A One-for-All Exams Generator: Written Exams, Online Tests, and Live Quizzes with R

Achim Zeileis

https://eeecon.uibk.ac.at/~zeileis/
Motivation and challenges

Motivation:

- Introductory statistics and mathematics courses for business and economics students at WU Wien and Universität Innsbruck.
- Courses are attended by more than 1,000 students per semester.
- Currently: Several lecturers teach lectures (∼500 participants) and tutorials (∼150 participants) in parallel.

Strategy:

- Individualized organization of learning, feedback, and assessment.
- The same pool of exercises at the core of all parts of the course.
Motivation and challenges

<table>
<thead>
<tr>
<th>Learning</th>
<th>Feedback</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>Live quiz</td>
<td>Written exam</td>
</tr>
<tr>
<td>Live stream</td>
<td>(+ tutorial)</td>
<td></td>
</tr>
<tr>
<td>Asynchronous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Textbook</td>
<td>Self test</td>
<td>Online test</td>
</tr>
<tr>
<td>Screencast</td>
<td>(+ forum)</td>
<td></td>
</tr>
</tbody>
</table>
Motivation and challenges

<table>
<thead>
<tr>
<th>Learning</th>
<th>Feedback</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>Lecture</td>
<td>Live quiz</td>
</tr>
<tr>
<td></td>
<td>Live stream</td>
<td>(+ tutorial)</td>
</tr>
<tr>
<td>Asynchronous</td>
<td>Textbook</td>
<td>Self test</td>
</tr>
<tr>
<td></td>
<td>Screencast</td>
<td>(+ forum)</td>
</tr>
</tbody>
</table>

Challenges:

- **Scalability**: Randomized dynamic exercises required for feedback/assessment.
- **Feedback**: Support for complete correct solutions.
- **Flexibility**: Automatic rendering into different assessment formats.
R package *exams*

Tools chosen:
- R for random data generation and computations.
- \LaTeX for mathematical notation.
- \LaTeX or Markdown for text formatting
- \texttt{Sweave} or \texttt{knitr/rmarkdown} for tying everything together.

HTML conversion: Required for some output formats.
- Via \texttt{tth} or \texttt{pandoc}.
- Default: MathML for mathematical notation.
- Default: Base64 encoding for images and other supplements.
R package *exams*

Exercises:
- Dynamic templates if R code is used for randomization.
- Each exercise is a single file (either `.Rnw` or `.Rmd`).
- Contains question and (optionally) the corresponding solution.

Answer types:
- Single choice and multiple choice.
- Numeric values.
- Text strings (typically short).
- Combinations of the above (cloze).
R package *exams*

Output:

- PDF – either fully customizable or standardized with automatic scanning/evaluation.
- HTML – either fully customizable or embedded into any of the standard formats below.
- *Moodle* XML.
- QTI XML standard (version 1.2 or 2.1), e.g., for *OLAT/OpenOLAT*.
- *ARSnova, TCExam, LOPS, Blackboard, . . .*
1. In the following figure the distributions of a variable given by two samples (A und B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either about correct or clearly wrong.)

(a) The location of both distributions is about the same.
(b) Both distributions contain no outliers.
(c) The spread in sample A is clearly bigger than in B.
(d) The skewness of both samples is similar.
(e) Distribution A is about symmetric.

2. A machine fills milk into 500ml packages. It is suspected that the machine is not working correctly and that the amount of milk filled differs from the setpoint \(\mu_0 = 500 \). A sample of 226 packages filled by the machine are collected. The sample mean \(\bar{y} \) is equal to 499.7 and the sample variance \(s^2 \) is equal to 576.1.

Test the hypothesis that the amount filled corresponds on average to the setpoint. What is the absolute value of the \(t \) test statistic?

3. For 49 firms the number of employees \(X \) and the amount of expenses for continuing education \(Y \) (in EUR) were recorded. The statistical summary of the data set is given by:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>58</td>
<td>124</td>
</tr>
<tr>
<td>B</td>
<td>232</td>
<td>1606</td>
</tr>
</tbody>
</table>

The correlation between \(X \) and \(Y \) is equal to 0.65.

Estimate the expected amount of money spent for continuing education by a firm with 60 employees using least squares regression.

4. The following figure shows a scatterplot. Which of the following statements are correct?
1. In the following figure the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either about correct or clearly wrong.)

(a) The location of both distributions is about the same.
(b) Both distributions contain no outliers.
(c) The spread in sample A is clearly bigger than in B.
(d) The skewness of both samples is similar.
(e) Distribution A is about symmetric.

2. The following figure shows a scatterplot. Which of the following statements are correct?

(a) The slope of the regression line is about 1.
(b) The standard deviation of Y is at least 6.
Exam 1

1. Question

In Figure the distributions of a variable given by two samples (A und B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either about correct or clearly wrong.)

![Parallel Boxplots](image.png)

Figure 1: Parallel boxplots.

- a. The location of both distributions is about the same.
- b. Both distributions contain no outliers.
- c. The spread in sample A is clearly bigger than in B.
- d. The skewness of both samples is similar.
- e. Distribution A is about symmetric.
R package **exams**: Moodle XML

![R exams course](image)

R exams course

In Figure 1, the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either about correct or clearly wrong.)

- Select one or more:
 - a. The location of both distributions is about the same.
 - b. Both distributions contain no outliers.
 - c. The spread in sample A is clearly bigger than in B.
 - d. The skewness of both samples is similar.
 - e. Distribution A is about symmetric.
In Figure 3, the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either correct or clearly wrong.)

- a. The location of both distributions is about the same.
- b. Both distributions contain no outliers.
- c. The spread in sample A is clearly bigger than in B.
- d. The skewness of both samples is similar.
- e. Distribution A is about symmetric.
R package exams: ARSnova
Exercises

Exercise templates: Either `.Rnw` files composed of

- R code chunks for random data generation within `<<>>=` and `@`.
- Question and solution descriptions contained in `\begin/\end` pairs for `{question}/{solution}`.
- Metainformation about `extype` (numeric, multiple choice, ...), correct `exsolution`, a short `exname`, etc.

```
\extype{mchoice}, \exsolution{01001}, ...
```

- Question and basic metainformation is mandatory – everything else optional. Insertion of data elements with `\Sexpr{...}`.

Alternatively: `.Rmd` files with

- Code chunks: `````{r} ...````.
- Question/Solution sections with `======` markup.
- `extype: mchoice`, `exsolution: 01001, ...`
- Insertions: `\r ...`.
Exams: Combination of exercises

Idea: An exam is simply a list of exercise templates. For example, using statistics exercise templates contained in exams.

R> myexam <- list(
+ "boxplots.Rnw",
+ c("confint.Rnw", "ttest.Rnw", "tstat.Rnw"),
+ c("anova.Rnw", "regression.Rnw"),
+ "scatterplot.Rnw",
+ "relfreq.Rnw"
+)

Draw random exams:

- First randomly select one exercise from each list element.
- Generate random numbers/input for each selected exercise.
- Combine all exercises in output file(s) (PDF, HTML, ...).

Interfaces: exams2pdf(), exams2html(), exams2moodle(), exams2qti12(), exams2nops(), exams2arsnova(),...
Exams: Combination of exercises

Usage:

- A single exam popped up in a PDF viewer:
 \[
 \text{R}\geq \text{exams2pdf}(\text{myexam, template = "exam"})
 \]

- Multiple PDF/NOPS exams written to an output directory:
 \[
 \text{R}\geq \text{odir} \leftarrow \text{tempfile()}
 \text{R}\geq \text{exams2nops}(\text{myexam[-(2:3)]}, n = 3, \text{dir} = \text{odir})
 \]

- Multiple replications in a single Moodle XML file in output directory:
 \[
 \text{R}\geq \text{exams2moodle}(\text{myexam, n = 3, dir = odir})
 \]
Discussion

Package exams:

- Framework for automatic generation of simple (mathematical or statistical) exams and associated self-study materials.
- Based on independent exercises in `.Rnw/.Rmd` format which can be compiled into exams (or other collections of exercises).
- Version 1 (Grünstich and Zeileis 2009) only supported PDF output, version 2 (Zeileis et al. 2014) added a toolbox for various output formats, recent versions add support for Markdown and pandoc.
- Contributing to the pool of exercises only requires knowledge of Sweave/knitr and minimal markup for metainformation.
- For a first session employ `exams_skeleton()` which copies demo scripts, exercises, and templates into a working directory.
- Hosted on R-Forge, providing a support forum: https://R-Forge.R-project.org/projects/exams/
Discussion

Under development:

- Nikolaus Umlauf: Graphical exams manager based on shiny that can be used on a local machine or on a server.
- Niels Smits: Blackboard interface based on QTI 1.2.
- Mirko Birbaumer, Achim Zeileis: Ilias interface based on QTI 1.2.
- Achim Zeileis: Evaluation reports for lecturers/examiners based on IRT models.
References

