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Abstract: A new probabilistic post-processing method for wind vector forecasts
in a distributional regression framework is presented employing a bivariate Gaus-
sian distribution. In contrast to previous studies all parameters of the distribution
are simultaneously modeled, namely the location and scale parameters for both
surface wind components plus the correlation coefficient between them. Here
flexible specifications of the correlation effects are explored in a distributional
regression setup, using numerical weather predictions of wind direction and wind
speed as regressors. The resulting model is illustrated for bivariate probabilistic
wind forecasts at a station in the plains and within complex terrain.
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1 Introduction

Wind is one of the classical circular quantities in atmospheric sciences, and
wind speed and wind direction are mutually dependent. To gain accurate
probabilistic forecasts of both wind speed and direction, wind vectors of an
ensemble prediction system (EPS) are often post-processed in a distribu-
tional regression framework. In contrast to previous studies (e.g., Schuhen
et al. 2012), Lang et al. (2019) propose to model all distribution parame-
ters simultaneously using a flexible distributional regression model based
on EPS forecasts of wind direction and wind speed as explanatory variables.
They show that capturing correlation appropriately can improve the model
and its predictions, especially when the EPS has lower predictive quality for
the location and scale of the wind vectors. To gain a better understanding
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of the estimated correlation, we complement the basic linear model from
Lang et al. (2019) with their advanced correlation effect specification. This
naturally extends the frequently-used component-wise post-processing of
both wind vectors to a full distributional regression model.

2 Bivariate Gaussian Models

The zonal and meridional components of the horizontal wind vector are
represented by a bivariate Gaussian distribution with likelihood function

L(µ,Σ|y) =
1�

(2π)2|Σ|
exp

�
−1

2
(y − µ)�Σ−1(y − µ)

�
, (1)

where y = (y1, y2)
� are bivariate observations and µ = (µ1, µ2)

� the distri-
butional location parameters. The subscript asterisk acts as a placeholder
for the zonal and meridional wind component from here on. The covariance
matrix is defined as
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2

�
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The location parameters µ� ∈ R, the scale parameters σ� > 0, and the
correlation parameter ρ ∈ [−1, 1] are linked to additive predictors by an
identity, logarithmic and rhogit link, respectively (Klein et al. 2014).
For the location and scale part, the corresponding wind component fore-
casts are used as covariates, namely EPS-forecasted zonal wind informa-
tion (vec1) to model the zonal component of the bivariate response, and
EPS-forecasted meridional wind information (vec2) to model the meridional
component:

µ� = α�0 + f�0(doy) + (α�1 + f�1(doy)) · vec�

log(σ�) = β�0 + g�0(doy) + (β�1 + g�1(doy)) · log(sd(vec�)),
(3)

where α• and β• are regression coefficients, and f•(doy) and g•(doy) em-
ploy cyclic regression splines conditional on the day of the year (doy). The
covariates vec� and log(sd(vec�)) refer to the mean and log standard devi-
ation of the EPS wind components, respectively.
The correlation structure is estimated conditional on the mean EPS wind
direction (dir) and speed (spd) by modeling a linear interaction between
these two covariates:

rhogit(ρ) = γ0 + h0(doy) + h1(dir) + (γ1 + h2(dir)) · spd, (4)

with rhogit(ρ) = ρ/
�

(1 − ρ2); γ0 is the global and h0(doy) the seasonally
varying intercept. The effect h1(dir) estimates the dependence of the cor-
relation given the wind direction and (γ1 +h2(dir)) · spd employs a varying
effect of wind speed conditional on the wind direction. Note that in the
meteorological context wind direction is defined on the scale [0, 360] degree
and increases clockwise from North.
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FIGURE 1. Cyclic effects for linear predictor terms of ρ on the rhogit scale:
(a) Seasonal variation, (b) wind direction main effect, (c) interaction effect of
wind direction and wind speed, for wind speed fixed at 1 ms−1. Effects for both
Innsbruck (dashed) and Hamburg (solid) are shown on the rhogit scale along with
95% credible intervals based on MCMC sampling.

3 Results and Conclusion

To study the correlation structure as specified in Eq. (4), this section shows
a detailed analysis of the estimated effects for a site in the plains (Hamburg)
and an alpine site (Innsbruck) at forecast step +12 h (valid at 12UTC).
Figure 1a shows a strong positive intercept effect for the correlation param-
eter for Innsbruck with little seasonal variability; the positive correlation
describes stronger uncertainty along the valley than across the valley. This
effect is increased when the EPS predicts northerly wind and decreased for
southerly wind forecasts unconditional on the wind speed (Fig. 1b, c). For
Hamburg, a slightly negative intercept effect exists unconditional on the
day of the year (Fig. 1a). The effect on wind direction is negative except
for southerly winds (Fig. 1b), whereas the varying effect of wind speed
conditional on the wind direction is positive with the lowest coefficients for
southerly winds (Fig. 1c).
Figure 2a shows the mean estimated correlation for the two stations con-
ditional on the EPS wind direction and speed for the whole training data
set. For Innsbruck, northerly EPS wind forecasts typically correspond to
observed winds along the east-west orientated valley axis. Therefore, for
northerly EPS wind forecasts the positive correlation describes a stronger
uncertainty along the valley than across the valley (see Fig. 1b). For mod-
erate to strong southerly EPS wind forecasts, the observed wind is typically
blowing from an intersecting valley from the South and therefore the uncer-
tainty is higher across the valley axis (negative correlation). For Hamburg,
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FIGURE 2. (a) Circular plot of the mean estimated correlation parameter ρ and
(b) the distribution of the correlation parameters for Innsbruck and Hamburg.
Correlation is shown on the parameter scale for the full training data set.

positive correlation exists for northerly and southerly EPS wind forecasts,
whereas negative correlation exists for westerly and easterly wind forecasts.
For all wind directions, the effects are higher with increasing wind speed
(see Fig. 1c). As Hamburg lies in the plains, the distinct estimated corre-
lation suggests that local shadowing effects due to e.g., local building and
vegetation seem to have an impact. However, the estimated correlation for
Hamburg is on average smaller than for Innsbruck where either rather large
positive values or negative values exist (Fig. 2b). This is in accordance with
Lang et al. (2019) who found that the explicit estimation of correlation is
mainly important when the estimates of the location and scale parameters
have only little skill due to a low information content of the EPS wind
forecasts. Lang et al. (2019) show that the lack of relevant information in
the EPS can be mitigated by using a more flexible location and scale speci-
fication. This dampens the correlation effects but their qualitative patterns
remain unchanged.
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