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Abstract: Multivariate Gaussian regression has applications in many fields, but
is made difficult by the high model complexity and positive-definite requirement
on the estimated covariance. We implement multivariate Gaussian regression
through a Cholesky-based reparameterization of the covariance matrix. The dis-
tributional parameters—the means and the entries of the Cholesky factor—can
be made to depend on covariates through flexible additive predictors, allowing for
nonlinear variations in mean and covariance. The reparameterization is compared
to reference methods for estimating a fixed covariance. An application for weather
prediction (surface temperature) illustrates the flexibility of the approach.

Keywords: Covariance modeling; Cholesky decomposition; Multivariate Gaus-
sian; MCMC simulation.

1 Cholesky-based multivariate Gaussian regression

Multivariate modeling has a wide range of applications from longitudinal
analyses of biomarker data to postprocessing of numerical weather predic-
tions. Employing multivariate Gaussian distributions in the framework of
distributional regression allows one to specify very flexible models. For the
bivariate Gaussian case, the correlation may be modeled directly (e.g. Klein
et al. 2015), but for higher dimensions two main difficulties occur: (i) high
complexity resulting from the large number of distributional parameters
and (ii) ensuring a positive definite covariance. To tackle the latter issue,
we factorize the covariance by the Cholesky decomposition (Pourahmadi
2011). To deal with its high complexity, we regularize the Cholesky-based
multivariate Gaussian regression models (Umlauf et. al 2018).
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The Cholesky decomposition of a positive definite symmetric matrix ⌃ has
the form

⌃ = LLT and ⌃
−1 = L−1TL−1, (1)

and is unique if the main diagonal of the lower triangular L is positive. The
log-likelihood of a multivariate Gaussian distribution for the k-dimensional
observation vector y can then be written in terms of µ and L−1 by

`(µ, L−1|y) = −
k

2
log(2⇡) + log(|L−1|)−

1

2
(y−µ)T(L−1)TL−1(y−µ). (2)

We designate the nontrivial elements of L−1T by λij , with i  j, and link
all distributional parameters to additive models:

µi = ⌘µ,i, log(λii) = ⌘λ,ii, and λij = ⌘λ,ij for i < j. (3)

The reparameterization is available as a family for the R package bamlss
(Umlauf et. al 2018) that implements optimizers for regularized estimation.

2 Simulation study

We test the proposed regression method with data simulated from a known
multivariate Gaussian distribution of dimension 10. The distribution has
zero mean, heteroscedastic marginal variances ⌃ii = i and a first order
autoregressive correlation matrix with ⇢ = 0.5.
Two di↵erent model setups are used to estimate the true distributional
parameters from 50 simulated y and the process is repeated 1000 times. In
Model 1, all ⌘i (see Eq. 3) are modeled as intercepts only. Model 2 is the
same as Model 1 except that o↵-diagonal entries of L−1 (i.e. λij , i 6= j) are
regularized with a ridge penalty.
The estimates’ representations of the true covariance and precision is eval-
uated using the spectral norm of the corresponding matrix di↵erences, and
compared to three reference methods for covariance estimation: (i) the sam-
ple covariance, (ii) a shrinkage covariance estimate and (iii) the graphical
lasso (glasso).
The unregularized Model 1 has similar performance to the sample covari-
ance; the regularized Model 2 performs better than both the shrinkage
estimate and glasso (Fig. 1). For estimating a stationary covariance struc-
ture, the proposed multivariate distributional regression approach performs
well despite the number of distributional parameters (65) exceeding the
number of simulated vectors used for estimation (50). The true strength
of the method, though, lies in the flexible manner in which distributional
parameters can be modeled on covariates.
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FIGURE 1. Spectral norm of di↵erences between the estimated and true covari-
ance (left) and precision matrices (right). Boxplots represent 1000 simulations.
Smaller values indicate that the estimated covariance (precision) matrices are
closer to the truth.

3 Multivariate forecasting of surface temperatures

The goal of numerical weather prediction is forecasting future atmospheric
states from current observations using governing physical equations. The
resulting predictions are postprocessed by statistical methods to improve
their skill. For forecasting the temporal evolution of surface tempera-
ture over several future (lead) times, the error correlation between lead
times must be considered. Our proposed method accomplishes this task
with a multivariate approach by postprocessing the predictions (GEFS re-
forecasts, Hamill 2013) for several lead times simultaneously.
To illustrate, we model 00 UTC surface temperature at Innsbruck, Austria,
for 8 lead times (+8 d, +9 d, . . . , +15 d) with an 8-dimensional Gaussian
distribution. Seasonal variations in both predictive skill and error correla-
tions are permitted by letting Cholesky factor entries depend on the day
of the year (yday) and mean parameters have a linear dependency on the
corresponding forecasts ensi, but with seasonally varying coefficients:

µi = (β0,i + f0,i(yday)) + (β1,i + f1,i(yday)) · ensi

log(λii) = β0,ii + fii(yday)

λij = β0,ij + fij(yday),

(4)

where f are nonlinear cyclical functions of yday.
Five years of data were used to estimate the model parameters and reveal
pronounced seasonal cycles in the e↵ects of the µ models (Fig. 2). Each of
the modeled λij are also allowed to have such seasonal dependencies, which
are significant for i = j and also for several λij with lag 1 (i.e. j = i+ 1).
At higher lags, the seasonal e↵ects become insignificant.

Seasonally varying Cholesky factor estimates (dL−1) result in distinct b⌃ for

every yday. Taking b⌃ for January 1 and July 1, we see that not only are vari-
ances in winter nearly twice as large as in summer, the errors are also more
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FIGURE 2. Left column: Estimated mean-model e↵ects for β0,i + f0,i(yday) in
Eq. 4 (top) and β1,i + f1,i(yday) (bottom). Center column: Correlation ma-
trix (top) and marginal variances (bottom) calculated from the Cholesky factor
estimated for January 1. Right column: Correlation and variances for July 1.

strongly correlated (Fig. 2). This is the benefit of the proposed multivariate
Gaussian regression method: flexible mean and covariance estimation, while
ensuring positive-definiteness and enabling data-driven regularization.

Acknowledgments: This project was funded by the Austrian Science
Fund (FWF, grant no. P 31836). We thank the Zentralanstalt für Mete-
orologie und Geodynamik (ZAMG) for providing the observational data.

References

Hamill, Bates, Whitaker et al. (2013). NOAA’s second-generation global
medium-range ensemble reforecast dataset. B. Am. Meteorol. Soc.,
94(10), 1553–1565. doi: 10.1175/BAMS-D-12-00014.1.

Klein, Kneib, Klasen and Lang (2015). Bayesian structured additive dis-
tributional regression for multivariate responses. J. Roy. Stat. Soc. C,
64(4), 569–591. doi: 10.1111/rssc.12090.

Pourahmadi (2011). Covariance estimation: The GLM and reg-
ularization perspectives. Statistical Science, 26(3), 369–387.
doi: 10.1214/11-STS358

Umlauf, Klein and Zeileis (2018). BAMLSS: Bayesian additive models for
location, scale, and shape (and beyond). J. Comput. Graph. Stat, 3,
612–627. doi: 10.1080/10618600.2017.1407325.


