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Overview

@ Motivation: Trees and leaves

@ Model-based (MOB) recursive partitioning
Model estimation

Tests for parameter instability
Segmentation

Pruning

Local models

@ Implementation in R

e Building blocks: Parties, models, mobsters
o Old implementation in party
e All new implementation in partykit

@ Application

e Paired comparisons for Germany’s Topmodel finalists
e Bradley-Terry trees
e Implementation from scratch



Motivation: Trees

Breiman (2001, Statistical Science) distinguishes two cultures of
statistical modeling.

@ Data models: Stochastic models, typically parametric.
— Classical strategy in statistics. Regression models are still the
workhorse for many empirical analyses.

@ Algorithmic models: Flexible models, data-generating process
unknown. — Still few applications in many fields, e.g., social
sciences or economics.

Classical example: Trees, i.e., modeling of dependent variable y by
“learning” a recursive partition w.r.t explanatory variables zy, . . ., z.



Motivation: Leaves

Key features:
@ Predictive power in nonlinear regression relationships.

© |Interpretability (enhanced by visualization), i.e., no “black box”
methods.

Typically: Simple models for univeriate y, e.g., mean.

Idea: More complex models for more complex y, e.g., regression
models, multivariate normal model, item responses, etc.

Here: Synthesis of parametric data models and algorithmic tree
models.

Goal: Fitting local models by partitioning of the sample space.



Recursive partitioning

Model-based (MOB) algorithm:

@ Fit the parametric model in the current subsample.

© Assess the stability of the parameters across each partitioning
variable z;.

© Split sample along the z;+ with strongest instability: Choose
breakpoint with highest improvement of the model fit.

© Repeat steps 1-3 recursively in the subsamples until some
stopping criterion is met.



Recursive partitioning

Example: Logistic regression, assessing differences in the effect of
“preferential treatment” (“women and children first”?) in the Titanic
survival data.

In R: Generalized linear model tree with binomial family (and default
logit link).

R> mb <- glmtree(Survived ~ Treatment | Age + Gender + Class,

+ data = ttnc, family = binomial, alpha = 0.05, prune = "BIC")

R> plot(mb)
R> print (mb)

Result: Log-odds ratio of survival given treatment differs across
classes (slope), as does the survival probability of male adults
(intercept).



Recursive partitioning
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Recursive partitioning

Generalized linear model tree (family: binomial)

Model formula:
Survived ~ Treatment | Age + Gender + Class

Fitted party:
[1] root
[2] Class in 3rd: n = 706
(Intercept) TreatmentPreferential
-1.641 1.327
[3] Class in 1st, 2nd, Crew
[4] Class in 2nd: n = 285
(Intercept) TreatmentPreferential
-2.398 4.477
[5] Class in 1st, Crew: n = 1210
(Intercept) TreatmentPreferential

|
|
|
|
|
|
|
|
|
| -1.152 4.318

Number of inner nodes: 2

Number of terminal nodes: 3

Number of parameters per node: 2

Objective function (negative log-likelihood): 1061



1. Model estimation

Models: M(y, x, §) with (potentially multivariate) observations y,
optionally regressors x, and k-dimensional parameter vector 6 € ©.

Parameter estimation: @by optimization of additive objective function
V(y, x, ) for nobservations y; (i =1,...,n):

~

n
0 = argminZW(y,-,x,-,@).
9e0

Special cases: Maximum likelihood (ML), weighted and ordinary least
squares (OLS and WLS), quasi-ML, and other M-estimators.



1. Model estimation

Estimating function: 9 can also be defined in terms of
n ~
Z ¢(yi, Xi, 0) = 07
i=1

where ¢ (y, x,0) = 0V(y, x,0)/00.

Central limit theorem: If there is a true parameter 6, and given certain
weak regularity conditions:

V(@ —6) - N(0, V(%))

where V(6p) = {A(6o)}~"B(60){A(f)}~". Aand B are the
expectation of the derivative of 1/ and the variance of i, respectively.



1. Model estimation

Idea: In many situations, a single global model M(y, x, ) that fits all
n observations cannot be found. But it might be possible to find a

partition w.r.t. the variables z, . .., z; so that a well-fitting model can be
found locally in each cell of the partition.
Tools:

@ Assess parameter instability w.r.t to partitioning variables
z(j=1,....0).

@ A general measure of deviation from the model is the estimating
function ¥ (y, x, ).



2. Tests for parameter instability

Generalized M-fluctuation tests capture instabilities in f for an ordering
w.r.t z;.

Basis: Empirical fluctuation process of cumulative deviations w.r.t. to
an ordering o(zj).

Lnt)

VVl(ta 0) = §_1/2n_1/2 Zw(yo(z,j)vxa(z,-j)aé\) (0 <t< 1)
i1

Functional central limit theorem: Under parameter stability
Wi(-) —= WPO(.), where W is a k-dimensional Brownian bridge.



2. Tests for parameter instability
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2. Tests for parameter instability

Test statistics: Scalar functional A(W) that captures deviations from
zero.

Null distribution: Asymptotic distribution of A(W?).

Special cases: Class of test encompasses many well-known tests for
different classes of models. Certain functionals A are particularly
intuitive for numeric and categorical z;, respectively.

Advantage: Model M(y, x, 5) just has to be estimated once. Empirical
estimating functions ¥ (y;, xi, 5) just have to be re-ordered and
aggregated for each z;.



2. Tests for parameter instability
Splitting numeric variables: Assess instability using supLM statistics.

i
()

Interpretation: Maximization of single shift LM statistics for all
conceivable breakpoints in [2,7].

) N —1 2
i n—i
Asupm(Wj) = max ( )

i=i,..1 \n N

2

Limiting distribution: Supremum of a squared, k-dimensional
tied-down Bessel process.

Potential alternatives: Many other parameter instability tests from the
same class of tests, e.g., a Cramér-von Mises test (or Nyblom-Hansen
test), MOSUM tests, etc.



2. Tests for parameter instability

Splitting categorical variables: Assess instability using x? statistics.
© i
A2 AW -

= Xgge(5)

Feature: Invariant for re-ordering of the C categories and the
observations within each category.

2

2

Interpretation: Capture instability for split-up into C categories.

Limiting distribution: y2 with k - (C — 1) degrees of freedom.



2. Tests for parameter instability

Splitting ordinal variables: Several strategies conceivable. Assess
instability either as for categorical variables (if C is low), or as for
numeric variables (if C is high), or via a specialized test.

. N —1 , 2
I n—1 I
)\ W = — . W _
maxLMo( j) ie{i{?.?:?:;& <n n > J (n> 27
. N —1/2 ,
I n—1 I
A W) = max —- W | —
wone(w) = max (120) w2

Interpretation: Assess only the possible splitpoints i1, . .., ic—1, based
on L, or Ly, norm.

Limiting distribution: Maximum from selected points in a squared
Bessel process or multivariate normal distribution, respectively.



3. Segmentation

Goal: Split model into b =1, ..., B segments along the partitioning
variable z; associated with the highest parameter instability. Local
optimization of

DD (i i, 0b).

b i€lp

B = 2: Exhaustive search of order O(n).

B > 2: Exhaustive search is of order O(n®~"), but can be replaced by
dynamic programming of order O(n2). Different methods (e.g.,
information criteria) can choose B adaptively.

Here: Binary partitioning. Optionally, B = C can be chosen (without
search) for categorical variables.



4. Pruning

Goal: Avoid overfitting.

Pre-pruning:
@ Internal stopping criterium.
@ Stop splitting when there is no significant parameter instability.
@ Based on Bonferroni-corrected p values of the fluctuation tests.

Post-pruning:
@ Grow large tree (e.g., with high significance level).

@ Prune splits that do not improve the model fit based on information
criteria (e.g., AlC or BIC).

Hyperparameters: Significance level and information criterion penalty
can be chosen manually (or possibly through cross-validation etc.).



Local models

Goals:
@ Detection of interactions and nonlinearities in regressions.
@ Add explanatory variables for models without regressors.

@ Detect violations of parameter stability (measurement invariance)
across several variables adaptively.

Mobsters:
@ Linear and generalized linear model trees (Zeileis et al. 2008).

@ Censored survival regression trees: parametric proportional
hazard and accelerated failure time models (Zeileis et al. 2008).

@ Beta regression trees (Griin et al. 2012).
@ Bradley-Terry trees for paired comparisons (Strobl et al. 2011).

@ ltem response theory (IRT) trees: Rasch, rating scale and partial
credit model (Strobl et al. 2014, Abou EI-Komboz et al. 2014).



Implementation: Building blocks

Workhorse function: mob () for
@ data handling,
@ calling model fitters,
@ carrying out parameter instability tests and
@ recursive partitioning algorithm.

Required functionality:
@ Parties: Class and methods for recursive partytions.
@ Models: Fitting functions for statistical models (optimizing suitable
objective function).

@ Mobsters: High-level interfaces (lmtree (), bttree(), ...) that
call lower-level mob () with suitable options and methods.



Implementation: Old mob () in party

Parties: S4 class ‘BinaryTree’.
@ Originally developed only for ctree () and somewhat “abused”.
@ Rather rigid and hard to extend.
Models: S4 ‘StatModel’ objects.
@ Intended to conceptualize unfitted model objects.
@ Required some “glue code” to accomodate non-standard interface
for data handling and model fitting.
Mobsters:
@ mob () already geared towards (generalized) linear models.
@ Other interfaces in psychotree and betareg.

@ Hard to do fine control due to adopted S4 classes: Many
unnecessary computations and copies of data.



Implementation: New mob () in partykit

Parties: S3 class ‘modelparty’ built on ‘party’.
@ Separates data and tree structure.

@ Inherits generic infrastructure for printing, predicting, plotting, . ..

Models: Plain functions with input/output convention.

@ Basic and extended interface for rapid prototyping and for
speeding up computings, respectively.

@ Only minimial glue code required if models are well-designed.
Mobsters:

@ mob () completely agnostic regarding models employed.

@ Separate interfaces lmtree (), glmtree(), ...

@ New interfaces typically need to bring their model fitter and adapt
the main methods print (), plot (), predict () etc.



Implementation: New mob () in partykit

New inference options: Not used by default by optionally available.

@ New parameter instability tests for ordinal partitioning variables.
Alternative to unordered x? test but computationally intensive.

@ Post-pruning based on information criteria (e.g., AIC or BIC),
especially for very large datasets where traditional significance
levels are not useful.

@ Multiway splits for categorical partitioning variables.
@ Treat weights as proportionality weights and not as case weights.



Implementation: Models

Input: Basic interface.
fit(y, x = NULL, start = NULL, weights = NULL,
offset NULL, ...)

y, x, weights, offset are (the subset of) the preprocessed data.
Starting values and further fitting arguments are in start and . . ..

Output: Fitted model object of class with suitable methods.
@ coef (): Estimated parameters 6.
@ logLik(): Maximized log-likelihood function — >, W(y;, x;, 8).
@ estfun(): Empirical estimating functions \U’(Y/,X,',é).



Implementation: Models

Input: Extended interface.
fit(y, x = NULL, start = NULL, weights = NULL,

offset NULL, ..., estfun = FALSE, object = FALSE)

Output: List.

coefficients: Estimated parameters 0.

objfun: Minimized objective function >, V(y;, x;, 0).

estfun: Empirical estimating functions W’(y;, x;, 9). Only needed
if estfun = TRUE, otherwise optionally NULL.

object: A model object for which further methods could be
available (e.g., predict (), or fitted(), etc.). Only needed if
object = TRUE, otherwise optionally NULL.

Internally: Extended interface constructed from basic interface if
supplied. Efficiency can be gained through extended approach.



Implementation: Parties

Class: ‘modelparty’ inheriting from ‘party’.

Main addition: Data handling for regressor and partitioning variables.
@ The Formula package is used for two-part formulas, e.g.,

y ~ox1+ x2 | z1 + 22 + z3.

@ The corresponding terms are stored for the combined model and
only for the partitioning variables.

Additional information: In info slots of ‘party’ and ‘partynode’.

@ call, formula, Formula, terms (partitioning variables only),
fit, control, dots, nreg.

@ coefficients, objfun, object, nobs, p.value, test.

Reusability: Could in principle be used for other model trees as well
(inferred by other algorithms than MOB).



Bradley-Terry trees

Questions: Which of these
women is more attractive?

How does the answer depend on
age, gender, and the familiarity
with the associated TV show
Germany’s Next Topmodel?



Bradley-Terry trees

Task: Preference scaling of attractiveness.

Data: Paired comparisons of attractiveness.
@ Germany’s Next Topmodel 2007 finalists: Barbara, Anni, Hana,
Fiona, Mandy, Anja.
@ Survey with 192 respondents at Universitat Tibingen.
@ Available covariates: Gender, age, familiarty with the TV show.

@ Familiarity assessed by yes/no questions: (1) Do you recognize the
women?/Do you know the show? (2) Did you watch it regularly?
(3) Did you watch the final show?/Do you know who won?



Bradley-Terry trees

Model: Bradley-Terry (or Bradley-Terry-Luce) model.
@ Standard model for paired comparisons in social sciences.

@ Parametrizes probability 7 for preferring object i/ over j in terms of
corresponding “ability” or “worth” parameters 6;.

i - Hi
v 0 + 0/'
logit(m;) = log(6;) — log(6;)

@ Maximum likelihood as a logistic or log-linear GLM.

Mobster: bttree () in psychotree (Strobl et al. 2011).

Here: Use mob () directly to build model from scratch using
btReg.fit () from psychotools.
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Bradley-Terry trees

Data, packages, and estfun () method:

R> data("Topmodel2007", package = "psychotree")
R> library("partykit")

R> library("psychotools")

R> estfun.btReg <- function(x, ...) x$estfun

Basic model fitting function:

R> btfitl <- function(y, x = NULL, start = NULL, weights = NULL,
+ offset = NULL, ...) btReg.fit(y, weights = weights, ...)

Fit Bradley-Terry tree:

R> system.time(btl <- mob(
+ preference ~ 1 | gender + age + ql + g2 + g3,
+ data = Topmodel2007, fit = btfitl))

user system elapsed
5.148 0.036 5.215



Bradley-Terry trees

Extended model fitting function:
R> btfit2 <- function(y, x = NULL, start = NULL, weights = NULL,

offset = NULL, ..., estfun = FALSE, object = FALSE) {
rval <- btReg.fit(y, weights = weights, ...,

estfun = estfun, vcov = object)
list(

coefficients = rval$coefficients,

objfun = -rval$loglik,

estfun if (estfun) rval$estfun else NULL,
object = if (object) rval else NULL

+ o+ o+ o+

Fit Bradley-Terry tree again:

R> system.time(bt2 <- mob(
+ preference ~ 1 | gender + age + ql + g2 + g3,
+ data = Topmodel2007, fit = btfit2))

user system elapsed
4.132 0.000 4.142



Bradley-Terry trees

Model-based recursive partitioning (btfit2)

Model formula:
preference ~ 1 | gender + age + ql + g2 + g3

Fitted party:
[1] root

[2]
|
I
|
I
|
|
|
|
|
|

(7]

Mandy

age <= 52
[3] 92 in yes: n = 35
Barbara Anni Hana  Fiona  Mandy
1.3378 1.2318 2.0499 0.8339 0.6217
[4] 92 in no
| [6] gender in male: n = 71
| Barbara Anni Hana Fiona
| 0.43866 0.08877 0.84629 0.69424 -0.10003
| [6] gender in female: n = 56
| Barbara Anni Hana  Fiona  Mandy
| 0.9475 0.7246 0.4452 0.6350 -0.4965
age > 52: n = 30

Barbara Anni Hana  Fiona  Mandy
0.2178 -1.3166 -0.3059 -0.2591 -0.2357



Bradley-Terry trees

Number of inner nodes: 3
Number of terminal nodes: 4
Number of parameters per node: 5
Objective function: 1829

Standard methods readily available:

R> plot(bt2)
R> coef (bt2)

Barbara Anni Hana  Fiona  Mandy
1.3378 1.23183 2.0499 0.8339 0.6217
0.4387 0.08877 0.8463 0.6942 -0.1000
0.9475 0.72459 0.4452 0.6350 -0.4965
0.2178 -1.31663 -0.3059 -0.2591 -0.2357

~No ow

Customization:
R> worthf <- function(info) paste(info$object$labels,

+ format (round(worth(info$object), digits = 2)), sep = ": ")
R> plot(bt2, FUN = worthf)



y? yes

15]
n=235
Estimated parameters:

Barbara 1.3378

Anni 1.2318

Hana 2.0499
Fiona 0.8339
Mandy 0.6217

Bradley-Terry trees

no.

1 male
15]
n=71
Estimated parameters:
Barbara 0.43866
Anni 0.08877
Hana 0.84629
Fiona 0.69424
Mandy -0.10003

female

n =56
Estimated parameters:
Barbara 0.9475
Anni 0.7246
Hana 0.4452
Fiona 0.6350
Mandy —0.4965

>52 =1

{7}

n =30
Estimated parameters:
Barbara 0.2178
Anni -1.3166
Hana -0.3059
Fiona -0.2591
Mandy -0.2357




Bradley-Terry trees

Barbara: 0.26
Anni: 0.06
Hana: 0.15
Fiona: 0.16

Mandy: 0.16
Anja: 0.21

Barbara: 0.19
Anni: 0.17 (4]
Hana: 0.39 gender
Fiona: 0.11 0.007,
Mandy: 0.09
Anja: 0.05

female

Barbara: 0.17
Anni: 0.12

Barbara: 0.27
Anni: 0.21
Hana: 0.16

Hana: 0.26
Fiona: 0.23
Mandy: 0.10
Anja: 0.11

Fiona: 0.19
Mandy: 0.06
Anja: 0.10




Bradley-Terry trees
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Bradley-Terry trees

Apply plotting in all terminal nodes:

R> par(mfrow =

c(2, 2))

R> nodeapply(bt2, ids = c(3, 5, 6, 7), FUN = function(n)

+ plot(n$info$object, main = n$id, ylim

c(0, 0.4)))

Predicted nodes and ranking:

R> tm

age gender ql
1 60 male no
2 25 female no
3 35 female no

R> predict(bt2,

123
735

R> predict(bt2,

Barbara Anni Hana

1 1 6
2 2 3
3 3 4

q2
no
no
yes

tm,

tm,

5
1
1

q3
no
no
no

type

type

"node")

function(object) t(rank(-worth(object))))

Fiona Mandy Anja

4
4
2

3 2
5 6
6 5



Summary

@ Synthesis of parametric data models and algorithmic tree models.
@ Based on modern class of parameter instability tests.

@ Aims to minimize clearly defined objective function by greedy
forward search.

@ Can be applied general class of parametric models.

@ Alternative to traditional means of model specification, especially
for variables with unknown association.

@ All new implementation in partykit.

@ Enables more efficient computations, rapid prototyping, flexible
customization.
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