ Treatment | Age + Gender + Class

Fitted party:
[1] root
| [2] Class in 3rd: n = 706
| (Intercept) TreatmentPreferential
| -1.641 1.327
| [3] Class in 1st, 2nd, Crew
| | [4] Class in 2nd: n = 285
| | (Intercept) TreatmentPreferential
| | -2.398 4.477
| | [5] Class in 1st, Crew: n = 1210
| | (Intercept) TreatmentPreferential
| | -1.152 4.318

Number of inner nodes: 2
Number of terminal nodes: 3
Number of parameters per node: 2
Objective function (negative log-likelihood): 1061



1. Model estimation

Models: M(y , x , θ) with (potentially multivariate) observations y ,
optionally regressors x , and k -dimensional parameter vector θ ∈ Θ.

Parameter estimation: θ̂ by optimization of additive objective function
Ψ(y , x , θ) for n observations yi (i = 1, . . . , n):

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(yi , xi , θ).

Special cases: Maximum likelihood (ML), weighted and ordinary least
squares (OLS and WLS), quasi-ML, and other M-estimators.



1. Model estimation

Estimating function: θ̂ can also be defined in terms of

n∑
i=1

ψ(yi , xi , θ̂) = 0,

where ψ(y , x , θ) = ∂Ψ(y , x , θ)/∂θ.

Central limit theorem: If there is a true parameter θ0 and given certain
weak regularity conditions:

√
n(θ̂ − θ0)

d−→ N (0,V (θ0)),

where V (θ0) = {A(θ0)}−1B(θ0){A(θ0)}−1. A and B are the
expectation of the derivative of ψ and the variance of ψ, respectively.



1. Model estimation

Idea: In many situations, a single global modelM(y , x , θ) that fits all
n observations cannot be found. But it might be possible to find a
partition w.r.t. the variables z1, . . . , zl so that a well-fitting model can be
found locally in each cell of the partition.

Tools:

Assess parameter instability w.r.t to partitioning variables
zj (j = 1, . . . , l).

A general measure of deviation from the model is the estimating
function ψ(y , x , θ).



2. Tests for parameter instability

Generalized M-fluctuation tests capture instabilities in θ̂ for an ordering
w.r.t zj .

Basis: Empirical fluctuation process of cumulative deviations w.r.t. to
an ordering σ(zij).

Wj(t, θ̂) = B̂−1/2n−1/2
bntc∑
i=1

ψ(yσ(zij ), xσ(zij ), θ̂) (0 ≤ t ≤ 1)

Functional central limit theorem: Under parameter stability
Wj(·)

d−→ W 0(·), where W 0 is a k -dimensional Brownian bridge.



2. Tests for parameter instability
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2. Tests for parameter instability

Test statistics: Scalar functional λ(Wj) that captures deviations from
zero.

Null distribution: Asymptotic distribution of λ(W 0).

Special cases: Class of test encompasses many well-known tests for
different classes of models. Certain functionals λ are particularly
intuitive for numeric and categorical zj , respectively.

Advantage: ModelM(y , x , θ̂) just has to be estimated once. Empirical
estimating functions ψ(yi , xi , θ̂) just have to be re-ordered and
aggregated for each zj .



2. Tests for parameter instability

Splitting numeric variables: Assess instability using supLM statistics.

λsupLM(Wj) = max
i=ı̇,...,ı

(
i
n
· n − i

n

)−1 ∣∣∣∣∣∣∣∣Wj

(
i
n

)∣∣∣∣∣∣∣∣2
2
.

Interpretation: Maximization of single shift LM statistics for all
conceivable breakpoints in [ı̇, ı].

Limiting distribution: Supremum of a squared, k -dimensional
tied-down Bessel process.

Potential alternatives: Many other parameter instability tests from the
same class of tests, e.g., a Cramér-von Mises test (or Nyblom-Hansen
test), MOSUM tests, etc.



2. Tests for parameter instability

Splitting categorical variables: Assess instability using χ2 statistics.

λχ2(Wj) =
C∑

c=1

n
|Ic|

∣∣∣∣∣∣∣∣∆Ic Wj

(
i
n

)∣∣∣∣∣∣∣∣2
2
.

Feature: Invariant for re-ordering of the C categories and the
observations within each category.

Interpretation: Capture instability for split-up into C categories.

Limiting distribution: χ2 with k · (C − 1) degrees of freedom.



2. Tests for parameter instability

Splitting ordinal variables: Several strategies conceivable. Assess
instability either as for categorical variables (if C is low), or as for
numeric variables (if C is high), or via a specialized test.

λmaxLMo(Wj) = max
i∈{i1,...,iC−1}

(
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n
· n − i

n
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∞
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Interpretation: Assess only the possible splitpoints i1, . . . , iC−1, based
on L2 or L∞ norm.

Limiting distribution: Maximum from selected points in a squared
Bessel process or multivariate normal distribution, respectively.



3. Segmentation

Goal: Split model into b = 1, . . . ,B segments along the partitioning
variable zj associated with the highest parameter instability. Local
optimization of ∑

b

∑
i∈Ib

Ψ(yi , xi , θb).

B = 2: Exhaustive search of order O(n).

B > 2: Exhaustive search is of order O(nB−1), but can be replaced by
dynamic programming of order O(n2). Different methods (e.g.,
information criteria) can choose B adaptively.

Here: Binary partitioning. Optionally, B = C can be chosen (without
search) for categorical variables.



4. Pruning

Goal: Avoid overfitting.

Pre-pruning:

Internal stopping criterium.

Stop splitting when there is no significant parameter instability.

Based on Bonferroni-corrected p values of the fluctuation tests.

Post-pruning:

Grow large tree (e.g., with high significance level).

Prune splits that do not improve the model fit based on information
criteria (e.g., AIC or BIC).

Hyperparameters: Significance level and information criterion penalty
can be chosen manually (or possibly through cross-validation etc.).



Local models

Goals:

Detection of interactions and nonlinearities in regressions.

Add explanatory variables for models without regressors.

Detect violations of parameter stability (measurement invariance)
across several variables adaptively.

Mobsters:

Linear and generalized linear model trees (Zeileis et al. 2008).

Censored survival regression trees: parametric proportional
hazard and accelerated failure time models (Zeileis et al. 2008).

Beta regression trees (Grün et al. 2012).

Bradley-Terry trees for paired comparisons (Strobl et al. 2011).

Item response theory (IRT) trees: Rasch, rating scale and partial
credit model (Strobl et al. 2014, Abou El-Komboz et al. 2014).



Implementation: Building blocks

Workhorse function: mob() for

data handling,

calling model fitters,

carrying out parameter instability tests and

recursive partitioning algorithm.

Required functionality:

Parties: Class and methods for recursive partytions.

Models: Fitting functions for statistical models (optimizing suitable
objective function).

Mobsters: High-level interfaces (lmtree(), bttree(), . . . ) that
call lower-level mob() with suitable options and methods.



Implementation: Old mob() in party

Parties: S4 class ‘BinaryTree’.

Originally developed only for ctree() and somewhat “abused”.

Rather rigid and hard to extend.

Models: S4 ‘StatModel’ objects.

Intended to conceptualize unfitted model objects.

Required some “glue code” to accomodate non-standard interface
for data handling and model fitting.

Mobsters:

mob() already geared towards (generalized) linear models.

Other interfaces in psychotree and betareg.

Hard to do fine control due to adopted S4 classes: Many
unnecessary computations and copies of data.



Implementation: New mob() in partykit

Parties: S3 class ‘modelparty’ built on ‘party’.

Separates data and tree structure.

Inherits generic infrastructure for printing, predicting, plotting, . . .

Models: Plain functions with input/output convention.

Basic and extended interface for rapid prototyping and for
speeding up computings, respectively.

Only minimial glue code required if models are well-designed.

Mobsters:

mob() completely agnostic regarding models employed.

Separate interfaces lmtree(), glmtree(), . . .

New interfaces typically need to bring their model fitter and adapt
the main methods print(), plot(), predict() etc.



Implementation: New mob() in partykit

New inference options: Not used by default by optionally available.

New parameter instability tests for ordinal partitioning variables.
Alternative to unordered χ2 test but computationally intensive.

Post-pruning based on information criteria (e.g., AIC or BIC),
especially for very large datasets where traditional significance
levels are not useful.

Multiway splits for categorical partitioning variables.

Treat weights as proportionality weights and not as case weights.



Implementation: Models

Input: Basic interface.

fit(y, x = NULL, start = NULL, weights = NULL,

offset = NULL, ...)

y, x, weights, offset are (the subset of) the preprocessed data.
Starting values and further fitting arguments are in start and ....

Output: Fitted model object of class with suitable methods.

coef(): Estimated parameters θ̂.

logLik(): Maximized log-likelihood function −
∑

i Ψ(yi , xi , θ̂).

estfun(): Empirical estimating functions Ψ′(yi , xi , θ̂).



Implementation: Models

Input: Extended interface.

fit(y, x = NULL, start = NULL, weights = NULL,

offset = NULL, ..., estfun = FALSE, object = FALSE)

Output: List.

coefficients: Estimated parameters θ̂.

objfun: Minimized objective function
∑

i Ψ(yi , xi , θ̂).

estfun: Empirical estimating functions Ψ′(yi , xi , θ̂). Only needed
if estfun = TRUE, otherwise optionally NULL.

object: A model object for which further methods could be
available (e.g., predict(), or fitted(), etc.). Only needed if
object = TRUE, otherwise optionally NULL.

Internally: Extended interface constructed from basic interface if
supplied. Efficiency can be gained through extended approach.



Implementation: Parties

Class: ‘modelparty’ inheriting from ‘party’.

Main addition: Data handling for regressor and partitioning variables.

The Formula package is used for two-part formulas, e.g.,
y ~ x1 + x2 | z1 + z2 + z3.

The corresponding terms are stored for the combined model and
only for the partitioning variables.

Additional information: In info slots of ‘party’ and ‘partynode’.

call, formula, Formula, terms (partitioning variables only),
fit, control, dots, nreg.

coefficients, objfun, object, nobs, p.value, test.

Reusability: Could in principle be used for other model trees as well
(inferred by other algorithms than MOB).



Bradley-Terry trees

Questions: Which of these
women is more attractive?
How does the answer depend on
age, gender, and the familiarity
with the associated TV show
Germany’s Next Topmodel?



Bradley-Terry trees

Task: Preference scaling of attractiveness.

Data: Paired comparisons of attractiveness.

Germany’s Next Topmodel 2007 finalists: Barbara, Anni, Hana,
Fiona, Mandy, Anja.

Survey with 192 respondents at Universität Tübingen.

Available covariates: Gender, age, familiarty with the TV show.

Familiarity assessed by yes/no questions: (1) Do you recognize the
women?/Do you know the show? (2) Did you watch it regularly?
(3) Did you watch the final show?/Do you know who won?



Bradley-Terry trees

Model: Bradley-Terry (or Bradley-Terry-Luce) model.

Standard model for paired comparisons in social sciences.

Parametrizes probability πij for preferring object i over j in terms of
corresponding “ability” or “worth” parameters θi .

πij =
θi

θi + θj

logit(πij) = log(θi)− log(θj)

Maximum likelihood as a logistic or log-linear GLM.

Mobster: bttree() in psychotree (Strobl et al. 2011).

Here: Use mob() directly to build model from scratch using
btReg.fit() from psychotools.



Bradley-Terry trees
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Bradley-Terry trees

Data, packages, and estfun() method:
R> data("Topmodel2007", package = "psychotree")
R> library("partykit")
R> library("psychotools")
R> estfun.btReg <- function(x, ...) x$estfun

Basic model fitting function:

R> btfit1 <- function(y, x = NULL, start = NULL, weights = NULL,
+ offset = NULL, ...) btReg.fit(y, weights = weights, ...)

Fit Bradley-Terry tree:

R> system.time(bt1 <- mob(
+ preference ~ 1 | gender + age + q1 + q2 + q3,
+ data = Topmodel2007, fit = btfit1))

user system elapsed
5.148 0.036 5.215



Bradley-Terry trees

Extended model fitting function:

R> btfit2 <- function(y, x = NULL, start = NULL, weights = NULL,
+ offset = NULL, ..., estfun = FALSE, object = FALSE) {
+ rval <- btReg.fit(y, weights = weights, ...,
+ estfun = estfun, vcov = object)
+ list(
+ coefficients = rval$coefficients,
+ objfun = -rval$loglik,
+ estfun = if(estfun) rval$estfun else NULL,
+ object = if(object) rval else NULL
+ )
+ }

Fit Bradley-Terry tree again:

R> system.time(bt2 <- mob(
+ preference ~ 1 | gender + age + q1 + q2 + q3,
+ data = Topmodel2007, fit = btfit2))

user system elapsed
4.132 0.000 4.142



Bradley-Terry trees

Model-based recursive partitioning (btfit2)

Model formula:
preference ~ 1 | gender + age + q1 + q2 + q3

Fitted party:
[1] root
| [2] age <= 52
| | [3] q2 in yes: n = 35
| | Barbara Anni Hana Fiona Mandy
| | 1.3378 1.2318 2.0499 0.8339 0.6217
| | [4] q2 in no
| | | [5] gender in male: n = 71
| | | Barbara Anni Hana Fiona Mandy
| | | 0.43866 0.08877 0.84629 0.69424 -0.10003
| | | [6] gender in female: n = 56
| | | Barbara Anni Hana Fiona Mandy
| | | 0.9475 0.7246 0.4452 0.6350 -0.4965
| [7] age > 52: n = 30
| Barbara Anni Hana Fiona Mandy
| 0.2178 -1.3166 -0.3059 -0.2591 -0.2357



Bradley-Terry trees

Number of inner nodes: 3
Number of terminal nodes: 4
Number of parameters per node: 5
Objective function: 1829

Standard methods readily available:
R> plot(bt2)
R> coef(bt2)

Barbara Anni Hana Fiona Mandy
3 1.3378 1.23183 2.0499 0.8339 0.6217
5 0.4387 0.08877 0.8463 0.6942 -0.1000
6 0.9475 0.72459 0.4452 0.6350 -0.4965
7 0.2178 -1.31663 -0.3059 -0.2591 -0.2357

Customization:
R> worthf <- function(info) paste(info$object$labels,
+ format(round(worth(info$object), digits = 2)), sep = ": ")
R> plot(bt2, FUN = worthf)



Bradley-Terry trees
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Bradley-Terry trees
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Bradley-Terry trees
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Bradley-Terry trees

Apply plotting in all terminal nodes:
R> par(mfrow = c(2, 2))
R> nodeapply(bt2, ids = c(3, 5, 6, 7), FUN = function(n)
+ plot(n$info$object, main = n$id, ylim = c(0, 0.4)))

Predicted nodes and ranking:
R> tm

age gender q1 q2 q3
1 60 male no no no
2 25 female no no no
3 35 female no yes no

R> predict(bt2, tm, type = "node")

1 2 3
7 3 5

R> predict(bt2, tm, type = function(object) t(rank(-worth(object))))

Barbara Anni Hana Fiona Mandy Anja
1 1 6 5 4 3 2
2 2 3 1 4 5 6
3 3 4 1 2 6 5



Summary

Synthesis of parametric data models and algorithmic tree models.

Based on modern class of parameter instability tests.

Aims to minimize clearly defined objective function by greedy
forward search.

Can be applied general class of parametric models.

Alternative to traditional means of model specification, especially
for variables with unknown association.

All new implementation in partykit.

Enables more efficient computations, rapid prototyping, flexible
customization.
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