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Abstract

When testing non-nested models, the asymptotic distribution theory of the ordinary like-
lihood ratio statistic is not valid anymore. Several test statistics, some of them based on
information criteria, have been proposed in order to test such non-nested hypotheses. Con-
cerning bootstrap approaches to simulate goodness-of-fit measures such as the likelihood ratio
value, have been elaborated as well. Based on these methods, we extend existing bootstrap
simulations towards out-of-sample bootstrap evaluation. As an application, a parametric
bootstrap on simulated regression data is provided.
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1. Introduction

In standard statistical theory, nested models are usually compared by using a likelihood ratio (LR)
statistic which is asymptotically χ2-distributed with the corresponding difference in the degrees
of freedom. However, sometimes it is desired to make a decision between models which are non-
nested. In this case, typically AIC or BIC are used to compare the models on a “descriptive” level:
The model which minimizes the corresponding IC is chosen. However, this comparison does not
allow for a statement that one model fits significantly better than the other one.

Basically, statistical models can be non-nested in the likelihoods, in the regressors, and in the
link-function (e.g., linear against log-linear regressions). The estimated parameters optimize a
certain target function, typically the maximization of the likelihood. An in-sample evaluation of
the target function may be too “optimistic”; with respect to the generalizability of the results,
an out-of-sample evaluation is more feasible. We present corresponding out-of-sample bootstrap
(OOB) evaluations on the differences in the log-likelihoods as target function which is applicable
for nested as well as for non-nested model hypotheses.

For such non-nested models, a broad application spectrum has been shown, ranging from econo-
metrics to psychometrics. As a consequence, numerous test procedures have been developed. An
brief overview is given in the following section.

2. General Problem Formulation

Let Y = (Y1, Y2, . . . , Yn) denote a random vector with the corresponding observations y =
(y1, y2, . . . , yn). When testing non-nested hypotheses, it is not obvious, which one should be
considered as H0 and H1, respectively. Thus, for model Mf we state the hypothesis Hf that Mf

fits the data, and that model Mg fits the data is imposed in Hg. Pertaining to parameter notation,
θf ∈ Θf is the parameter vector for Mf and θg ∈ Θg is the parameter vector for Mg. It follows
that the LR statistic which tests the appropriateness of Mf can be expressed by

Tf =
(
Lf (y|θ̂f )− Lg(y|θ̂g)

)
− Ebθf

(
Lf (y|θ̂f )− Lg(y|θ̂g)

)
. (1)
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In order to test the fit of Mg, Tg can be established straightforwardly by switching the hypotheses.
Cox (1962) gives the proof that Tf and Tg, respectively, are asymptotically normally distributed
with mean zero. However, the two problematic steps in constructing the test statistic are comput-
ing the expectation term and the variance of both statistics. Further developments and general-
izations emanating from Cox’s test statistic are numerous. A recent overview of existing testing
approaches can be found in Golden (2003) and Watnik, Johnson, and Bedrick (2001).

3. Out-of-Sample Bootstrap Approach

3.1. Simulation Setting and DGP

Hinde (1992) accomplished a bootstrap simulation based on the LR-criterion in order to make a
decision between two non-nested GLM’s Mf and Mg. We extend this approach with respect to
a parametric OOB simulation following Hothorn, Leisch, Zeileis, and Hornik (2005). A repeated
subsampling is performed where the differences in the log-likelihoods, i.e., ∆L = Lf (y|θ̂f ) −
Lg(y|θ̂g), are computed by using the training data (50% of the sample) and furthermore evaluated
on the test data (remaining 50% of the sample).
As an application, we simulate data which are consistent with the following regression model Mf

(see also Watnik et al., 2001):
Y = V βv + Xβx + εx (2)

Y is the n × 1 response vector of the simulated observations, V is an n × 2 matrix with the
intercept vector and one predictor variable. The remaining k predictors are defined in the n × k
matrix X. The joint vector of regression parameters is βT = (βv,βx).
The alternative model Mg is expressed as

Y = V βv + Zβz + εz. (3)

Z are k different regressors with respect to X. Thus, V is the vector of common regressors, εx

and εz are i.i.d. with mean µ = 0 and variance σ2 = 1, whereas βz = βx.
Pertaining to the data generation process (DGP), the regressor matrices are drawn from a multi-
variate normal distribution N(0,Σ) and the similarity of Mf and Mg is steered by the correlation
r(X,Z) in the VC-matrix Σ. The lower r(X,Z), the larger difference in model fit between Mf

and Mg. As a consequence, ∆L = Lf (y|βv,βx)− Lg(y|βv,βz) becomes large and the OOB test
should detect this deviation.

3.2. Simulation Conditions and Bootstrap Results

The correlation parameters for model similarity vary from .20 to .99, the sample size n from
20 to 100. In order to examine effects with respect to the variations in goodness-of-fit of Mf ,
different β-constellations from .20 up to 2.00 are provided. Within each combination of these
parameters, 1000 data sets for k = 2 x- and z-predictors are simulated. On each of these data sets
B = 250 bootstrap samples are drawn and evaluated out-of-sample. Finally the rejection rate of
the hypothesis that ∆ log L = 0 is determined.
By inspecting the resulting rejection rates in Table 1, several issues of test behavior of the OOB
test become obvious: For low β-values, which implies that neither of the models fits the data, the
test is not able to detect differences even for low model correlations. With growing β-values, it
is capable to discriminate between Mf and Mg with respect to the goodness-of-fit. For large β’s
and large n-values, the OOB test becomes significant also for negligible model differences (i.e.,
high correlations). By inspecting the sample size n for medium ranged regression coefficients, the
decrease in test power over the model correlations is striking. For n = 20, the rejection rate is
considerably low, whereas an increasing n leads to a noticeable gain in testing power.
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Table 1: Rejection rates for non-nested regression models

r(X,Y )
k β n .20 .50 .70 .80 .85 .90 .93 .95 .97 .99
2 .2 20 .31 .35 .32 .27 .27 .27 .29 .34 .26 .28
2 .2 30 .39 .44 .30 .37 .35 .33 .34 .35 .34 .34
2 .2 50 .52 .46 .47 .46 .46 .46 .48 .48 .45 .44
2 .2 100 .71 .67 .70 .70 .57 .65 .57 .60 .67 .54
2 .5 20 .40 .33 .36 .34 .32 .36 .29 .31 .27 .36
2 .5 30 67 .69 .59 .52 .53 .46 .47 .46 .46 .34
2 .5 50 .96 .92 .82 .79 .73 .72 .67 .67 .62 .56
2 .5 100 1.00 .99 .99 .95 .94 .91 .92 .80 .78 .73
2 .8 20 .69 .48 .51 .44 .47 .43 .40 .34 .35 .32
2 .8 30 .94 .88 .81 .71 .66 .64 .58 .56 .54 .52
2 .8 50 1.00 1.00 .98 .94 .95 .85 .83 .79 .71 .64
2 .8 100 1.00 1.00 1.00 1.00 .99 .99 .96 .92 .88 .75
2 1.0 20 .67 .57 .54 .49 .47 .45 .36 .49 .36 .41
2 1.0 30 .95 .97 .90 .85 .78 .70 .67 .60 .58 .49
2 1.0 50 1.00 1.00 1.00 .98 .98 .95 .88 .81 .78 .68
2 1.0 100 1.00 1.00 1.00 1.00 1.00 .99 .99 .96 .94 .81
2 1.5 20 .84 .78 .76 .61 .65 .54 .53 .43 .43 .38
2 1.5 30 1.00 .99 .98 .94 .95 .86 .81 .75 .64 .52
2 1.5 50 1.00 1.00 1.00 1.00 1.00 .99 .99 .95 .82 .79
2 1.5 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .98 .89
2 2.0 20 .94 .90 .89 .79 .76 .72 .59 .56 .42 .35
2 2.0 30 1.00 1.00 1.00 .98 .98 .98 .91 .86 .80 .58
2 2.0 50 1.00 1.00 1.00 1.00 1.00 1.00 .99 .96 .93 .81
2 2.0 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .95
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