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Overview

Computational statistics: Methods requiring substantial computation.

Statistical computing: Translating statistical ideas into software.

Why:
Why should we write software (and make it available)?
Why should it be open-source software?
Why R?

How:
What should be the guiding principles for implementation?
Linear regression in base R.
Heteroscedastic censored and truncated regression models in
package crch.



Why software?

Authors of statistical methodology usually have an implementation for
own applications and running simulations and benchmarks, but not
necessarily in production quality.

Why should they be interested in taking the extra effort to adapt them to
more general situations, document it and make it available to others?

Supplying software that is sufficiently easy to use is an excellent way of
communicating ideas and concepts to researchers and practitioners.

Given the description of an excellent method and code for a good one,
you choose . . . ?



Why open source?

Claerbout’s principle

An article about computational science in a scientific
publication is not the scholarship itself, it is merely advertising
of the scholarship. The actual scholarship is the complete
software development environment and the complete set of
instructions which generated the figures.

To evaluate the correctness of all the results in such an article, the
source code must also be available for inspection. Only this way
gradual refinement of computational (and conceptual) tools is possible.



Implementation principles

Task: Turn conceptual tools into computational tools

Goals: Desirable features.

Easy to use.

Numerically reliable.

Computationally efficient.

Flexible and extensible.

Reusable components.

Object-oriented.

Reflect features of the conceptual method.

Problem: Often antagonistic, e.g., computational efficiency vs.
extensibility.



Implementation principles

Guiding principle: The implementation should be guided by the
properties of the underlying methods while trying to ensure as much
efficiency and accuracy as possible.

The resulting functions should do what we think a method does
conceptually.

In practice: Many implementations are still guided by the limitations
that programming languages used to have (and some still have) where
everything has to be represented by numeric vectors and matrices.

What language features are helpful for improving this?



Implementation principles

Object orientation: Create (potentially complex) objects that represent
an abstraction of a procedure or type of data. Methods performing
typical tasks can be implemented.

Functions as first-class objects: Functions are a basic data type that
can be passed to and returned by another function.

Lexical scope: More precisely nested lexically scoped functions.
Returned functions can have free variables stored in function closure.

Compiled code: Combine convenience of interpreted code and
efficiency of compiled code by (byte) compilation or dynamic linking.

Reusable components: Programming environment should provide
tools that implementations can build on. Likewise, implementations
should create objects that can be reused in other programs.



Why R?

R offers all these features and more:

R is a full-featured interactive computational environment for data
analysis, inference and visualization.

R is an open-source project, released under GPL.

Developed for the Unix, Windows and Macintosh families of
operating systems by the R Core Team.

Several object orientation systems, including S3 and S4 classes.

Everything in R is an object, including functions and function calls.

Nested functions are lexically scoped.

Allows for dynamic linking of code in C, C++, Fortran, . . .

Highly extensible with a fast-growing list of add-on packages.



Why R?

Software delivery is particularly easy:

R itself and ∼9000 packages are available (most of them under the
GPL) from the Comprehensive R Archive Network (CRAN):

http://CRAN.R-project.org/

and can easily be installed from within R via, e.g.

R> install.packages("crch")

CRAN Task Views:

http://CRAN.R-project.org/view=Econometrics,

http://CRAN.R-project.org/view=SocialSciences,

and 31 others.

http://CRAN.R-project.org/
http://CRAN.R-project.org/view=Econometrics
http://CRAN.R-project.org/view=SocialSciences


How can this be used in practice?

Examples:

Linear regression in base R.

Heteroscedastic censored and truncated regression models in
package crch.

Illustration:

Precipitation forecasts for Innsbruck, Austria (RainIbk).

Observed 3 day-accumulated precipitation amounts (rain) from
SYNOP station Innsbruck Airport from 2000-01-01 to 2013-09-17.

Corresponding GEFS 11-member ensemble reforecasts of total
accumulated precipitation between 5 and 8 days in advance
(rainfc.1, rainfc.2, . . . , rainfc.11).



Illustration: Precipitation EMOS

Data preprocessing: Load data, transform to square-root scale,
compute ensemble statistics, and omit ‘perfect’ ensemble predictions.

R> data("RainIbk", package = "crch")
R> RainIbk <- sqrt(RainIbk)
R> RainIbk$ensmean <- apply(RainIbk[, 2:12], 1, mean)
R> RainIbk$enssd <- apply(RainIbk[, 2:12], 1, sd)
R> RainIbk <- subset(RainIbk, enssd > 0)

Distribution: Histogram on original and square-root scale.

R> hist(RainIbk$rain^2, breaks = 4 * 0:29 - 2)
R> hist(RainIbk$rain, breaks = 0:22/2 - 0.25)

Regression: Dependence of observations on ensemble mean.

R> plot(rain ~ ensmean, data = RainIbk,
+ pch = 19, col = gray(0, alpha = 0.2))
R> abline(0, 1, col = "green3")



Illustration: Precipitation EMOS
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How can this be used in practice?

Example: Linear regression in R.

Object orientation: lm() returns an “lm” object with suitable
methods and extractor functions.

Reusable components: Underlying workhorse lm.fit() without
pre- and postprocessing is also provided.

Compiled code: At its core lm.fit() has a
.Fortran("dqrls", ...) call.

Application:

R> m <- lm(rain ~ ensmean, data = RainIbk)



Object orientation

R> coef(m)

(Intercept) ensmean
0.147 0.582

R> vcov(m)

(Intercept) ensmean
(Intercept) 0.003026 -0.000772
ensmean -0.000772 0.000240

R> logLik(m)

'log Lik.' -9495 (df=3)



Object orientation

print() Simple printed display with coefficients

summary() Standard regression summary; returns
“summary.class” object (with print() method)

plot() Diagnostic plots

coef() Extract coefficients

vcov() Associated covariance matrix

predict() (Different types of) predictions for new data

fitted() Fitted values for observed data

residuals() Extract (different types of) residuals

terms() Extract terms

model.matrix() Extract model matrix (or matrices)

nobs() Extract number of observations

df.residual() Extract residual degrees of freedom

logLik() Extract fitted log-likelihood



Reusable components

Provide: Important building blocks, e.g., lm.fit() (so that users
never call: solve(t(X) %*% X) %*% t(X) %*% y).

Reuse: Exploit available tools, e.g., “smart” generics can rely on
suitable methods such as coef(), vcov(), logLik(), etc.

confint() Confidence intervals

AIC() Information criteria (AIC, BIC, . . . )

coeftest() Partial Wald tests of coefficients (lmtest)

waldtest() Wald tests of nested models (lmtest)

linearHypothesis() Wald tests of linear hypotheses (car)

lrtest() Likelihood ratio tests of nested models
(lmtest)



Reusable components

R> BIC(m)

[1] 19015

R> confint(m)

2.5 % 97.5 %
(Intercept) 0.0395 0.255
ensmean 0.5512 0.612

R> library("lmtest")
R> coeftest(m)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1473 0.0550 2.68 0.0074
ensmean 0.5816 0.0155 37.51 <2e-16



Lexical scope

Return nested lexically scoped function for f (x) = α̂ + β̂ · x :

R> predict_fun <- function(x, y) {
+ cf <- lm.fit(cbind(1, x), y)$coefficients
+ return(function(x) cf[1] + cf[2] * x)
+ }

Set up and evaluate prediction function:

R> predict_rain <- predict_fun(RainIbk$ensmean, RainIbk$rain)
R> predict_rain

function(x) cf[1] + cf[2] * x
<environment: 0x4040788>

R> predict_rain(2)

1.31

R> predict_rain(sqrt(4))^2

1.72



Heteroscedastic censored regression: Ideas

Extension of OLS:

Employ censoring to some interval [left, right] to accomodate point
mass at the limit(s). Here, left = 0.

Allow for conditional heteroscedasticity depending on regressors.

In addition to Gaussian responses support distributions with fatter
tails (logistic, tν ).

Latent response: Latent response y∗ with location and scale
parameters µ and σ follows distribution D.

y∗ − µ
σ

∼ D (1)

with cumulative distribution function F∗(·) and probability density
function f ∗(·).



Heteroscedastic censored regression: Ideas

Regression: For observations i = 1, . . . , n and regressor vectors xi , zi

µi = x>i β,

g(σi) = z>i γ

with monotonic link function g(·). Here, g(σ) = log(σ) to assure
positivity.

Distributions:

Standard normal.

Standard logistic.

Student-t with ν = exp(δ) degrees of freedom.



Heteroscedastic censored regression: Ideas

Observation rule: Observations outside [left, right] are mapped to the
interval limits.

y =


left y∗ ≤ left

y∗ left < y∗ < right

right y∗ ≥ right

Estimation: By maximum likelihood. Maximize the sum of
log-likelihood contributions log(f (yi , µi , σi)), where

f (y , µ, σ) =


F∗
(

left−µ
σ

)
y ≤ left

f ∗
( y−µ

σ

)
/σ left < y < right(

1− F∗
(

right−µ
σ

))
y ≥ right



Heteroscedastic censored regression: Software

Translation to R: crch() for censored regression with conditional
heteroscedasticity provides an interface similar to lm().

crch(formula, data, subset, na.action, weights, offset,

link.scale = "log", dist = "gaussian", df = NULL,

left = -Inf, right = Inf, truncated = FALSE,

control = crch.control(...), ...)

Implementation:

Data is preprocessed internally.

Workhorse function crch.fit() sets up log-likelihood and
corresponding gradient (or score) and Hessian function.

Quasi-Newton optimization (BFGS) with base R’s optim().

Returns an object of class “crch”.

Methods for all standard generics and extractor functions.



Heteroscedastic censored regression: Illustration

Application: Capture heteroscedasticity and/or censoring and/or
heavy-tailed distribution.

R> library("crch")
R> m1 <- crch(rain ~ ensmean | 1, data = RainIbk)
R> m2 <- crch(rain ~ ensmean | log(enssd), data = RainIbk)
R> m3 <- crch(rain ~ ensmean | 1, data = RainIbk, left = 0)
R> m4 <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0)
R> m5 <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,
+ dist = "logistic")

Model selection: All additions lead to model improvements.

R> BIC(m, m1, m2, m3, m4, m5)

df BIC
m 3 19015
m1 3 19015
m2 4 18867
m3 3 17966
m4 4 17923
m5 4 17876



Heteroscedastic censored regression: Illustration

R> barplot(BIC(m) - BIC(m1, m2, m3, m4, m5)[, 2])

m1 m2 m3 m4 m5

B
IC

 im
pr

ov
em

en
ts

 (
co

m
pa

re
d 

to
 O

LS
)

0
20

0
40

0
60

0
80

0
10

00



Illustration: Precipitation EMOS



Heteroscedastic censored regression: Illustration

Gaussian (m1) Het. cens. Gaussian (m4)

location scale location scale

(Intercept) 0.147∗∗ 0.496∗∗∗ −0.840∗∗∗ 0.687∗∗∗

(0.055) (0.010) (0.073) (0.013)

ensmean 0.582∗∗∗ 0.783∗∗∗

(0.016) (0.020)

log(enssd) 0.220∗∗∗

(0.030)

Log-likelihood −9494.8 −8944.6

AIC 18995.5 17897.2

BIC 19015.1 17923.3

N 4959 4959



Heteroscedastic censored regression: Software

This implementation uses

Object orientation: Fitted model object with standard interface
and methods.

Functions as first-class objects: Several model components can
be supplied as functions, e.g., the log-likelihood (and its gradient
and Hessian) or the link function (and its inverse and derivative).

Lexical scope: Log-likelihood (and gradient and Hessian) are set
up internally as functions of parameters with data accessed via
lexical scoping.

Compiled code: Density/score/Hessian functions for censored
distributions are implemented in C.

Reusable components: Building blocks like crch.fit() and
dcnorm() may be useful in other applications.



Object orientation

R> coef(m4)

(Intercept) ensmean (scale)_(Intercept)
-0.840 0.783 0.687

(scale)_log(enssd)
0.220

R> vcov(m4)

(Intercept) ensmean
(Intercept) 0.005323 -1.33e-03
ensmean -0.001333 4.05e-04
(scale)_(Intercept) -0.000222 4.36e-05
(scale)_log(enssd) 0.000322 -6.48e-05

(scale)_(Intercept) (scale)_log(enssd)
(Intercept) -2.22e-04 3.22e-04
ensmean 4.36e-05 -6.48e-05
(scale)_(Intercept) 1.65e-04 -1.14e-04
(scale)_log(enssd) -1.14e-04 8.97e-04

R> logLik(m4)

'log Lik.' -8945 (df=4)



Reusable components

R> confint(m4)

2.5 % 97.5 %
(Intercept) -0.983 -0.697
ensmean 0.743 0.822
(scale)_(Intercept) 0.662 0.712
(scale)_log(enssd) 0.161 0.279

R> coeftest(m4)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8405 0.0730 -11.52 < 2e-16
ensmean 0.7829 0.0201 38.92 < 2e-16
(scale)_(Intercept) 0.6870 0.0128 53.52 < 2e-16
(scale)_log(enssd) 0.2199 0.0299 7.34 2.1e-13



Lexical scope

Internally: Log-likelihood is defined similar to this standalone example.

R> make_censnorm_loglik <- function(x, z, y) {
+ loglik <- function(par) {
+ k <- length(par)
+ beta <- par[1:ncol(x)]
+ gamma <- par[-(1:ncol(x))]
+ mu <- x %*% beta
+ sigma <- exp(z %*% gamma)
+ ll <- ifelse(y <= 0,
+ pnorm(0, mean = mu, sd = sigma, log.p = TRUE),
+ dnorm(y, mean = mu, sd = sigma, log = TRUE)
+ )
+ -sum(ll)
+ }
+ }
R> nll <- make_censnorm_loglik(
+ x = cbind(1, RainIbk$ensmean),
+ z = cbind(1, log(RainIbk$enssd)),
+ y = RainIbk$rain
+ )



Lexical scope

R> nll

function(par) {
k <- length(par)
beta <- par[1:ncol(x)]
gamma <- par[-(1:ncol(x))]
mu <- x %*% beta
sigma <- exp(z %*% gamma)
ll <- ifelse(y <= 0,

pnorm(0, mean = mu, sd = sigma, log.p = TRUE),
dnorm(y, mean = mu, sd = sigma, log = TRUE)

)
-sum(ll)

}
<environment: 0xac83ee0>



Lexical scope

Optimization: Minimize negative log-likelihood as a function of the
parameters only (using numerical gradients).

R> t4_opt <- system.time(
+ m4_opt <- optim(par = rep(0, 4), fn = nll, method = "BFGS")
+ )
R> m4_opt[1:4]

$par
[1] -0.840 0.783 0.687 0.220

$value
[1] 8945

$counts
function gradient

87 24

$convergence
[1] 0



Functions as first-class objects

Link function: Is stored (and can be supplied) as an actual function,
e.g., for computing predictions on new data.

R> m4$link$scale$linkfun

function (mu)
log(mu)
<environment: namespace:stats>

R> m4$link$scale$linkinv

function (eta)
pmax(exp(eta), .Machine$double.eps)
<environment: namespace:stats>



Functions as first-class objects

Similarly: Distribution can be specified by a probability density function
rather than a string.

R> dcensnorm <- function(y, location = 1, scale = 1, df = NULL,
+ left = -Inf, right = Inf, log = FALSE)
+ {
+ ifelse(y <= left,
+ pnorm(left, mean = location, sd = scale, log.p = log),
+ ifelse(y >= right,
+ pnorm(right, mean = location, sd = scale, log.p = log,
+ lower.tail = FALSE),
+ dnorm(y, mean = location, sd = scale, log = log)
+ ))
+ }

Optimization: Using numerical gradients and Hessian.

R> t4_d <- system.time(
+ m4_d <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,
+ dist = list(ddist = dcensnorm), hessian = TRUE)
+ )



Compiled code

Comparison: Estimated parameters are (almost) the same but
computation times are different.

R> cbind(coef(m4), m4_opt$par, coef(m4_d))

[,1] [,2] [,3]
(Intercept) -0.840 -0.840 -0.840
ensmean 0.783 0.783 0.783
(scale)_(Intercept) 0.687 0.687 0.687
(scale)_log(enssd) 0.220 0.220 0.220

R> cbind(t4, t4_opt, t4_d)[1,]

t4 t4_opt t4_d
0.108 0.352 0.636



Compiled code

Main reason: C implementation of the distribution (plus analytical
rather than numeric gradients/Hessian, also in C).

R> dcnorm

function (x, mean = 0, sd = 1, left = -Inf, right = Inf, log = FALSE)
{

input <- data.frame(x = as.numeric(x), mean = as.numeric(mean),
sd = as.numeric(sd), left = as.numeric(left), right = as.numeric(right))

with(input, .Call("dcnorm", x, mean, sd, left, right, log))
}
<environment: namespace:crch>



Heteroscedastic censored regression: Extensions

Further features: Supported by crch package.

Truncated instead of censored response distributions, e.g., for
two-part hurdle models or limited distributions without point mass
(such as wind).

Boosting instead of maximum likelihood estimation for variable
selection and regularization/shrinkage of parameters.

Other estimation techniques (such as CRPS) can be performed by
using the specification of dist as a function.



Heteroscedastic censored regression: Extensions

CRPS: Continuous ranked probability score implemented in
scoringRules package (Jordan, Krüger, Lerch 2016).

R> library("scoringRules")
R> dcrps <- function(y, location = 1, scale = 1, df = NULL,
+ left = 0, right = Inf, log = FALSE)
+ {
+ -crps(y, family = "normal", location = location, scale = scale,
+ lower = left, upper = right, lmass = "cens", umass = "cens")
+ }
R> m4_crps <- crch(rain ~ ensmean | log(enssd), data = RainIbk,
+ left = 0, dist = list(ddist = dcrps), hessian = TRUE)

Comparison: ML and CRPS lead very similar results with comparable
parameters and (in-sample) scores.



Heteroscedastic censored regression: Extensions



Heteroscedastic censored regression: Extensions

R> logLik(m4)

'log Lik.' -8945 (df=4)

R> sum(dcnorm(RainIbk$rain,
+ mean = predict(m4, type = "location"),
+ sd = predict(m4, type = "scale"),
+ left = 0, log = TRUE))

[1] -8945

R> sum(dcnorm(RainIbk$rain,
+ mean = predict(m4_crps, type = "location"),
+ sd = predict(m4_crps, type = "scale"),
+ left = 0, log = TRUE))

[1] -8974



Heteroscedastic censored regression: Extensions

R> logLik(m4_crps)/nobs(m4_crps)

'log Lik.' -0.875 (df=4)

R> mean(crps(RainIbk$rain, family = "normal",
+ mean = predict(m4_crps, type = "location"),
+ sd = predict(m4_crps, type = "scale"),
+ lower = 0, lmass = "cens"))

[1] 0.875

R> mean(crps(RainIbk$rain, family = "normal",
+ mean = predict(m4, type = "location"),
+ sd = predict(m4, type = "scale"),
+ lower = 0, lmass = "cens"))

[1] 0.877
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