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Abstract

Researchers are often interested in testing for measurement invariance with respect to
an ordinal auxiliary variable such as age group, income class, or school grade. In a factor-
analytic context, these tests are traditionally carried out via a likelihood ratio test statistic
comparing a model where parameters differ across groups to a model where parameters are
equal across groups. This test neglects the fact that the auxiliary variable is ordinal, and
it is also known to be overly sensitive at large sample sizes. In this paper, we propose test
statistics that explicitly account for the ordinality of the auxiliary variable, resulting in
higher power against “monotonic” violations of measurement invariance and lower power
against “non-monotonic” ones. The statistics are derived from a family of tests based on
stochastic processes that have recently received attention in the psychometric literature.
The statistics are illustrated via an application involving real data, and their performance
is studied via simulation.

Keywords: measurement invariance, ordinal variable, parameter stability, factor analysis,
structural equation models.

The study of measurement invariance and differential item functioning (DIF) has received
considerable attention in the psychometric literature (see, e.g., Millsap 2011 for a thorough
review). A set of psychometric scales X is defined to be measurement invariant with respect
to an auxiliary variable V' if (Mellenbergh 1989)

f(aq\ti,vi,...) = f(a%]ti,...), (1)

where T' is the latent variable that the scales measure, f is the model’s distributional form, the
1 subscript refers to individual cases, capital letters signify random variables, and lowercase
letters signify realizations of the variables. If the above equation does not hold, then a
measurement invariance violation is said to exist. We focus here on situations where f()
is the probability density function of X, and the measurement invariance violation occurs
because the model parameters are unequal across individuals (and related to V).

As a concrete example of the study of measurement invariance, consider a situation where X
includes “high stakes” tests of ability and V' is ethnicity. One’s ethnicity should be unrelated
to the measurement parameters within f(), and this expectation can be studied by fitting the
model and examining whether or not measurement parameters vary across different ethnici-
ties. Statistical tools that can be used to carry out this study include likelihood ratio tests,
Lagrange multiplier tests, and Wald tests (e.g., Satorra 1989). These tools have greatly aided
in the development of improved, “fairer” psychometric tests and scales.

Along with categorical variables such as ethnicity, researchers are often interested in studying
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2 Testing for Ordinal Measurement Invariance

measurement invariance with respect to ordinal V. Such variables can arise from multiple
choice surveys, where continuous variables such as age or income are binned into a small num-
ber of categories. Alternatively, the variables may arise from gross, qualitative assessments
of a particular measure of interest, where individuals may be categorized as having a “low,”
“medium,” or “high” level of the variable of interest. While these variables are relatively easy
to find in the literature, there exist very few psychometric methods that specifically account
for the fact that V is ordinal. More often, V is treated as categorical so that the traditional
tests can be applied. Additionally, if there are many levels, then V' may also be treated as
continuous. The goals of this paper are to propose two test statistics that explicitly treat V'
as ordinal and to show that the statistics possess good properties for use in practice.

The test statistics proposed here are derived from a family of tests that were recently applied
to the study of measurement invariance in psychometric models (Merkle and Zeileis 2013;
Strobl, Kopf, and Zeileis 2013). In the following section, we provide an overview of the
family and describe the proposed statistics in detail. Subsequently, we report on the results
of two simulation studies designed to compare the proposed test statistics to existing tests of
measurement invariance. Moreover, we illustrate the proposed statistics using psychometric
data on scales purported to measure youth gratitude. Finally, we provide some detail on the
tests’ use in practice.

1. Measurement invariance

In studying measurement invariance, we consider situations where a p-dimensional variable X
with observations x;,i = 1,...,n is described by a model with density f(x;;0) and associated
joint log-likelihood

UO;mr,.. @) = Y UB;x) = Y log f(xi;0), (2)
i=1 i=1

where 0 is some k-dimensional parameter vector that characterizes the distribution.

Tests of measurement invariance are essentially tests of the assumption that all individuals
arise from the same parameter vector 8. Thus, a hypothesis of measurement invariance can

be written as
Hoi eiZOO, (izl,...,n), (3)

where 0; reflects the parameter vector for individual ¢ (and modifications for subsets of 8 are
immediate). The most general alternative hypothesis related to V' may then be written as

H: 0,=0,, (4)

stating that the parameter vector differs for every unique realization of V. This alternative is
commonly employed when V' is categorical. In these situations, the likelihood ratio test (LRT)
compares a model where parameters are restricted across groups (i.e., across values of V') to a
model where parameters are free across groups; the exact parameter values within each group
are completely unrestricted. However, in situations where V' is ordinal or continuous, (4)
includes non-monotonic violations of measurement invariance. This allows for instances where,
e.g., the parameter values initially increase with V' and then decrease, or where just one or
two “middle” levels of V' differ from the rest. Researchers typically do not expect such a
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result when testing measurement invariance w.r.t. ordinal or continuous V', and researchers
often cannot interpret such violations. Monotonic parameter changes w.r.t. V are of much
more interest in these situations, with the simplest type of change given by the alternative
hypothesis

0 if v; < v,

Hy: 0i= { 0B if v ; v, (5)

where v is a threshold dividing individuals into two groups based on V. This alternative is
implicitly employed in “median split” analyses, where v is given as the sample median of V.
The threshold v is usually unknown, however, so it is generally of interest to test (5) across
all possible values of v. The tests proposed below generally allow for this.

As stated previously, we specifically focus on situations where V is ordinal and where the
measurement invariance violation is related to the ordinal variable (e.g., the violation is of
the type from (5) or the violation grows/shrinks with V). Researchers typically test for mea-
surement invariance w.r.t. ordinal V' by employing the alternative from (4), which implicitly
treats V as categorical. Thus, test statistics that explicitly treat V as ordinal should have
higher power to detect measurement invariance violations that are monotonic with V.

In the section below, we review the theory underlying tests where V' is continuous (and v is
unknown). We then propose novel tests for ordinal V.

2. Theoretical detail

This section contains background on the theory underlying the proposed statistics; for a more
detailed account, see Merkle and Zeileis (2013).

2.1. Model estimation

We focus specifically on applications where the density f(x;; ) arises from a structural equa-
tion model with assumed multivariate normality, though the proposed tests extend beyond
this family of models. Under the usual regularity conditions (e.g., Ferguson 1996), the model
parameters 6 can be estimated by maximum likelihood (ML), i.e.,

0 = argmax {(0;x1,...,Ty), (6)
]

or equivalently by solving the first order conditions

where

o [0u; ) RACEDN
8(9,337;) = (8017’69k) s (8)

is the score function of the model (the partial derivative of the casewise likelihood contribu-
tions w.r.t. the parameters 6). Evaluation of the score function at 0 fori = 1,...,n measures
the extent to which the model maximizes each individual’s likelihood: as an individual’s scores
stray further from zero, the model provides a poorer description of that individual.
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4 Testing for Ordinal Measurement Invariance

2.2. Tests for continuous V

As mentioned previously, when V' is categorical with a relatively small number of categories,
tests of measurement invariance typically proceed via multiple-group models. In this situa-
tion, we use likelihood ratio tests to compare a model whose parameters differ across groups
to a model whose parameters are constrained to be equal across groups. When V' is contin-
uous, however, multiple-group models usually cannot be used because there are no existing
groups. Instead, we can fit a model whose parameters are restricted to be equal across all
individuals and then examine how individuals’ scores s(é; x;) fluctuate with their values of V.
If measurement invariance holds with respect to V', then the scores should randomly fluctuate
around zero. Conversely, if measurement invariance does not hold, then the scores should
systematically depart from zero. These ideas are related to those underlying the Lagrange
multiplier test and are discussed in detail by Merkle and Zeileis (2013). Additionally, these
ideas are related to those underlying modification indexes (e.g., Sérbom 1989): the modifi-
cation index is equivalent to a Lagrange multiplier test, and the Lagrange multiplier test is
contained in the family described by Merkle and Zeileis (2013). Here, we focus on the tests’
properties that are relevant for extending them to the ordinal case.

To formalize the ideas discussed in the previous paragraph, we assume that the observations
are ordered w.r.t. V, with z(;) reflecting the data for the individual who has the ith-smallest
value of V. We then define the k-dimensional cumulative score process as

[nt)
B(t;0) = I"'°n712Y " s(632;) (0<t<1) (9)
=1

where |nt| is the integer part of nt and I is some consistent estimate of the covariance
matrix of the scores. Natural choices for I include the information matrix (which we use in
our applications and simulations below) or alternatively some kind of outer product of the
scores or sandwich estimator to guard the inference against potential misspecification of the
model (see Huber 1967 for the theoretical foundation and Zeileis 2006b for a computational
framework). Equation (9) simultaneously accounts for the ordering of individuals w.r.t. V'
and decorrelates the scores associated with each of the £ model parameters (which allows
us to potentially make inferences separately for each individual model parameter). Using
ideas similar to those that were outlined in the previous paragraph, the cumulative score
process associated with each model parameter should randomly fluctuate around zero under
measurement invariance. Further, there exists a functional central limit theorem that allows
us to make formal inference with this cumulative score process. Assuming that individuals are
independent and the usual ML regularity conditions hold, it is possible to show that (Hjort
and Koning 2002)

B(+0) % B°(), (10)

where % denotes convergence in distribution and BY(-) is a k-dimensional Brownian bridge.
Thus, we can construct tests of measurement invariance by comparing the behavior of the
cumulative score process to that of a Brownian bridge. This is accomplished by comparing
a scalar statistic associated with the cumulative score process to the analogous statistic of a
Brownian bridge.

In practice, we have a finite sample size n and so the empirical cumulative score can be
represented within an n x k matrix with elements B(i/n; 8); that we also denote B(8);; below
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for brevity. Each row of the matrix contains cumulative sums of the scores of individuals who
were at the i/n percentile of V' or below. Scalar test statistics are then obtained by collapsing
over rows (individuals) and columns (parameters) of the matrix, with asymptotic distributions
of the test statistics under (3) being obtained by applying the same functional to the Brownian
bridge (Hjort and Koning 2002; Zeileis and Hornik 2007).

Specific test statistics commonly obtained under this framework include the double maximum
statistic

A~

DM = max max |B(0);], (11)

i=1,..,n j=1,...,
which essentially tests whether any component of the cumulative score process strays too
far from zero and is easily visualized. This test discards information related to multiple
parameters fluctuating simultaneously, resulting in it having relatively low power for assess-
ing measurement invariance when multiple factor analysis parameters change simultaneously
(Merkle and Zeileis 2013).

Test statistics that exhibit better performance in such situations aggregate information across
parameters and possibly also across individuals. These test statistics include

CoM = n7t Z Z B(é)?j, (12)

i=1,..,nj=1,...,k

. . —1
1 1 ~
LM = —(1-= Ej B(6)? 1
max max_ {n( n)} 2 (0)3 (13)

with the former being a Cramér-von Mises statistic and the latter corresponding to a “max-
imum” Lagrange multiplier test, where the maximum is taken across all possible divisions
of individuals into two groups w.r.t. V. Additionally, the max LM statistic is scaled by the
asymptotic variance t(1 — t) of the process B(t,8). In simulations, Merkle and Zeileis (2013)
found that both tests perform well when assessing simultaneous changes in multiple factor
analysis parameters, with the CvM test being somewhat advantageous in their particular sim-
ulation setup. These simulations included situations in which subsets of model parameters
were tested; such situations are handled by focusing only on those columns of B (é)” that
correspond to the parameters of interest.

2.3. Proposed tests for ordinal V'

The theory described above was designed for situations where V' is continuous, so that there is
a unique ordering of individuals with respect to V. However, in situations where V is ordinal,
there is only a partial ordering of all individuals, i.e., observations with the same level of V'
have no unique ordering. (Note that the same also applies if V' is continuous in nature but is
only discretely measured, leading to many ties.)

The ordinal statistics proposed here are similar to those described in Equations (11) and (13)
above, except that we focus on “bins” of individuals at each level of the ordinal variable.
That is, instead of aggregating over all : = 1,...,n individuals, we first compute cumulative
proportions t; (¢ = 1,...,m—1) associated with the first m—1 levels of V. We then aggregate
the cumulative scores only over iy = [n - t;|. Test statistics related to (11) and (13) above
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6 Testing for Ordinal Measurement Invariance

can then be written as

, Ny —1/2 R
WDM, =  max {z<1—l>} max [B(6), (14)

iG{il,..‘,imfl} n n 7=1,...,

i i .
LM, = —(1-— > B(6) 1
max max {n ( n>} e (0)i;, (15)

iE{il,...,imfl}

resulting in a “weighted” double maximum statistic (weighted by the asymptotic variance
of the Brownian bridge) and an ordinal, maximum Lagrange multiplier statistic. Critical
values associated with these test statistics can be obtained by applying the same functionals
to bins of a Brownian bridge, where the bin sizes result in the cumulative proportions ¢,
(¢ =1,...,m —1) associated with the observed V.

For the WDM , statistic, the resulting asymptotic distribution is
Max;—q,  ,MaXe—1 . m—1 BO(t;)/\/te(1 — ty). Note that the effect of the outer maximum can
be easily captured by a Bonferroni correction, as the k components of the Brownian bridge
are asymptotically independent. Moreover, the inner maximum is taken over m — 1 variables
B(t;)/\/te(1 — t;) which are standard normal (due to the scaling with the standard devi-
ation of a Brownian bridge) and have a simple correlation structure: /s(1—¢t)//t(1 — s)
for s < t and both € {t1,...,t;,—1}. Therefore, critical values and p-values can be easily
computed from a multivariate normal distribution with standard normal marginals and this
particular correlation matrix; see also Hothorn and Zeileis (2008) for more details. In R, this
can be accomplished using the mvtnorm package (Genz, Bretz, Miwa, Mi, Leisch, Scheipl,
and Hothorn 2012).

For max LM, the resulting asymptotic distribution is max,—1, _m—1 ||B%(t)|13/(te(1 1)) for
which no simple closed-form solution is available. However, critical values and p-values can
be obtained through repeated simulation of Brownian bridges. This functionality is built in
to R’s strucchange package (Zeileis 2006a), which can be used to generally carry out the tests.
Note that for models with only a single parameter to be tested (i.e., k = 1) both test statistics
are equivalent because then max LM, = WDM (2)

If V is only nominal/categorical, there is not even a partial ordering, i.e., measurement in-
variance tests should neither exploit the ordering of V’s levels nor of the observations within
the level. In this situation, it is possible to obtain a test statistic by first summing scores
within each of the m levels of the auxiliary variable, then “summing the sums” to obtain a
test statistic (Hjort and Koning 2002). This test statistic can be formally written as

IMu= >, Y. (B(é)igj_B(é)zj_lj)zv (16)

0=1,...mj=1,..k

where the first subscript on the two terms in parentheses are iy and i,_1, respectively (and
where we take i9 = 0, so that the cumulative score is B(0, é) = 0). Again, tests of subsets of
model parameters can be obtained by taking the inner sum over only the k* < k parameters
of interest. This test statistic discards the ordinal nature of the auxiliary variable, essentially
employing the alternative hypothesis from (4). A similar issue is observed in testing for
measurement invariance via multiple groups models and likelihood ratio tests (or, equivalently,
via Wald tests or Lagrange multiplier tests): we can allow @ to be unique at each level of the
ordinal variable, but the ordinality of the auxiliary variable is lost. In contrast, the statistics
proposed above explicitly account for the fact that V' is ordinal.
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As demonstrated in the simulations below, the proposed ordinal test statistics are sensitive
to the measurement invariance violations that an analyst would typically expect from an
ordinal V. In particular, due to computing cumulative sums in B (é), violations that occur
as we move along the levels of V' can be captured well. This includes abrupt shifts in the
parameters 6 at a certain level of V' as well as smooth increases/decreases in the parameters.
Taking a maximum over the k& parameters as in WDM, will be more sensitive to changes
that occur only in one out of many parameters, while max LM, will be more sensitive to
changes occurring in several (or even all of the) parameters simultaneously. Moreover, the
test statistics are rather insensitive to anomalies in a small number of categories of V' that are
unrelated to the ordering of V. This is especially relevant to situations in which the analyst
has a large sample size, so that the usual likelihood ratio test is overly sensitive to minor
parameter instabilities (e.g., Bentler and Bonett 1980).

3. Simulation 1: Detecting ordinal invariance violations

In this simulation, we demonstrate that the proposed test statistics are sensitive to ordinal
measurement invariance violations, moreso than traditional statistics. We generate data from
a two-factor, six-indicator model, with a measurement invariance violation occurring in the
unique variance parameters. We use the proposed test statistics to test for measurement
invariance simultaneously across the unique variances, which is similar to a test of “invariant
uniquenesses” (see Vandenberg and Lance 2000).

The two “traditional” statistics that we consider generally treat the ordinal auxiliary variable
as categorical. These include the likelihood ratio test of measurement invariance in the six
unique variance parameters and the unordered LM test from (16). At the request of reviewers,
we also considered the Satorra and Bentler (2001) scaled likelihood ratio test statistic with
correction for difference testing, the Yuan and Bentler (1997) scaled test statistic, and the
use of AIC (Akaike 1974) for detecting measurement invariance. We do not report the latter
results, because these test statistics performed worse than the usual likelihood ratio test (both
here and in Simulation 2).

3.1. Method

Data were generated from a two-factor model lacking measurement invariance in the six
unique variance parameters. Magnitude of measurement invariance violation, sample size, and
number of categories of the ordinal variable were manipulated. We examined three sample
sizes (n = 120,480, 960), three numbers of categories (m = 4, 8,12), and seven magnitudes of
invariance violations. The measurement invariance violations began at level 1+m/2 of V' and
were constant thereafter. The unique variances for the “violating” levels deviated from the
lower levels’ unique variances by d times the parameters’ asymptotic standard errors (scaled
by v/n), with d =0,0.25,0.5,...,1.5.

For each combination of n x m x d, 5,000 datasets were generated and tested via the 4
statistics described above. In all conditions, we maintained equal sample sizes at each level
of the ordinal variable (i.e., ty = ¢/m).
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Power

Violation Magnitude

Figure 1: Simulated power curves for the ordered and unordered max LM tests, the ordered
double-max test, and the likelihood ratio test across three sample sizes n, three levels of the
ordinal variable m, and measurement invariance violations of 0-1.5 standard errors (scaled

by v/n).

3.2. Results

Simulation results comparing the ordinal tests to the unordered LM test and the LRT are
presented in Figure 1. Rows of the figure correspond to n, columns of the figure correspond
to m, the x-axis of each panel corresponds to d, and the y-axis of each panel corresponds to
power. It is seen that one of the proposed test statistics, the max LM, statistic from (15),
generally has the largest power to detect the ordinal measurement invariance violations. The
other three tests are considerably closer in power, with the second proposed ordinal statistic
(the double-max test from (14)) exhibiting the lowest power at large violation magnitudes.
This is because the double-max test discards information about multiple parameters changing
together at specific levels of the ordinal variable (see Merkle and Zeileis 2013, for related
discussion), while the three other tests under consideration make use of this information.
Finally, it is seen that, in the small n and large m conditions, the likelihood ratio test exhibits
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large Type-I error rates (i.e., power greater than 0.05 at d = 0). This is because the likelihood
ratio test requires estimation of a multiple-groups model, which is very unstable with large
numbers of groups and small sample sizes (as only n/m observations are available in each
subsample). The statistics proposed here are all of the LM-type and just require estimation
of the single-group model, leading to a clear advantage in these conditions.

To summarize, we found the max LM , statistic to be advantageous for detecting measurement
invariance violations that are related to an ordinal auxiliary variable. In particular, power is
generally higher, and the test does not require estimation of a multiple group model. Thus, the
statistic allows reasonable measurement invariance tests to be carried out at small n/large m
combinations. To further illustrate that the proposed statistics are useful for testing violations
related to an ordinal variable, we now compare their performance to the likelihood ratio test
at large n and small d.

4. Simulation 2: Minor anomalies and large n

In this simulation, we demonstrate that the proposed statistics are relatively insensitive to
minor parameter violations that are unrelated to the ordering of the auxiliary variable. As
noted earlier, this feature is especially applicable to situations where one’s sample size is very
large. Analysts often resort to informal fit measures in practice, because the traditional LRT
is nearly guaranteed to result in significance. This simulation is intended to show that the
proposed ordinal tests remain viable for large n.

4.1. Method

Data were generated from the same factor analysis model that was used in Simulation 1,
with measurement invariance violations in the unique variance parameters. To implement a
minor measurement invariance violation, the unique variances were equal across all levels of
the ordinal variable except one (level 1+ m/2). At this particular level, the unique variances
were greater by a factor of d times the parameters’ asymptotic standard errors (scaled by
v/n), with d = 0,0.5,1.0,...,3.0. The number of levels of the ordinal variable were the same
as those in Simulation 1 (m = 4,8,12), and sample sizes were set at n = 1200, 4800, 9600. All
other simulation features match those from Simulation 1.

4.2. Results

Simulation results for the two ordinal test statistics, the unordered LM test, and the LRT
are presented in Figure 2. It is observed that results are very consistent across the sample
sizes tested, implying that “practical infinity” is reached for this model by n = 1200. We
also observe a negative relationship between power and m; this is because the measurement
invariance violation occurred at only one level of the auxiliary variable. As m increases (and
n is held constant), the number of individuals violating measurement invariance therefore
decreases. As a result, power to detect the violation decreases with increasing m.

The more interesting result of Figure 2 lies in the comparison of the four test statistics within
each panel of the figure. The two “unordered” test statistics both have relatively high power
to detect the measurement invariance violation, illustrating the result of Bentler and Bonett
(1980) and others that the likelihood ratio test statistic picks out minor parameter discrepan-
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Figure 2: Simulated power curves for the ordered and unordered max LM tests, the ordered
double-max test, and the likelihood ratio test across three sample sizes n, three levels of the
ordinal variable m, and measurement invariance violations of 0-3 standard errors (scaled by
\/n) occurring at a single level (the (1 4+ m/2)*™ level) of the ordinal auxiliary variable.

cies at large n. In contrast, the two ordinal test statistics that we proposed have considerably
lower power, with the WDM, statistic being the lowest and the max LM, statistic being
higher at larger values of d.

These results demonstrate that the proposed ordinal test statistics can be especially useful
at large sample sizes, where traditional test statistics result in frequent significance. Both
statistics exhibited much lower power to detect a measurement invariance violation that occurs
only at a single level of V.

Taken together, the results from Simulation 1 and Simulation 2 provide evidence that the
max LM , statistic should be preferred to the WDM, statistic for simultaneously assessing
measurement invariance across multiple parameters in factor analysis models. The max LM,
statistic has higher power to detect ordinal violations, and its power to detect non-ordinal
violations was similar to that of WDM, when the violation magnitude was small (e.g., for
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d < 1.5). The max LM, statistic is advantageous because it can make use of invariance
violations that simultaneously occur in multiple parameters, whereas the WDM , focuses only
on the parameter with the largest invariance violation. Thus, the statistics are likely to exhibit
similar performance if only a single model parameter violated measurement invariance. The
only disadvantage to max LM, is that its critical- and/or p-values must be computed by
simulation, which can significantly increase computation time. We return to this issue in the
Section 6.

In the next section, we compare the proposed statistics to the likelihood ratio test with real
data.

5. Application: Youth gratitude

5.1. Background

With the positive psychology movement, the construct of gratitude has received much research
attention (for a review, see Emmons and McCullough 2004). Recently, researchers have begun
to explore gratitude in youth. One potential problem with this is that researchers, with no
exception, have used adult gratitude inventories to measure youth gratitude, thus raising the
question of whether the existing gratitude scales used with adults are valid in research with
youth. Addressing this issue, Froh, Fan, Emmons, Bono, Huebner, and Watkins (2011) had a
large sample of youth (n = 1401, ranging from late childhood (10 years old) to late adolescent
(19 years old)) complete the three most widely used adult gratitude inventories, including
Gratitude Questionnaire 6 (GQ-6; McCullough, Emmons, and Tsang 2002), Gratitude Ad-
jective Checklist (GAC; McCullough et al. 2002), and Gratitude, Resentment, Appreciation
Test-Short Form (GRAT-Short Form; Thomas and Watkins 2003). The authors were inter-
ested in whether the youth factor structure for the gratitude scales resembles that of adults,
and whether the gratitude scales are invariant across the youth age groups.

5.2. Method

Froh et al. (2011) used confirmatory factor models to study the invariance of three youth
gratitude scales across students aged 10 to 19 years. Due to sample size constraints, the age
variable included six categories: 10-11 years, 12-13 years, 14 years, 15 years, 16 years, and
17-19 years. Thus, age is an ordinal variable to which the proposed tests can be applied.

To test for measurement invariance w.r.t. age, each of the three scales was individually factor-
analyzed using the items that comprised the scale. For each model, the authors first fit a
congeneric model (all parameters free for each level of age), followed by a tau-equivalent
model (factor loadings restricted to be equal across each level of age) and a parallel model (all
parameters restricted to be equal across levels of age). Because their sample size was large
(n ~ 1400), they could not rely solely on likelihood ratio tests (i.e., x? difference tests) for
model comparison because the tests were overly sensitive at their sample size. To supplement
these tests, Froh et al. (2011) examined a set of alternative fit indices, including the non-
normed fit index, the comparative fit index, and the incremental fit index (e.g., Browne and
Cudeck 1993). The authors generally found support for the tau-equivalent models through
these alternative fit indices: the likelihood ratio test often resulted in significance even when
the alternative indices indicated good fit.
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In the analyses described below, we re-analyze the Froh et al. (2011) data using the ordinal
test statistics proposed in this paper. This results in a series of tests that are less sensitive
than the likelihood ratio test to minor parameter discrepancies, while being more sensitive
to ordinal violations of measurement invariance. We focus on two analyses from Froh et al.
(2011) where the likelihood ratio test resulted in significance (indicating that the restricted
model did not fit as well as the less-restricted model) but the alternative fit measures indicated
the opposite. These include comparison of a one-factor congeneric model to a one-factor tau-
equivalent model using the GQ6 and comparison of a one-factor tau-equivalent model to a
one-factor parallel model using the GAC. To conduct equivalent analyses via the proposed
tests, we fit the more-restricted model in each case and test for instability in the focal model
parameters.

Of the 1401 cases originally collected by Froh et al. (2011), we use here all subjects with
complete data (resulting in n = 1327).

5.3. Results

The results section is divided into two subsections, one for each analysis described above. The
first subsection contains an example of the ordinal statistics disagreeing with the likelihood
ratio tests, while the second subsection contains the opposite.

GQ-6

In fitting a tau-equivalent model and a congeneric model to the GQ-6 data, Froh et al.
(2011) used alternative fit indices to conclude that the tau-equivalent model was as good as
the congeneric model. However, the likelihood ratio test comparing these two models was
significant (x3, = 38.08,p = 0.009 for the data considered here).

We can use the proposed ordinal statistics to assess whether or not the factor loadings in the
tau-equivalent model fluctuate with respect to age. Unlike the LRT, the test does not require
parameters to differ across all subgroups. Instead, we test for deviations such that a split
into two subgroups is sufficient to capture the effect of V. In employing the ordinal tests, we
obtain WDM, = 2.91,p = 0.060 and max LM, = 11.16,p = 0.096. Both p-values are clearly
larger than that of the likelihood ratio test and neither is significant at a = 0.05, which
supports the conclusions that Froh et al. (2011) obtained from alternative fit statistics. This
provides further evidence that there is no systematic deviation of the factor loadings along
age and that the likelihood ratio statistic is overly sensitive, picking up some non-systematic
dependence on age.

Plots representing the statistics’ fluctuations across levels of age group are displayed in Fig-
ure 3. The left panel displays the process associated with WDM, from (14), i.e., the sequence
of weighted maximum (over j) statistics for each potential threshold i. The right panel dis-
plays the process associated with max LM, from (15), i.e., the sequence of LM statistics for
each potential threshold 7. In both cases, the test statistics in the sequence assess a split of
the observations up to age group i vs. greater than i, and the null hypothesis is rejected if
the maximum of the statistics is larger than its 5% critical value (visualized by the horizontal
red line). Therefore, the final age group (17-19 years) is not displayed, because the statistics
associated with this final age group would encompass all observations in a single group and
hence always equal zero. It is observed that both statistics generally increase with age, with
WDM , being largest for a threshold of 15 years and max LM, for a threshold of 16 years.
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Figure 3: Fluctuation processes for the WDM , statistic (left panel) and the max LM , statistic
(right panel), arising from the GQ-6 data.

The differing pattern of values for the 15- and 16-year-olds can be taken as an indication that
some factor loading is unstable at an age of 15 or 16, but this is not a clear and general trend
across all the tested loadings and age groups.

GAC

In fitting tau-equivalent and parallel models to the GAC data, Froh et al. (2011) obtained
mixed results. The alternative fit indices did not all agree with one another, and the likelihood
ratio test indicated that the parallel model fit worse than the tau-equivalent model (X%O =
167.72,p < 0.01 for the data considered here). Froh et al. (2011) ultimately concluded that
the tau-equivalent model provided a better fit than did the parallel model.

To apply the ordinal statistics proposed in this paper, we fit the parallel model and test for
instability in the variance parameters (unique variance and factor variance) w.r.t. age. This
results in WDM, = 6.55,p < 0.01 and max LM, = 113.13,p < 0.01. Both of these statistics
agree with the general conclusion that the parallel model is not sufficient, providing further
evidence that the significant likelihood ratio test is not simply an artifact of the large sample
size.

Plots representing the statistics’ fluctuations across age groups are displayed in Figure 4.
The left panel displays the process associated with WDM ,, while the right panel displays
the process associated with max LM ,. It is observed that both processes are fully above the
critical value, implying the measurement invariance violation. Additionally, both processes
peak at the 12-13 age group, suggesting that parameters differ between individuals up to 13
years of age and individuals older than 13 years of age.

The finding that variance parameters differ between individuals up to 13 years and indi-
viduals over 13 years is reinforced by comparing the tau-equivalent and parallel models to
an intermediate model. This intermediate model is tau-equivalent in nature, but there ex-
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Figure 4: Fluctuation processes for the WDM , statistic (left panel) and the max LM , statistic
(right panel), arising from the GAC data.

ist only two groups: individuals up to 13 years and individuals older than 13 years. A
likelihood ratio test implies that this intermediate model fits as well as the original tau-
equivalent model (x3; = 13.72, p = 0.62), with 16 fewer parameters (= 6 -4 — 2 - 4 because
the four variances have to be estimated in only two rather than six age groups). The in-
termediate model also fits better than the parallel model, as judged by a second likelihood
ratio test (x3 = 154.00,p < 0.01). Finally, using the proposed ordinal test statistics with
the intermediate model, we no longer observe further instability in the variance parameters
(WDM, = 1.84,p = 0.86; max LM, = 3.83,p = 0.99).

5.4. Summary

The application considered above shows that the ordinal test statistics can provide useful
information in situations where one might question significant likelihood ratio test statistics.
While researchers use rules of thumb to obtain decisions from other alternative fit measures,
the proposed statistics are proper tests of the hypothesis of interest. They can be used to either
supplement or replace the likelihood ratio test, depending upon the types of measurement
invariance violations in which the researcher has a priori interest. We further describe the
issue of supplementing vs. replacing the likelihood ratio test in the general discussion.

6. General discussion

In this paper, we proposed two statistics that can be used when one has an ordinal auxil-
iary variable and wishes to study measurement invariance. We demonstrated via simulation
that these statistics have good properties, though these results necessarily examined a small
number of models and invariance violations and may not hold in all situations. To our knowl-
edge, the ordinal measurement invariance statistics proposed here are the only ones that treat
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auxiliary variables as ordinal and thus direct power against alternatives that are typically of
interest to practitioners. Other methods treat the auxiliary variable as either continuous or
categorical, in a manner similar to the treatment of ordinal predictor variables in linear re-
gression. In the remainder of the paper, we provide detail on test choice and on the tests’
applicability to other models.

6.1. Choice of test

The results presented in this paper imply that the proposed ordinal statistics may “miss”
measurement invariance violations that are not monotonic w.r.t. V. More precisely, while the
suggested tests are also consistent for such non-monotonic violations, they seem to be less
powerful than the likelihood ratio test. We speculate that, in most applications, this will not
be a major issue because the researcher’s a priori hypotheses exclusively focus on monotonic
measurement invariance violations. For example, in the youth gratitude application, we tested
for measurement invariance across six age groups. If we observed a measurement invariance
violation whereby factor loadings were equal at all age groups except 14 years, we would have
a hard time explaining the violation as anything but an anomaly in the 14-year-olds. Further,
if n is large, we are likely to suspect that the result arises from the large sample size. We
may still be interested in why the 14-year-olds differed, but the analysis is purely exploratory
at this point because this type of violation was unexpected. However, there is generally
a tradeoff between the ordinal statistics and the likelihood ratio statistic. The proposed
ordinal statistics usually provide more powerful tests of one’s a priori hypothesis regarding
measurement invariance w.r.t. ordinal V', while the likelihood ratio statistic provides a more
powerful test of general (non-monotonic) measurement invariance w.r.t. V. While the latter
feature may be important in some high-stakes applications, many researchers are likely to
find the former feature appealing for their work.

Along with using likelihood ratio tests to study measurement invariance, researchers may wish
to treat ordinal V' as continuous (especially if V' has very many levels). As described in detail
by Merkle and Zeileis (2013), we can also use cumulative score processes with continuous V,
resulting in, e.g., maximum LM statistics and Cramér-von Mises statistics. In fact, when the
number of potential thresholds is large, the proposed max LM, statistic will be very close to
the max LM statistic described in Merkle and Zeileis (2013). Thus, the formation of ordinal
age groups (or other variables) is not necessary for testing measurement invariance, and it
may be beneficial to collect continuous age data (e.g., age measured in days rather than in
years).

There also exist alternative methods for testing measurement invariance w.r.t. continuous V,
including moderated factor models (Bauer and Hussong 2009; Molenaar, Dolan, Wicherts,
and van der Mass 2010; Purcell 2002) and factor mixture models (Dolan and van der Maas
1998; Lubke and Muthén 2005). Under the moderated factor model approach, V' is inserted
directly into the factor analysis model and allowed to have a linear relationship with model
parameters. Under the factor mixture model approach, individuals are typically assumed to
arise from a small number of distinct factor analysis models. The ordinal variable V' could
then be used to predict the probability that an individual arises from each model. These
treatments of ordinal V' as continuous will often be advantageous, especially if the levels of
V' are approximately equally-spaced and the relationship between V' and the measurement
invariance violation is linear. The approaches do require models of greater complexity and may
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not be suitable for all ordinal V', however, while the methods we propose here are generally
suitable for ordinal V.

Finally, a practical issue associated with the proposed max LM , statistic involves the com-
putation of p-values: p-values and/or critical values must be computed via simulation of a
Brownian bridge, with the simulation depending on the relative proportion of cases at each
level of the ordinal auxiliary variable. Hence, a new simulation usually must be conducted for
each dataset, which can be somewhat time-consuming (on the order of minutes, as opposed
to seconds or hours).

6.2. Extension to other models

We focused on testing for measurement invariance in factor analysis models here, but the
proposed test statistics are applicable to other psychometric models that are estimated via
ML (or similar estimation techniques for independent observations that are governed by a
central limit theorem). The only requirement for carrying out the tests is that the casewise
scores (Equation (8)) be available following model estimation. As a result, applications to
studying DIF in IRT are immediate (for a presentation involving non-ordinal variables, see
Strobl et al. 2013), as are general psychometric applications to studying parameter stability
w.r.t. ordinal auxiliary variables. These could include applications where ordinal variables are
explicitly included in the model, such as ordinal factor analysis. We expect the same general
results to hold for these applications, whereby the proposed test statistics are better than
the LRT for detecting monotonic instabilities. The strucchange package (Zeileis 2006a) noted
previously can be used for these more-general applications.

6.3. Summary

As demonstrated via simulation, the proposed test statistics have relatively high power for
detecting measurement invariance violations that are monotonic with the ordinal variable,
and they have relatively low power for detecting minor violations that are not monotonic.
The former feature implies that the statistics are good at detecting measurement invariance
violations that are interpretable to the researcher, while the latter feature implies that the
statistics are feasible in situations where the likelihood ratio test commonly rejects Hy in
practice (e.g., Bentler and Bonett 1980). Furthermore, the focal psychometric model does
not have to be modified in any way, which differs from approaches that may treat the ordinal
variable as continuous. In all, the tests have advantageous properties that should be useful
in practice.

Computational details

All results were obtained using the R system for statistical computing (R Development Core
Team 2012), version 3.1.1, employing the add-on package lavaan 0.5-16 (Rosseel 2012) for fit-
ting of the factor analysis models and strucchange 1.5-0 (Zeileis, Leisch, Hornik, and Kleiber
2002; Zeileis 2006a) for evaluating the parameter instability tests. R and the packages lavaan
and strucchange are freely available under the General Public License 2 from the Compre-
hensive R Archive Network at http://CRAN.R-project.org/. R code for replication of our
results is available at http://semtools.R-Forge.R-project.org/.
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