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Abstract

The issue of measurement invariance commonly arises in factor-analytic contexts, with
methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and
Wald tests. These tests all require advance definition of the number of groups, group
membership, and offending model parameters. In this paper, we study tests of mea-
surement invariance based on stochastic processes of casewise derivatives of the likelihood
function. These tests can be viewed as generalizations of the Lagrange multiplier test, and
they are especially useful for: (1) identifying subgroups of individuals that violate mea-
surement invariance along a continuous auxiliary variable without prespecified thresholds,
and (2) identifying specific parameters impacted by measurement invariance violations.
The tests are presented and illustrated in detail, including an application to a study of
stereotype threat and simulations examining the tests’ abilities in controlled conditions.

Keywords: measurement invariance, parameter stability, factor analysis, structural equation
models.

1. Introduction

The assumption that parameters are invariant across observations is a fundamental tenet of
many statistical models. A specific type of parameter invariance, measurement invariance, has
implications for the general design and use of psychometric scales. This concept is particularly
important because violations can render the scales difficult to interpret. That is, if a set
of scales violates measurement invariance, then individuals with the same “amount” of a
latent variable may systematically receive different scale scores. This may lead researchers to
conclude subgroup differences on a wide variety of interesting constructs when, in reality, the
scales impact the magnitude of the differences. Further, it can be inappropriate to incorporate
scales violating measurement invariance into structural equation models, where relationships
between latent variables are hypothesized. Horn and McArdle (1992) concisely summarize
the impact of these issues, stating “Lack of evidence of measurement invariance equivocates
conclusions and casts doubt on theory in the behavioral sciences” (p. 141). Borsboom (2006)
further notes that researchers often fail to assess whether measurement invariance holds.

In this paper, we apply a family of statistical tests based on stochastic processes to the
assessment of measurement invariance. The tests are shown to have useful advantages over
existing tests. We begin by developing a general framework for the tests, including discussion
of theoretical results relevant to the proposed tests and comparison of the proposed tests to the
existing tests. Next, we study the proposed tests’ abilities through example and simulation.
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2 Tests of Measurement Invariance without Subgroups

Finally, we discuss some interesting extensions of the tests. Throughout the manuscript, we
use the term test to refer to a statistical test and the term scale to refer to a psychometric
test or scale.

2. Framework

The methods proposed here are generally relevant to situations where the p-dimensional ran-
dom variable X with associated observations xi, i = 1, . . . , n is specified to arise from a model
with density f(xi;θ) and associated joint log-likelihood

`(θ;x1, . . . ,xn) =
n∑
i=1

`(θ;xi) =
n∑
i=1

log f(xi;θ), (1)

where θ is some k-dimensional parameter vector that characterizes the distribution. The
methods are applicable under very general conditions, essentially whenever standard assump-
tions for maximum likelihood inference hold (for more details see below). For the measure-
ment invariance applications considered in this paper, we employ a factor analysis model with
assumed multivariate normality:

f(xi;θ) =
1

(2π)p/2|Σ(θ)|1/2
exp

{
−1

2
(xi − µ(θ))>Σ(θ)−1(xi − µ(θ))

}
, (2)

`(θ;xi) = −1

2

{
(xi − µ(θ))>Σ(θ)−1(xi − µ(θ)) + log |Σ(θ)| + p log(2π)

}
, (3)

with model-implied mean vector µ(θ) and covariance matrix Σ(θ). As pointed out above, the
assumptions for the tests introduced here do not require this specific form of the likelihood,
but it is presented for illustration due to its importance in practice.

Many expositions of factor analysis utilize the likelihood for the sample covariance matrix
(instead of the likelihood of the individual observations xi), employing a Wishart distribution.
However, in that approach the sample covariance matrix can also be disaggregated to the
sum of its individual-specific contributions, leading essentially to a likelihood like (2) with
multivariate normal observations xi. This situation is similar to that encountered in structural
equation models with missing data (e.g., Wothke 2000).

Within the general framework outlined above and under the usual regularity conditions (e.g.,
Ferguson 1996), the model parameters θ can be estimated by maximum likelihood (ML), i.e.,

θ̂ = argmax
θ

`(θ;x1, . . . , xn), (4)

or equivalently by solving the first order conditions

n∑
i=1

s(θ̂;xi) = 0, (5)

where

s(θ;xi) =

(
∂`(θ;xi)

∂θ1
, . . . ,

∂`(θ;xi)

∂θk

)>
, (6)
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is the score function of the model, i.e., the partial derivative of the casewise likelihood con-
tributions w.r.t. the parameters θ. Evaluation of the score function at θ̂ for i = 1, . . . , n
essentially measures the extent to which each individual’s likelihood is maximized.

One central assumption – sometimes made implicitly – is that the same model parameters
θ hold for all individuals i = 1, . . . , n. If this is not satisfied, the estimates θ̂ are typically
not meaningful and cannot be easily interpreted. One potential source of deviation from this
assumption is lack of measurement invariance, investigated in the following section.

3. Tests of measurement invariance

In general terms, a set of scales is defined to be measurement invariant with respect to an
auxiliary variable V if:

f(xi|ti, vi, . . . ) = f(xi|ti, . . . ), (7)

where xi is the data vector for individual i, ti is the latent variable for individual i that the
scales purport to measure, and f is the model’s distributional form (Mellenbergh 1989). We
adopt a parametric, factor-analytic framework here, so that the above equation being true
for all V implies that the measurement parameters are equal across individuals and, thus, do
not vary with any V (Meredith 1993).

To frame this as a formal hypothesis, we assume that – in principle – Model (1) holds for all
individuals but with a potentially individual-specific parameter vector θi. The null hypothesis
of measurement invariance is then equivalent to the null hypothesis of parameter constancy

H0 : θi = θ0, (i = 1, . . . , n), (8)

which should be tested against the alternative that the parameters are some nonconstant
function θ(·) of the variable V with observations v1, . . . , vn, i.e.,

H1 : θi = θ(vi), (i = 1, . . . , n). (9)

where the pattern θ(V ) of deviation from measurement invariance is typically not known (ex-
actly) in practice. If it were (see below for some concrete examples), then standard inference
methods – such as likelihood ratio, Wald, or Lagrange multiplier tests – could be employed.
However, if the pattern is unknown, it is difficult to develop a single test that is well-suited for
all conceivable patterns. But it is possible to derive a family of tests so that representatives
from this family are well-suited for a wide range of possible patterns. One pattern of partic-
ular interest involves V dividing the individuals into two subgroups with different parameter
vectors

H∗1 : θi =

{
θ(A) if vi ≤ ν,
θ(B) if vi > ν,

(10)

where θ(A) 6= θ(B). This could pertain to two different age groups, income groups, genders,
etc.

Note that even when adopting H∗1 as the relevant alternative, the pattern θ(V ) is not com-
pletely specified unless the cutpoint ν is known in advance (i.e., unless there is observed
heterogeneity). In this situation, all individuals can be grouped based on V , and we can ap-
ply standard theory: nested multiple group models (e.g., Jöreskog 1971; Bollen 1989) coupled
with likelihood ratio (LR) tests are most common, although the asymptotically equivalent
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4 Tests of Measurement Invariance without Subgroups

Lagrange multiplier (LM) tests (also known as score tests) and Wald tests may also be used
for this purpose (see Satorra 1989). If ν is unknown (as is often the case for continuous V ),
however, then there is unobserved heterogeneity and standard theory is not easily applied.
Nonstandard inference methods, such as those proposed in this paper, are then required.

In the following section, we describe the standard approaches to testing measurement invari-
ance with ν known. We then contrast these approaches with the tests proposed in this paper.
We assume throughout that the observations i = 1, . . . , n are ordered with respect to the
random variable V of interest such that v1 ≤ v2 ≤ · · · ≤ vn. We also assume that the mea-
surement model is correctly specified, as is implicitly assumed under traditional measurement
invariance approaches. In particular, violations of normality may lead to spurious results in
the proposed tests just as they do in other approaches (e.g., Bauer and Curran 2004).

3.1. Likelihood ratio, Wald, and Lagrange multiplier test for fixed subgroups

To employ the LR test for assessing measurement invariance, model parameters are estimated
separately for a certain number of subgroups of the data (with some parameters potentially
restricted to be equal across subgroups). For ease of exposition, we describe the case where
there are no such parameter restrictions; as shown in the example and simulation below,
however, it is straightforward to extend all methods to the more general case. After fitting the
model to each subgroup, the sum of maximized likelihoods from the subgroups are compared
with the original maximized full-sample likelihood in a χ2 test. For the special case of two
subgroups, the alternative H∗1 from (10) with fixed and prespecified ν is adopted and the
null hypothesis H0 from (8) reduces to θ(A) = θ(B). The parameter estimates θ̂(A) can then
be obtained from the observations i = 1, . . . ,m, say, for which vi ≤ ν. Analogously, θ̂(B) is
obtained by maximizing the likelihood for the observations i = m+1, . . . , n, for which vi > ν.
The LR test statistic for the given threshold ν is then

LR(ν) = − 2
[
`(θ̂;x1, . . . , xn) − {`(θ̂(A);x1, . . . , xm) + `(θ̂(B);xm+1, . . . , xn)}

]
, (11)

which, when the null hypothesis holds, has an asymptotic χ2 with degrees of freedom equal
to the number of parameters in θ.

Analogously to the LR test, the Wald test and LM test can be employed to test the null hy-
pothesisH∗1 for a fixed threshold ν. For the Wald test, the idea is to compute the Wald statistic
W (ν) as a quadratic form in θ̂(A) − θ̂(B), utilizing its estimated covariance matrix for stan-
dardization. For the LM test, the LM statistic LM (ν) is a quadratic form in s(θ̂;x1, . . . , xm)
and s(θ̂;xm+1, . . . , xn). Thus, the three tests all assess differences that should be zero under
H0: for the LR test the difference of maximized likelihoods; for the Wald test, the difference
of parameter estimates; and for the LM test, the differences of likelihood scores from zero.
In the LR case, the parameters have to be estimated under both the null hypothesis and al-
ternative. Conversely, the Wald case requires only the estimates under the alternative, while
the LM case requires only the estimates under the null hypothesis.

3.2. Extensions for unknown subgroups

For assessing measurement invariance in psychometric models, the major limitation of the
three tests is that the potential subgroups have to be known in advance. Even if the scales
are known to violate measurement invariance w.r.t. the variable V , the threshold ν from (10)
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is often unknown in practice. For example, if V represents yearly income, there are many
possible values of ν that could be used to divide individuals into poorer and richer groups.
The ultimate ν that we choose could potentially impact our conclusions about whether or
not a scale is measurement invariant, in the same way that dichotomization of continuous
variables impacts general psychometric analyses (MacCallum, Zhang, Preacher, and Rucker
2002).

Instead of choosing a specific ν, a natural idea is to compute LR(ν) for each possible value
in some interval [ν, ν] and reject if their maximum

max
ν∈[ν,ν]

LR(ν) (12)

becomes large. Note that this corresponds to maximizing the likelihood w.r.t. an additional
parameter, namely ν. Hence, the asymptotic distribution of the maximum LR statistic is not
χ2 anymore. Andrews (1993) showed that the asymptotic distribution is in fact tractable but
nonstandard. Specifically, the asymptotic distribution of (12) is the maximum of a certain
tied-down Bessel process whose specifics also depend on the minimal and maximal thresholds
ν and ν, respectively. See Andrews for the original results and further references, and see
below for more details on the results’ application to measurement invariance.

Analogously, one can consider maxW (ν) and max LM (ν), respectively, which both have the
same asymptotic properties as max LR(ν) and are asymptotically equivalent (Andrews 1993).
From a computational perspective, the max LM (ν) test is particularly convenient because it
requires just a single set of estimated parameters θ̂ which is employed for all thresholds ν in
[ν, ν]. The other two tests require reestimation of the subgroup models for each ν.

So far, the discussion focused on the alternative H∗1 : The maximum LR, Wald, and LM tests
are designed for a situation where there is a single threshold at which all parameters in the
vector θ change. While this is plausible and intuitive in many applications, it would also
be desirable to obtain tests that direct their power against other types of alternatives, i.e.,
against H1 with other patterns θ(V ). For example, the parameters may fluctuate randomly
or there might be multiple thresholds at which the parameters change. Alternatively, only one
(or just a few) of the parameters in the vector θ may change while the remaining parameters
are constant (a common occurrence in psychometric models). To address such situations in a
unified way, the next section contains a general framework for testing measurement invariance
along a (continuous) variable V that includes the maximum LM test as a special case.

4. Stochastic processes for measurement invariance

As discussed above, factor analysis models are typically estimated by fitting the model to all
i = 1, . . . , n individuals, assuming that the parameter vector θ is constant across individuals.
Having estimated the parameters θ̂, the goal is to check that all subgroups of individuals
conform with the model (for all of the parameters). Hence, some measure of model deviation
or residual is required that captures the lack of fit for the i-th individual at the j-th parameter
(i = 1, . . . , n, j = 1, . . . , k). A natural measure – that employs the ideas of the LM test –
is s(θ̂;xi)j : the j-th component of the contribution of the i-th observation to the score
function. By construction, the sum of the score contributions over all individuals is zero
for each component; see (5). Moreover, if there are no systematic deviations, the score
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6 Tests of Measurement Invariance without Subgroups

contributions should fluctuate randomly around zero. Conversely, the score contributions
should be shifted away from zero for subgroups where the model does not fit.

Therefore, to employ this quantity for tests of measurement invariance against alternatives of
type (9), we need to overcome two obstacles: (1) make use of the ordering of the observations
w.r.t. V because we want to test for changes “along” V ; (2) account for potential correlations
between the k components of the parameters to be able to detect which parameter(s) change
(if any).

4.1. Theory

The test problem of the null hypothesis (8) against the alternatives (9) and (10), respectively,
has been studied extensively in the statistics and econometrics literature under the label
“structural change tests” (see e.g., Brown, Durbin, and Evans 1975; Andrews 1993) where
the focus of interest is the detection of parameter instabilities of time series models “along”
time. Specifically, it has been shown (e.g., Nyblom 1989; Hansen 1992; Hjort and Koning
2002; Zeileis and Hornik 2007) that cumulative sums of the empirical scores follow specific
stochastic processes, allowing us to use them to generally test measurement invariance. Here,
we review some of the main results from that literature and adapt it to the specific challenges
of factor analysis models. More detailed accounts of the underlying structural change methods
include Hjort and Koning (2002) and Zeileis and Hornik (2007).

For application to measurement invariance, the most important theoretical result involves the
fact that, under H0 in (8), the cumulative score process converges to a specific asymptotic
process. The k-dimensional cumulative score process is defined as

B(t; θ̂) = Î−1/2n−1/2

bntc∑
i=1

s(θ̂;xi) (0 ≤ t ≤ 1) (13)

where bntc is the integer part of nt and Î is some consistent estimate of the covariance matrix
of the scores, e.g., their outer product or the observed information matrix. The k dimensions
of the process arise from the fact that a separate cumulative score is maintained for each of
the k model parameters. As the equation shows, the cumulative score process adds subsets
of casewise score contributions across individuals along the ordering w.r.t. the variable V of
interest. At t = 1/n, only the first individual’s contribution enters into the summation; at
t = 2/n, the first two individuals’ contributions enter into the summation, etc., until t = n/n
where all contributions enter into the summation. Thus, due to (5), the cumulative score pro-
cess always equals zero at t = 0 and returns to zero at t = 1. Furthermore, multiplication by
Î−1/2 “decorrelates” the k cumulative score processes, such that each univariate process (i.e.,
each process for a single model parameter) is unrelated to (and asymptotically independent
of) all other processes. Therefore, this cumulative process B(t; θ̂) accomplishes the challenges
discussed at the beginning of this section: it makes use of the ordering of the observations by
taking cumulative sums, and it decorrelates the contributions of the k different parameters.

Inference can then be based on an extension of the usual central limit theorem. Under
the assumption of independence of individuals (implicit already in Equation 1) and under
the usual ML regularity conditions (assuring asymptotic normality of θ̂), Hjort and Koning
(2002) show that

B(·; θ̂)
d→ B0(·), (14)
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where
d→ denotes convergence in distribution andB0(·) is a k-dimensional Brownian bridge. In

words, there are k cumulative score processes, one for each model parameter. This collection
of processes follows a multidimensional Brownian bridge as score contributions accumulate in
the summation from individual 1 (with lowest value of V ) to individual n (with highest value
of V ).

The empirical cumulative score process from (13) can also be viewed as an n× k matrix with
elements B(i/n; θ̂)j that we also denote B(θ̂)ij below for brevity. That is, assuming that

individuals are ordered by V , the first row of B(θ̂) corresponds to the first individual’s decor-
related scores. The second row of B(θ̂) corresponds to the sum of the first two individuals’
scores, etc., until the last row of B(θ̂) corresponds to the sum of all individuals’ scores (which
will be a row of zeroes). Under this setup, each column of B(θ̂) converges to a univariate
Brownian bridge and pertains to a single factor analysis parameter. To carry out a test of
H0, the process/matrix needs to be aggregated to a scalar test statistic by collapsing across
rows (individuals) and columns (parameters) of the matrix. The asymptotic distribution of
this test statistic is then easily obtained by applying the same aggregation to the asymptotic
Brownian bridge (Hjort and Koning 2002; Zeileis and Hornik 2007), so that corresponding
p-values can be derived.

As argued above, no single aggregation function will have high power for all conceivable
patterns of measurement invariance θ(V ), while any (reasonable) aggregation function will
have non-trivial power under H1. Thus, various aggregation strategies should be employed
depending on which pattern θ(V ) is most plausible (because the exact pattern is typically
unknown). A particularly agnostic aggregation strategy is to reject H0 if any component of
the cumulative score process B(t; θ̂) strays “too far” from zero at any time, i.e., if the double
maximum statistic

DM = max
i=1,...,n

max
j=1,...,k

|B(θ̂)ij |, (15)

becomes large. In determining where in B(θ̂) this maximum occurred, we are able to deter-
mine threshold(s) of parameter change (over the individuals i = 1, . . . , n) and the parameter(s)
affected by it (over j = 1, . . . , k). This test is especially useful for visualization, as the cumu-
lative score process for each individual parameter can be displayed along with the appropriate
critical value. For an example of this see Figure 4 (in Section 5) which shows the cumulative
score processes for three factor loadings along with the critical values at 5% level.

However, taking maximums “wastes” power if many of the k parameters change at the same
threshold, or if the score process takes large values for many of the n individuals (and not just
a single threshold). In such cases, sums instead of maxima are more suitable for collapsing
across parameters and/or individuals, because they combine the deviations instead of picking
out only the single largest deviation. Thus, if the parameter instability θ(V ) affects many
parameters and leads to many subgroups, sums of (absolute or squared) values should be
used for collapsing both across parameters and individuals. On the other hand, if there is just
a single threshold that affects multiple parameters, then the natural aggregation is by sums
over parameters and then by the maximum over individuals. More precisely, the former idea
leads to a Cramér-von Mises type statistic and the latter to the maximum LM statistic from

Copyright© 2012 The Psychometric Society



8 Tests of Measurement Invariance without Subgroups

the previous section:

CvM = n−1
∑

i=1,...,n

∑
j=1,...,k

B(θ̂)2
ij , (16)

max LM = max
i=i,...,ı

{
i

n

(
1− i

n

)}−1 ∑
j=1,...,k

B(θ̂)2
ij , (17)

where the max LM statistic is additionally scaled by the asymptotic variance t(1 − t) of
the process B(t, θ̂). It is equivalent to the maxν LM (ν) statistic from the previous section,
provided that the boundaries for the subgroups sizes i/ν and ı/ν are chosen analogously.
Further aggregation functions have been suggested in the structural change literature (see
e.g., Zeileis 2005; Zeileis, Shah, and Patnaik 2010) but the three tests above are most likely
to be useful in psychometric settings.

Finally, all tests can be easily modified to address the situation of so-called “partial struc-
tural changes” (Andrews 1993). This refers to the case of some parameters being known
to be stable, i.e., restricted to be constant across potential subgroups. Tests for potential
changes/instabilities only in the k∗ remaining parameters (from overall k parameters) are
easily obtained by omitting those k − k∗ columns from B(θ̂)ij that are restricted/stable, re-
taining only those k∗ columns that are potentially unstable. This may be of special interest
to those wishing to test specific types of measurement invariance, where subsets of model
parameters are assumed to be stable.

4.2. Critical values and p-values

As pointed out above, specification of the asymptotic distribution under H0 for the test
statistics from the previous section is straightforward: it is simply the aggregation of the
asymptotic process B0(t) (Hjort and Koning 2002; Zeileis and Hornik 2007). Thus, DM
from (15) converges to supt ||B0(t)||∞, where || · ||∞ denotes the maximum norm. Similarly,
CvM from (16) converges to

∫ 1
0 ||B

0(t)||22dt, where || · ||2 denotes the Euclidean norm. Fi-
nally, max LM from (17) – and analogously the maximum Wald and LR tests – converges
to supt(t(1 − t))−1||B0(t)||22 (which can also be interpreted as the maximum of a tied-down
Bessel process, as pointed out previously).

While it is easy to formulate these asymptotic distributions theoretically, it is not always easy
to find closed-form solutions for computing critical values and p-values from them. In some
cases – in particular for the double maximum test – such a closed-form solution is available
from analytic results for Gaussian processes (see e.g., Shorack and Wellner 1986). For all
other cases, tables of critical values can be obtained from direct simulation (Zeileis 2006)
or in combination with more refined techniques such as response surface regression (Hansen
1997).

The analytic solution for the asymptotic p-value of a DM statistic d is

P (DM > d | H0)
asy
= 1−

{
1 + 2

∞∑
h=1

(−1)h exp(−2h2d2)

}k
. (18)

This combines the crossing probability of a univariate Brownian bridge (see e.g., Shorack and
Wellner 1986; Ploberger and Krämer 1992) with a straightforward Bonferroni correction to
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obtain the k-dimensional case. The terms in the summation quickly go to zero as h goes to
infinity, so that only some large finite number of terms (say, 100) need to be evaluated in
practice.

For the Cramér-von Mises test statistic CvM , Nyblom (1989) and Hansen (1992) provide
small tables of critical values which have been extended in the software provided by Zeileis
(2006). Critical values for the distribution of the maximum LR/Wald/LM tests are provided
by Hansen (1997). Note that the distribution depends on the minimal and maximal thresholds
employed in the test.

4.3. Local alternatives

Using results from Hjort and Koning (2002) and Zeileis and Hornik (2007), we can also capture
the behavior of the process B(t, θ̂) under specific alternatives of parameter instability. In
particular, we can assume that the pattern of deviation θ(vi) can be described as a constant
parameter plus some non-constant deviation g(i/n):

θ(vi) = θ0 + n−1/2g(i/n). (19)

In this case, the scores s(θ0;xi) from Equation (6) do not have zero expectation but rather

E[s(θ0;xi)] = 0 + n−1/2C(θ0)g(i/n). (20)

The covariance matrix C(θ) from the expected outer product of gradients is then

C(θ0) = E[s(θ0;xi)s(θ;xi)
′] (21)

which, at θ0, coincides with the expected information matrix.

Under the local alternative described above, Hjort and Koning (2002) show that the process
B(t, θ̂) behaves asymptotically like

B0(t) + Î−1/2C(θ̂)G0(t), (22)

i.e., a zero-mean Brownian bridge plus a term with non-zero mean driven by G0(t) = G(t)−
tG(1), whereG(t) =

∫ t
0 g(y)dy. Hence, unless the local alternative has g(t) ≡ 0, the empirical

process B(t, θ̂) will have a non-zero mean. Hence, the corresponding tests will have non-
trivial power (asymptotically). We use these results in the “Simulation” section to describe
the expected behavior of the Brownian bridge.

4.4. Locating the invariance

If the employed parameter instability test detects a measurement invariance violation, the
researcher is typically interested in identification of the parameter(s) affected by it and/or
the associated threshold(s). As argued above, the double maximum test is particularly ap-
pealing for this because the k-dimensional empirical cumulative score process can be graphed
along with boundaries for the associated critical values (see Figure 4). Boundary crossing
then implies a violation of measurement invariance, and the location of the most extreme
deviation(s) in the process convey threshold(s) in the underlying ordering V .

For the maximum LR/Wald/LM tests, it is natural to graph the sequence of LR/Wald/LM
statistics along V , with a boundary corresponding to the critical value (see Figure 3 and the
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10 Tests of Measurement Invariance without Subgroups

third row of Figure 2). Again, a boundary crossing signals a significant violation, and the
peak(s) in the sequence of statistics conveys threshold(s). Note that, due to summing over
all parameters, no specific parameter can be identified that is responsible for the violation.
Similarly, neither component(s) nor threshold(s) can be formally identified for the Cramér-
von Mises test. However, graphing of (transformations of) the cumulative score process may
still be valuable for gaining some insights (see, e.g., the second row of Figure 2).

If a measurement invariance violation is detected by any of the tests, one may want to in-
corporate it into the model to account for it. The procedure for doing this typically depends
on the type of violation θ(V ), and the visualizations discussed above often prove helpful in
determining a suitable parameterization. In particular, one approach that is often employed
in practice involves adoption of a model with one (or more) threshold(s) in all parameters
(i.e., (10) for the single threshold case). In the multiple threshold case, their location can be
determined by maximizing the corresponding segmented log-likelihood over all possible com-
binations of thresholds (Zeileis et al. 2010 adapt a dynamic programming algorithm to this
task). For the single threshold case, this reduces to maximizing the segmented log-likelihood

`(θ̂(A);x1, . . . , xm) + `(θ̂(B);xm+1, . . . , xn) (23)

over all values of m corresponding to possible thresholds ν (such that vm ≤ ν and vm+1 > ν).
As pointed out previously, this is equivalent to maximizing the LR statistic from (11) (with
some minimal subgroup size typically imposed).

Formally speaking, the maximization of (23) – or equivalently (11) – yields an estimate ν̂ of
the threshold in H∗1 . If H∗1 is in fact the true model, the peaks in the Wald/LM sequences and
the cumulative score process, respectively, will occur at the same threshold asymptotically.
However, in empirical samples, their location may differ (although often not by much).

These attributes give the proposed tests important advantages over existing tests, as existing
measurement invariance methods cannot: (1) test measurement invariance for unknown ν,
or (2) isolate specific parameters violating measurement invariance. In particular, Millsap
(2005) cites “locating the invariance violation” as a major outstanding problem in the field.
In the following sections, we demonstrate the proposed tests’ uses and properties via example
and simulation. We first describe an example and simulation with artificial data, and we
then provide an illustrative example with real data. Finally, we conclude the paper with a
discussion of test extensions and general summary.

5. Example with artificial data

Consider a hypothetical battery of six scales administered to students aged 13 to 18 years.
Three of the scales are intended to measure verbal ability, and three of the scales are intended
to measure mathematical ability. We may observe a maturation effect in the resulting data,
whereby the factor loadings for older students are larger than those for younger students.
The researcher’s goal is to study whether the scales are measurement invariant with respect
to age, which is taken to be the auxiliary variable V .

5.1. Method

To formally represent these ideas, we specify that the data arise from a factor analysis model
with two factors. The base model, displayed in Figure 1, specifies that measurement invari-
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Figure 1: Path diagram representing the base factor analysis model used for the artificial
example and simulations. To induce measurement invariance violations, a seventh observed
variable (student age) determines the values of the verbal factor loadings (λ11, λ21, λ31).

ance holds, with three scales arising from the verbal factor and three scales arising from the
mathematical factor. For the measurement invariance violation, we specify that V (student
age) impacts the values of verbal factor loadings in the model: if students are 16 through 18
years of age, then the factor loadings corresponding to the first factor (λ11, λ21, λ31) reflect
those in Figure 1. If students are 13 through 15 years of age, however, then the factor load-
ings corresponding to the first factor are three standard errors (= asymptotic standard errors
divided by

√
n) lower than those in Figure 1. This violation states that the verbal ability

scales lack measurement invariance with respect to age. For simplicity, we assume that the
mathematical scales are invariant.

A sample of size 200 was generated from the model described above, and a test was conducted
to examine measurement invariance of the three verbal scales. To carry out the test, a
confirmatory factor analysis model (with the paths displayed in Figure 1) was fit to the data.
Casewise derivatives and the observed information matrix were then obtained, and they were
used to calculate the cumulative score process via (13). Finally, we obtained various test
statistics and p-values from the cumulative score process. These include the double-max
statistic from (15), the Cramér-von Mises statistic from (16), and the max LM statistic from
(17).

As mentioned in Section 4.1, the tests give us the flexibility to study hypotheses of partial
change. That is, we have the ability to test various subsets of parameters. For example, if we
suspected that the verbal factor loadings lacked measurement invariance, we could test

H0 : (λi,11 λi,21 λi,31) = (λ0,11 λ0,21 λ0,31), i = 1, . . . , n, (24)
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12 Tests of Measurement Invariance without Subgroups

where (λi,11 λi,21 λi,31) represent the verbal factor loading parameters for student i. Thus,
here only k∗ = 3 from the overall k = 19 model parameters are assessed (where the 19
parameters include six factor loadings, six unique variances, six intercepts, and one factor
correlation). Alternatively, we can consider all k∗ = k = 19 parameters, leading to a test
of (8). We consider both of these tests below.

5.2. Results

Here, we first describe overall results and subsequently the identification of ν and isolation of
model parameters violating measurement invariance.

Overall results

Test statistics for the hypotheses (24) and (8) are displayed in Figure 2. Each panel displays a
test statistic’s fluctuation across values of student age, with the first column containing tests
of (24) and the second column containing tests of (8). The solid horizontal lines represent
critical values for α = 0.05, and the Cramér-von Mises panels also contain a dashed line
depicting the value of the test statistic CvM (test statistics for the others are simply the
maxima of the processes). In other words, for panels in the first and third rows, (24) is
rejected if the process crosses the horizontal line. For panels in the second row, (8) is rejected
if the dashed horizontal line is higher than the solid horizontal line.

The figures convey information about several properties of the tests. First, all three tests
are more powerful (and in this example significant) if we test only those parameters that
are subject to instabilities. Conversely, if all 19 model parameters are assessed (including
those that are in fact invariant), the power is decreased. This decrease, however, is less
pronounced for the double-max test as it is more sensitive to fluctuations among a small
subset of parameters (3 out of 19 here).

Figure 3 compares the max LM statistic (solid line) to the max LR statistic (dashed line) from
(12), as applied to testing (8). (Note also that the visualization of the max LM in Figure 3
is identical to the bottom right panel of Figure 2.) The critical values for these two tests are
identical, hence the single horizontal line. The figure shows that the two statistics are very
similar to one another, with both maxima at the dotted vertical line. This is generally to be
expected, because the two tests are asymptotically equivalent. The max LR statistic cannot
be obtained from the empirical fluctuation process, however, so the factor analysis model
must be refitted before and after each of the possible threshold values ν (i.e., here 320 model
fits for 160 thresholds).

Interpretation of test results

As described above, the tests of (24) imply that the verbal scales lack measurement invariance.
We can also use the tests to: (1) locate the threshold ν, and (2) isolate specific parameters
that violate measurement invariance. For example, as described previously, information about
the location of ν can be obtained by examining the peaks in Figure 2. For all six panels in
the figure, the peaks occur near an age of 16.1. This agrees well with the true threshold of
16.0.

We previously noted that the double-max test is advantageous because it yields information
about individual parameters violating measurement invariance. That is, it allows us to ex-
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Figure 2: Three test statistics of (24) (with k∗ = 3) and (8) (with k∗ = 19), based on the
example involving measurement invariance with respect to student age. Solid gray horizontal
lines represent critical values at α = 0.05, and the dotted, horizontal lines (second row)
represent values of the Cramér-von Mises test statistic.
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Figure 3: A comparison of the max LM (solid line) and max LR (dashed line) test statistics
for (8) (i.e., k∗ = 19). The gray horizontal line corresponds to the critical value at α = 0.05
while the dotted vertical line highlights the threshold at which both test statistics assume
their maximum.

amine whether or not individual parameters’ cumulative score processes lead one to reject
the hypothesis of measurement invariance. Figure 4 shows the individual cumulative score
processes for the three verbal factor loadings and the top left panel of Figure 2 shows the same
processes aggregated over the three parameters. In both graphics, horizontal lines reflect the
same critical value at α = 0.05. The figure shows that the third parameter (i.e., λ31) crosses
the dashed line, so we would conclude a measurement invariance violation with respect to age
for the third verbal test. The fact that the cumulative score process for the first and second
loadings did not achieve the critical value represents a type II error, which implicitly brings
into question the tests’ power. We generally address the issue of power in the simulations
below.

6. Simulation

In this section, we conduct a simulation designed to examine the tests’ power and type I error
rates in situations where measurement invariance violations are known to exist. Specifically,
we generated data from the factor analysis model used in the previous section, with mea-
surement invariance violations in the “verbal” factor loadings with respect to a continuous
auxiliary variable.

We examine the power and error rates of the three tests used in the previous section: the
double-max test, the Cramér-von Mises test, and the max LM test. We also compare tests
involving only the k∗ = 3 factor loadings lacking invariance with tests of all k∗ = k = 19 model
parameters. It is likely that power is higher when testing only the affected model parameters,
but the affected parameters are usually unknown in practice. Thus, the k∗ = 3 and k∗ = 19
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Figure 4: Cumulative score processes for each verbal factor loading. The solid gray horizontal
lines correspond to the critical value of the double-max test at α = 0.05.

conditions reflect boundary cases, with the performance of tests involving other subsets of
model parameters (e.g., all factor loadings) falling in between the boundaries. Finally, we also
examine the tests’ power across various magnitudes of measurement invariance violations.

6.1. Method

Data were generated from the same model and with the same type of measurement invariance
violation as was described in Section 5. Sample size and magnitude of measurement invari-
ance violation were manipulated to examine power: we examined power to detect invariance
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Figure 5: Simulated power curves for the double-max test (solid), Cramér-von Mises test
(dashed), and max LM test (dotted) across four sample sizes n, two subsets of tested param-
eters k∗, and measurement invariance violations of 0–4 standard errors (scaled by

√
n). See

Table 1 for the underlying numeric values (using a subset of nine violation magnitudes).

violations across four sample sizes (n = 50, 100, 200, 500) and 17 magnitudes of violations.
These violations involved the younger students’ values of {λ11, λ21, λ31} deviating from the
older students’ values by d times the parameters’ asymptotic standard errors (scaled by

√
n),

with d = 0, 0.25, 0.5, . . . , 4. The d = 0 standard error condition was used to study type I error
rate.

For each combination of sample size (n) × violation magnitude (d) × number of parameters
being tested (k∗), 5,000 datasets were generated and tested. In each dataset, half the indi-
viduals had “low V ” (e.g., 13–15 years of age) and half had “high V ” (e.g., 16–18 years of
age).

Using results discussed previously in Section 4.3, we can derive the expected behavior of the
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Violation Magnitude (SE)
n k∗ Statistic 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

50 3 DM 2.1 2.9 5.8 10.0 15.5 21.9 24.6 21.7 16.0
CvM 3.8 5.4 11.4 21.5 33.4 47.1 49.3 43.1 30.3
max LM 6.1 6.6 10.3 16.7 25.4 36.1 37.6 32.4 23.7

19 DM 1.2 1.4 2.0 3.1 4.4 6.1 6.7 6.5 6.8
CvM 3.4 3.7 5.5 8.1 10.9 15.6 18.6 18.9 17.9
max LM 7.7 8.1 8.7 10.9 13.0 16.0 16.7 17.1 15.9

100 3 DM 2.8 4.0 7.8 15.2 26.2 39.7 55.3 66.1 70.1
CvM 4.5 6.7 12.1 26.1 44.1 63.0 79.1 87.2 90.1
max LM 5.2 6.8 10.8 19.8 34.0 51.8 69.9 80.9 85.7

19 DM 2.4 2.4 3.4 5.6 8.8 14.6 22.1 29.9 34.3
CvM 4.6 4.7 6.3 9.8 16.1 24.1 35.1 46.8 53.3
max LM 6.9 7.5 8.1 10.5 14.9 20.0 28.1 37.8 43.1

200 3 DM 3.5 4.4 8.5 17.5 30.7 50.3 68.4 82.3 91.9
CvM 4.8 6.6 12.9 26.6 46.1 69.1 86.2 94.7 98.4
max LM 5.3 6.7 10.8 21.4 36.6 59.5 78.8 91.5 97.4

19 DM 3.6 3.7 4.4 7.3 11.3 21.2 35.8 51.5 67.2
CvM 4.4 4.8 7.3 11.5 18.7 30.1 46.6 62.6 76.4
max LM 6.3 6.4 7.4 10.6 15.5 23.9 37.9 53.4 69.2

500 3 DM 4.1 5.3 10.8 19.5 34.2 52.2 71.8 86.4 95.6
CvM 5.2 6.2 13.6 27.3 47.7 68.7 86.3 95.6 99.0
max LM 5.7 6.1 10.9 21.0 39.2 60.5 81.1 92.9 98.5

19 DM 4.2 4.0 5.7 8.8 14.5 25.7 42.8 62.1 78.8
CvM 4.5 5.0 7.4 12.5 20.7 33.9 50.2 68.7 82.9
max LM 5.2 6.5 7.6 9.8 16.1 26.3 42.3 60.6 78.2

Abbreviations: CvM = Cramér-von Mises test; maxLM = Maximum Lagrange multiplier test;

DM = Double-max test.

Table 1: Simulated power for three test statistics across four sample sizes n, nine magnitudes
of measurement invariance violations, and two subsets of tested parameters k∗. See Figure 5
for a visualization (using all 17 violation magnitudes).

univariate Brownian bridges for the parameters {λ11, λ21, λ31}. For these parameters, we
use a simple step function g(t) = I(t > 0.5) multiplied by the violation magnitude. Thus,
G(t) = I(t > 0.5)× (t− 0.5) and G0(t) = {I(t > 0.5)− 0.5} × t− I(t > 0.5)× 0.5, both again
multiplied by the violation magnitude. This implies that the mean under the alternative is
driven by a function that is triangle-shaped, with a peak at the changepoint t = 0.5 for the
parameters affected by the change (and equal to zero for all remaining parameters).

6.2. Results

Full simulation results are presented in Figure 5, and the underlying numeric values for a
subset of the results are additionally displayed in Table 1. In describing the results, we
largely refer to the figure.

Figure 5 displays power curves as a function of violation magnitude, with panels for each
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combination of sample size (n) × number of parameters being tested (k∗). Separate curves
are drawn for the double-max test (solid lines), the Cramér-von Mises test (dashed lines),
and the max LM test (dotted lines). One can generally observe that simultaneous tests of
all 19 parameters result in decreased power, with the tests performing more similarly at the
larger sample sizes. The tests distinguish themselves from one another when only the three
factor loadings are tested, with the Cramér-von Mises test having the most power, followed by
max LM , followed by the double-max test. This advantage decreases at larger sample sizes,
and we also surmise that it decreases as extra parameters satisfying measurement invariance
are included in the tests. At n = 50, generally regarded as a small sample size for factor
analysis, the power functions break down and are not monotonic with respect to violation
magnitude.

Table 1 presents a subset of the results displayed in Figure 5, but it is easier to see exact
power magnitudes in the table. The table shows that the power advantage of the Cramér-von
Mises test can be as large as 0.1, most notably when three parameters are being tested. It also
shows that the Cramér-von Mises test generally is very close to its nominal type I error rate,
with the double-max test being somewhat conservative and the max LM test being slightly
liberal.

In summary, we found that the proposed tests have adequate power to detect measurement
invariance violations in applied contexts. The Cramér-von Mises statistic exhibited the best
performance for the data generated here, though more simulations are warranted to exam-
ine the generality of this finding in other models or other parameter constellations. In the
discussion, we describe extensions of the tests in factor analysis and beyond.

7. Application: Stereotype threat

Wicherts, Dolan, and Hessen (2005), henceforth WDH, utilized confirmatory factor models to
study measurement invariance in a series of general intelligence scales. They were interested in
the notion of stereotype threat, whereby stereotypes concerning a subgroup’s ability adversely
impact the subgroup’s performance on tests of that ability. The authors specifically focused
on stereotypes concerning ethnic minorities’ performance on tests of general intelligence. In
this section, we use the proposed tests to supplement the authors’ original analyses.

7.1. Background

To study stereotype threat in a measurement invariance framework, Study 1 of Wicherts et al.
(2005) involved 295 high school students completing three intelligence tests in two between-
subjects conditions. Conditions were defined by whether or not students received primes about
ethnic stereotypes prior to testing. To study the data, WDH employed a four-group, one-
factor model with the three intelligence tests as manifest variables. The groups were defined
by ethnicity (majority/minority) and by the experimental manipulation (received/did not
receive stereotype prime). Results indicated that the intelligence tests lacked measurement
invariance, with the minority group receiving stereotype primes being particularly different
from the other three groups on the most difficult intelligence test. In the example below, we
employ one of the models used by WDH. Our V is participants’ aptitudes, as measured by
their grade point averages (GPAs) which were unused in the original analyses.
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Figure 6: Path diagram representing the submodel for the “minority, stereotype prime” group
in model 5b of WDH. Dashed paths and parameters in bold/italics are group specific. Other
parameters (not displayed) were restricted to be equal across all four groups, with the factor
variance only being restricted across the two minority groups.

7.2. Method

WDH tested a series of confirmatory factor models for various types of measurement invari-
ance. We focus on the model used in their Step 5b (see pp. 703–704 of their paper), which
involved across-group restrictions on the factor loadings, unique variances, intercepts, and fac-
tor variances. These parameters were typically restricted to be equal across groups, though a
subset of the parameters were allowed to be group-specific upon examination of modification
indices. The model provided a reasonable fit to the data, as judged by examination of χ2, RM-
SEA (root-mean-square error of approximation), and CFI (comparative fit index) statistics.
While the model included four groups as described above, we focus only on the submodel for
the minority group that received stereotype primes, which is pictured in Figure 6. In the fig-
ure, paths with dashed lines and parameters in bold/italics signify group-specific parameters.
These include the factor mean η, numerical factor loading λnum, numerical intercept µnum,
and numerical unique variance ψnum. Other parameters (not displayed) were restricted to be
equal across all four groups, with the exception of the factor variance. The factor variance
was restricted to be equal within both minority groups, and separately within both majority
groups.

To carry out the tests, we first fit the four-group model to the data, calculating casewise
derivatives and the observed information matrix. Second, to assess measurement invariance
within the “minority, stereotype prime” group only, the scores of the nMSP individuals from
that group are ordered and aggregated along GPA (i.e., in this application the variable V ).
The cumulative score process (13) with respect to GPA then allows us to obtain various test
statistics and p-values from this process. Test statistics include the double-max statistic from
(15), the Cramér-von Mises statistic from (16), and the max LM statistic from (17). We focus
on the double-max statistic due to its ease of interpretation and intuitive visual display.

As mentioned in Section 4.1, the tests give us the flexibility to study hypotheses of partial
change: we have the ability to test various subsets of parameters. For the WDH data, we
first test

H0 : (λi,num ηi µi,num ψi,num) = (λ0,num η0 µ0,num ψ0,num), i = 1, . . . , nMSP, (25)

where λi,num is the factor loading on the numerical scale, ηi is student i’s factor mean, µi,num

is student i’s intercept on the numerical scale, and ψi,num is student i’s unique variance on
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Figure 7: Cumulative score processes for the four group-specific parameters across GPA in
the “minority, stereotype prime” group using data from Study 1 of WDH. The solid gray
horizontal lines correspond to the critical value of the double-max test at α = 0.05.

the numerical scale. Thus, (25) states that these four group-specific model parameters are
invariant with respect to GPA.

7.3. Results

The double-max test for the hypothesis (25) is shown in Figure 7, displaying the cumulative
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score processes for each of the four group-specific parameters across GPA along with horizontal
lines representing the critical value for α = 0.05. This shows that the “minority, stereotype
prime” group lacks invariance with respect to GPA, because one of the processes crosses its
boundaries. Furthermore, as this process pertains to the variance ψnum of the numerical
scale (bottom panel) it can be concluded that the invariance violation is associated with this
parameter. Both the factor loading for the numerical scale λnum and the factor mean η also
exhibit increased fluctuation, although they are just non-significant at level α = 0.05. Only the
process associated with the intercept µnum shows moderate (and hence clearly non-significant)
fluctuation across GPA.

We can also use the test results to locate the threshold ν, which in this context can be used to
define GPA-based subgroups whose measurement parameters differ. As described previously,
information about the location of ν can be obtained by examining the peaks in Figure 7.
The main peak occurs around a GPA of 6.3 and a second one near 5.9 (6 corresponds to the
American ‘C’ range). These peaks roughly divide individuals into those receiving D’s and F’s,
those receiving solid C’s, and those receiving high C’s, B’s, and A’s.

In addition to the double-max test, the Cramér-von Mises or max LM statistics could also
be employed. They also lead to clearly significant violations of measurement invariance (p <
0.005 for both tests) and the corresponding visualizations bring out similar peaks as the
double-max test in Figure 7 (and hence are omitted here).

7.4. Summary

Application of the proposed measurement invariance tests to the Wicherts et al. (2005) data
allowed us to study the extent to which model parameters are invariant with respect to GPA
in a straightforward manner. The tests focused on a set of group-specific parameters within
a four-group confirmatory factor model, and they could be carried out using the results from
a single estimated model. The latter fact is important, as other approaches to the problem
described here may require multiple models to be estimated (e.g., for LR tests) or adversely
impact model fit and degrees of freedom (e.g., if GPA is inserted directly into the model).
Further, through examination of both test statistics and cumulative score processes, the tests
were interpretable from both a theoretical and applied standpoint.

We included a factor mean in the application in order to demonstrate the tests’ generality.
To deal with measurement invariance specifically, however, we may elect to focus on only the
measurement parameters within the model (omitting the factor mean). That is, it would not
have been notable or surprising if we had observed that the factor mean lacked measurement
invariance with respect to GPA: this result would have implied that individuals’ latent intel-
ligence fluctuates with GPA. We speculate that such a result would often be obtained when
V is related to the latent variable of interest.

8. General discussion

In this paper, we have applied a family of stochastic process-based statistical tests to the study
of measurement invariance in psychometrics. The tests have reasonable power, can isolate
subgroups of individuals violating measurement invariance based on a continuous auxiliary
variable, and can isolate specific model parameters affected by the violation. In this section,
we consider the tests’ use in practice and their extension to more complex scenarios.
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8.1. Use in practice

The proposed tests give researchers a new set of tools for studying measurement invari-
ance, allowing them the flexibility to: (1) simultaneously test all model parameters across
all individuals, yielding results relevant to many types of measurement invariance (see, e.g.,
Meredith 1993), (2) test a subset of model parameters, either across all individuals or within
a multiple-group model, and (3) use the tests as a type of modification index following signifi-
cant LR tests. Traditional steps to studying measurement invariance have involved sequential
LR tests for various types of invariance using multiple-group models. As shown in Section 7,
it can be beneficial to employ the traditional steps in tandem with the proposed tests. Fur-
thermore, when groups are not defined in advance (e.g., continuous V ), the traditional steps
fail unless further assumptions about the nature of the groups are made.

It is worth mentioning that the proposed tests are not invariant with respect to the choice of
identification constraints. They share this property with both LM and Wald tests (while LR
tests are invariant to the choice of identification constraints). However, asymptotically the
influence of the parametrization disappears and also in finite samples it typically does not
change the results significantly. For example, in the stereotype threat application, we assessed
the p-values of all three tests under the constraint that the abstract reasoning loading is fixed
to 1 (see Figure 6) and compared them to the p-values under the constraint that the verbal
loading is fixed to 1. All p-values remained clearly significant and the changes were all smaller
than 0.00002.

In addition to providing general information about whether or not measurement invariance
holds, the proposed tests allow researchers to interpret the nature of the invariance violation.
This is made possible, e.g., through the tests’ abilities to locate ν, the threshold dividing
individuals into subgroups that violate measurement invariance (see Equation (10)). It is also
possible to formally estimate one or more ν thresholds by adopting a (partially) segmented
model (see e.g., Zeileis et al. 2010).

8.2. Comparison to other methods

The step functions from (10) were employed in the current paper to highlight connections
with nested model comparison, but the proposed tests typically have non-trivial power for
all (non-constant) deviation patterns θ(vi) (considered in Equation (9)). Thus, the tests will
also have power for linear deviations from parameter constancy, although other techniques
may perform better in this particular case. Examples include the class of moderated factor
models (Bauer and Hussong 2009; Molenaar, Dolan, Wicherts, and Van der Mass 2010; Neale,
Aggen, Maes, Kubarych, and Schmitt 2006; Purcell 2002), whereby continuous moderators
are allowed to linearly impact model parameters (Purcell 2002 also considers quadratic effects
of the moderators). Moreover, if the change in parameters is continuous but not exactly linear
– e.g., a sigmoidal shift from one set of parameters to another one – then the simple single
shift model in (10) may be a useful first approximation and may have better power than linear
techniques (depending on how clearly the two regimes are separated).

The proposed tests are also similar to factor mixture models (e.g., Dolan and Van der Maas
1998; Lubke and Muthén 2005) in that they can handle unknown subgroups violating mea-
surement invariance. Covariates can also be used to predict the unknown subgroups under
both approaches. For example, for the data used in our simulations, one could employ a factor
mixture model with two latent classes where the class probabilities depend on student’s age
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through a logit link. If the assumptions of such a mixture hold, i.e., that each observation is
a weighted combination from a (known) number of classes, the fitted model has more power
uncovering this structure and makes it easy to interpret. However, the proposed tests are
easier to use with fewer assumptions about the type of deviations (as long as they occur along
the selected variable V ).

More generally, all the approaches described above can be distinguished from the proposed
tests in that they require estimation of a new model of increased complexity (due to the
moderator/covariate). The proposed tests, on the other hand, are of the “posthoc” variety,
relying only on results calculated during the original model estimation. While no method
clearly dominates across all situations, use of the proposed tests can at least reduce some of
the technical issues associated with estimating and interpreting models of greater complexity.
This alone is not a good reason to use the tests, but it is a consideration that is often
meaningful in practice.

8.3. Categorical auxiliary variable

One issue that was largely unaddressed in this paper involved the use of categorical V to
study measurement invariance. In this case, groups are already specified in advance, and so
traditional methods for fixed subgroups (i.e., LR, Wald, and LM tests) may suffice. However,
we can also obtain an LM-type statistic from the framework developed here. Assume the ob-
servations are divided into C categories I1, I2, . . . , IC . Then, the increment of the cumulative
score process ∆IcB(θ̂) within each category is just the sum of the corresponding scores. In
somewhat sloppy notation:

∆IcB(θ̂) = Î−1/2n−1/2
∑
i∈Ic

s(θ̂;xi). (26)

This results in a C × k matrix, with one entry for each category-by-model parameter combi-
nation. We can test a specific model parameter for invariance by focusing on the associated
column of the C×k matrix and employing a weighted squared sum of the entries in the column
to obtain a χ2-distributed statistic with (C− 1) degrees of freedom (Hjort and Koning 2002).
Alternatively, to simultaneously test multiple parameters, we can sum the χ2 statistics and
degrees of freedom for the individual parameters. In addition to categorical V , this frame-
work may be useful for ordinal V (or continuous V with many ties). In this situation, one
could also adapt the statistics (15), (16), and (17) computed from the same cumulative score
process as usual. The only required modification is that the statistics should not depend on
the process’s values “within” a category (or group of ties). This is easily achieved by taking
the maximum (or sum) not over all observations i = 1, . . . , n, but over only those i at the
“end” of a category.

The number of potential thresholds may be very low in these situations, which impacts the
extent to which asymptotic results hold for the main test statistics described in this paper.

8.4. Extensions

The family of tests described in this paper can be extended in various ways. First, it is
possible to construct an algorithm that recursively defines groups of individuals violating
measurement invariance with respect to multiple auxiliary variables. Such an algorithm is
related to classification and regression trees (Breiman, Friedman, Olshen, and Stone 1984;
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Merkle and Shaffer 2011; Strobl, Malley, and Tutz 2009), with related algorithms being de-
veloped for general parametric models (Zeileis, Hothorn, and Hornik 2008) and Rasch models
in particular (Strobl, Kopf, and Zeileis 2010).

Relatedly, Sánchez (2009) describes a general method for partitioning/segmenting structural
equation models within a partial least squares framework. This method involves direct maxi-
mization of the likelihood ratio (i.e., fitting the model for various subgroups defined by V and
choosing the subgroups with the largest likelihood ratio). Thus, unlike the tests described in
this paper, this approach does not provide a formal significance test with a controlled level of
type I errors.

The proposed tests also readily extend to other psychometric models. For example, the tests
can be used to generally study the stability of structural equation model parameters across
observations. This includes the study of measurement invariance in second-order growth
models and related models for longitudinal data (e.g., Ferrer, Balluerka, and Widaman 2008;
McArdle 2009). The issue of measurement invariance is important in these models in order
to establish that a “true” change has occurred in the individuals to which the model has been
fitted. The tests described here can be used to help establish measurement invariance with
respect to both continuous and categorical auxiliary variables, using only output from the
estimated model of interest.

Finally, the tests can be used for the study of differential item functioning (DIF) in item
response models (e.g., Strobl et al. 2010, who focused on Rasch models). Traditional DIF
methods are similar to those for factor analysis in that subgroups must be specified in advance.
The tests proposed here can detect subgroups automatically, however, offering a unified way
of studying both measurement invariance in factor analysis and differential item functioning
in item response. While factor-analytic measurement invariance methods and DIF methods
have developed largely independently of one another, the methods can certainly be treated
from a unified perspective (e.g., McDonald 1999; Millsap 2011; Stark, Chernyshenko, and
Drasgow 2006). The tests proposed here were designed with this perspective in mind.

8.5. Summary

We outline a family of stochastic process-based parameter instability tests from theoretical
statistics and apply them to the issue of measurement invariance in psychometrics. The paper
includes theoretical development, an applied example, and study of the tests’ performance
under controlled conditions. The tests are found to have good properties via simulation,
making them useful for many psychometric applications. More generally, the tests help solve
standing problems in measurement invariance research and provide many avenues for future
research. This can happen both through extensions of the tests within a factor-analytic
context and through application of the tests to new models.

Computational details

All results were obtained using the R system for statistical computing (R Development
Core Team 2012), version 2.15.0, employing the add-on packages lavaan 0.4-14 (Rosseel
2012) and OpenMx 1.1.2-1818 (Boker, Neale, Maes, Wilde, Spiegel, Brick, Spies, Estabrook,
Kenny, Bates, Mehta, and Fox 2011) for fitting of the factor analysis models and struc-
change 1.4-7 (Zeileis, Leisch, Hornik, and Kleiber 2002; Zeileis 2006) for evaluating the
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parameter instability tests. R and the packages lavaan and strucchange are freely avail-
able under the General Public License 2 from the Comprehensive R Archive Network at
http://CRAN.R-project.org/ while OpenMx is available under the Apache License 2.0 from
http://OpenMx.psyc.virginia.edu/. R code for replication of our results is available at
http://semtools.R-Forge.R-project.org/.
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