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Motivation

Consider n ordered observations (yi, xi) for i = 1, . . . , n in a
regression setup which can be described by a regression model
with parameter θi.

Ordering is typically with respect to time in time-series regres-
sions, but could also be with respect to income, age, etc. in
cross-section regressions.

Testing: Given that a model with parameter θ̂ has been esti-
mated for these n observations, the question is whether this is
appropriate or: Are the parameters stable or did they change
through the sample period i = 1, . . . , n?



Motivation

Monitoring: Given that a stable model could be established for
these n observations, the question is whether it remains stable in
the future or: Are incoming observations for i > n still consistent
with the established model or do the parameters change?

Dating: Given that there is evidence for a structural change in
i = 1, . . . , n, it might be possible that stable regression relation-
ships can be found on subsets of the data. How many segments
are in the data? Where are the breakpoints?



Motivation

Shah, Zeileis, Patnaik (2005) investigate the de facto currency
regime for the Chinese yuan (CNY) after China gave up on a
fixed exchange rate to the US dollar (USD) on 2005-07-21.

The People’s Bank of China announced that the CNY would no
longer be pegged to the USD but to a basket of currencies so that
the CNY exchange rate would be improved with greater flexibility.

Using a Frankel-Wei regression model for the log-returns of the
exchange rates of CNY, USD, JPY, EUR and GBP (wrt the base
currency CHF) based on data up to 2005-10-31 (n = 68), it can
be determined that a plain USD peg is still in operation.
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Motivation

The Frankel-Wei regression uses ordinary least squares (OLS)
estimation and gives:

CNYi = −0.005 + 0.9997USDi + 0.005JPYi

−0.014EURi − 0.008GBPi + ûi,

where only the USD coefficient is significantly different from zero
(HAC-corrected t statistic 144.73).

The error standard deviation is tiny with 0.028 and R2 =

0.998.



Motivation

Questions:

1. Is this model for the period 2005-07-26 to 2005-10-31 stable
or is there evidence that China kept changing its currency
regime after 2005-07-26? (testing)

2. Depending on the answer to the first question:

• Does the CNY stay pegged to the USD in the future (start-
ing form November 2005? (monitoring)

• When and how did the Chinese currency regime change?
(dating)



Motivation

Lütkepohl, Teräsvirta, Wolters (1999) investigate the linearity and
stability of German M1 money demand: stable regression rela-
tion for the time before the monetary unification on 1990-06-01
but a clear structural instability afterwards.

Data: seasonally unadjusted quarterly data, 1961(1) to 1995(4)

Error Correction Model (in logs) for data up to 1990(2) with
variables: M1 (real, per capita)mi, price index pi, GNP (real, per
capita) yi and long-run interest rate Ri:

∆mi = −0.30∆yi−2 − 0.67∆Ri − 1.00∆Ri−1 − 0.53∆pi

−0.12mi−1 + 0.13yi−1 − 0.62Ri−1

−0.05− 0.13Q1− 0.016Q2− 0.11Q3 + ûi,
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Motivation

The cointegration residuals ε̂i are used to exclude trending re-
gressors in the model.

Questions

1. Are the new observations after the monetary unification still
consistent with this model? (monitoring)

2. Using the full data up to 1995:
• Can a stable regression relationship be fitted to the full

sample? (testing)
• If not: When and how did the regression relationship

change? (dating)



Model frame

Consider a regression model with k-dimensional parameter θi
for yi |xi. To fit the models to observations i = 1, . . . , n an
objective function Ψ(y, x, θ) is used such that

θ̂ = argmin
θ

n∑
i=1

Ψ(yi, xi, θ).

This can also be defined implicitly based on the corresponding
score function (or estimating function) ψ(y, x, θ)

ψ(y, x, θ) =
∂Ψ(y, x, θ)

∂θ
via

n∑
i=1

ψ(yi, xi, θ̂) = 0.



Model frame

This class of M-estimators includes OLS and maximum like-
lihood (ML) estimation as well as IV, Quasi-ML, robust M-
estimation and is closely related to GMM.

Under parameter stability and some mild regularity conditions, a
central limit theorem holds

√
n(θ̂ − θ0)

d−→ N (0, V (θ0)),

where the covariance matrix

V (θ0) = {A(θ0)}−1B(θ0){A(θ0)}−1

and A and B are the expectation of the derivative of ψ and its
variance respectively.



Model frame

For the standard linear regression model

yi = x>i β + ui

with coefficients β and error variance σ2 one can either treat σ2

as a nuisance parameter θ = β or include it as θ = (β, σ2).

In the former case, the estimating functions are ψ = ψβ

ψβ(y, x, β) = (y − x>β)x

and in the latter case, they have an additional component

ψσ2(y, x, β, σ2) = (y − x>β)2 − σ2.

and ψ = (ψβ, ψσ2).



Fluctuation tests

To assess the stability of the fitted model with θ̂, we want to test
the null hypothesis

H0 : θi = θ0 (i = 1, . . . , n)

against the alternative that θi varies over “time” i.

Various patterns of deviation from H0 are conceivable: sin-
gle/multiple break(s), random walks, etc.

To test this null hypothesis, the basic idea is to assess wether
the empirical estimating functions ψ̂i = ψ(yi, xi, θ̂) deviate sys-
tematically from their theoretical zero mean.



Fluctuation tests

• empirical fluctuation processes reflect fluctuation in
– estimating functions
– F statistics
– parameter estimates
– recursive residuals

• theoretical limiting process is known
• choose boundaries which are crossed by the limiting process

(or some functional of it) only with a known probability α.
• if the empirical fluctuation process crosses the theoretical

boundaries the fluctuation is improbably large ⇒ reject the
null hypothesis.



Fluctuation tests

To capture systematic deviations the empirical fluctuation
process of scaled cumulative sums of empirical estimating func-
tions is computed:

efp(t) = B̂−1/2 n−1/2
bntc∑
i=1

ψ̂i (0 ≤ t ≤ 1).

Under H0 the following functional central limit theorem (FCLT)
holds:

efp(·) d−→ W 0(·),

where W 0 denotes a standard k-dimensional Brownian bridge.
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Fluctuation tests

In empirical samples, efp(·) is a k × n array. For significance
testing, aggregate it to a scalar test statistic by a functional λ(·)

λ

(
efpj

(
i

n

))
,

where j = 1, . . . , k and i = 1, . . . n.

Typically, λ(·) can be split up into

• λcomp(·) aggregating over components j (e.g., absolute
maximum, Euclidian norm),

• λtime(·) aggregating over time i (e.g., max, mean, range).

The limiting distribution is given by λ(W 0) and can easily be
simulated (or some closed form results are also available).



Fluctuation tests

The generalized fluctuation test framework ...

“... includes formal significance tests but its philosophy is basi-
cally that of data analysis as expounded by Tukey. Essentially,
the techniques are designed to bring out departures from con-
stancy in a graphic way instead of parametrizing particular types
of departure in advance and then developing formal significance
tests intended to have high power against these particular alter-
natives.” (Brown, Durbin, Evans, 1975)



Fluctuation tests

Aggregating over time first, yields k independent statistics, each
associated with one parameter ⇒ component of change can be
identified.

Aggregating over components first, yields a single process that
can be inspected for instabilities over time ⇒ timing of change
can be identified.

The only functional that allows for both interpretations is the dou-
ble maximum functional

max
j=1,...,k

max
i=1,...,n

|efpj(i/n)|

which is 1.192 for the Chinese currency data (p = 0.524).
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Fluctuation tests
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Fluctuation tests
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Fluctuation tests

This class of generalized M-fluctuation tests is derived in Zeileis
& Hornik (2003). It contains various well-known tests from the
statistics and econometrics literature as special cases (Zeileis
2005).

OLS-based CUSUM test (Ploberger & Krämer 1992, 1996)
If the regression model contains an intercept the first component
of the estimating functions corresponds to the OLS residuals

ψ(y, x, θ)1 = (y − x>β)

The process based on OLS residuals can capture changes in the
conditional mean.



Fluctuation tests

Nyblom-Hansen test (Nyblom 1989, Hansen 1992)
The test was designed for a random-walk alternative and em-
ploys a Cramér-von Mises functional.

It aggregates efp(·) over the components first, using the squared
Euclidian norm, and then over time, using the mean.

1

n

n∑
i=1

∣∣∣∣∣
∣∣∣∣∣efp

(
i

n

)∣∣∣∣∣
∣∣∣∣∣
2

2
.

For the German M1 ECM this is 2.541 (p = 0.026).



Fluctuation tests
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Fluctuation tests

supLM test (Andrews 1993)
The test was designed for a single shift alternative (with unknown
timing) and employs the supremum of the LM statistics for this
alternative.

It aggregates efp(·) over the components first, using a weighted
squared Euclidian norm, and then over time, using the maximum
(over a compact interval Π ⊂ [0,1]).

sup
t∈Π

LM(t) = sup
t∈Π

||efp(t)||22
t (1− t)

.

For the German M1 ECM this is 47.794 (p < 0.001).



Fluctuation tests
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Fluctuation tests

Similarly, aveLM and expLM statistics can be computed which
have some optimality properties (Andrews & Ploberger 1994).

The same type of processes can be derived based on Wald and
LR statistics. These are not special cases of the M-fluctuation
framework because they require re-estimation of the parame-
ters on sub-samples. However, the asymptotic behaviour is the
same.

Similarly, fluctuation processes can be based on recursive or
rolling parameter estimates (Ploberger, Krämer, Kontrus 1989;
Chu, Hornik, Kuan 1995) which are also not special cases but
have the same asymptotic properties.



Fluctuation tests

Furthermore, fluctuation processes can be computed from recur-
sive residuals (Brown, Durbin, Evans 1975; Bauer & Hackl 1978;
Krämer, Ploberger, Alt 1988) which are similar in spirit, but have
slightly different asymptotic properties.

In practice, this multitude of processes and functionals is often a
curse rather than a blessing. Which combination of process and
functional should be used?



Fluctuation tests

Which process?

The M-fluctuation tests only depend on one fitted model and are
hence very easy to compute and interpret ⇒ ideal for diagnostic
checking, especially with no particular alternative in mind.

If a single shift alternative is plausible, it might be worth the effort
to compute a sequence of Wald (or LR) statistics.

Recursive and rolling approaches are most plausible in a mon-
itoring setup where a model should be simultaneously updated
and tested.



Fluctuation tests

Which functional?

For explorative purposes, (double) maximum tests are most
attractive and allow identification of component and timing of
changes.

For random walk or single shift alternatives respectively (that af-
fect all parameters), the Nyblom-Hansen or supLM functionals
are most suitable.

For multiple shift alternatives, statistics based on moving sums
(increments of efp(·)) perform very well.



Monitoring with fluctuation tests

Fluctuation tests can be applied sequentially to monitor regres-
sion models (Chu, Stinchcombe, White 1996; Leisch, Hornik,
Kuan 2000; Zeileis et al. 2005).

Basic assumption: The model parameters are stable θi = θ0
in the history period i = 1, . . . , n (0 ≤ t ≤ 1).

To assess whether the model remains stable we want to test the
null hypothesis

H0 : θi = θ0 (i > n)

against the alternative that θi changes at some time in the future.
The observations i > n correspond to t > 1.



Monitoring with fluctuation tests

In the monitoring period 1 ≤ t ≤ T :

• use the same empirical fluctuation processes,
• update efp(t),
• re-compute λ(efp(t)).

For this sequential procedure not only a single critical value is
needed, but a full boundary function b(t) that satisfies

1− α = P(λ(W 0(t)) ≤ b(t) | t ∈ [1, T ])

Various boundary functions (or weighting functions) are conceiv-
able (see Horváth et al. 2004; Zeileis et al. 2005) that can direct
power to early or late changes or try to spread the power evenly.



Monitoring with fluctuation tests

Here, we use again the double maximum functional and employ
a simple boundary that spreads the power rather evenly:

b(t) = c · t,

where c controls the significance level.

The fluctuation process used is the same M-fluctuation process
used for the historical samples.

For the German M1 ECM, there is one peak already in 1990(4)
and the processes clearly crosses its boundary again in 1992(3).



Monitoring with fluctuation tests
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Monitoring with fluctuation tests
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Monitoring with fluctuation tests
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Monitoring with fluctuation tests

For the Chinese currency regime regression, there is not yet
much data in the monitoring period.

Shah, Zeileis, Patnaik (2005) set up a Web page on
which the monitoring process will be updated weekly. See
http://www.mayin.org/ajayshah/papers/CNY-regime/

http://www.mayin.org/ajayshah/papers/CNY-regime/


Monitoring with fluctuation tests
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Dating structural changes

Segmented regression model: A stable model with parameter
vector θj holds for the observations in i = ij−1 +1, . . . , ij. The
segment index is j = 1, . . . ,m+ 1.

The set of m breakpoints Im,n = {i1, . . . , im} is called m-
partition. Convention: i0 = 0 und im+1 = n.

The value of the objective function Ψ is

PSI (i1, . . . , im) =
m+1∑
j=1

psi(ij−1 + 1, ij),



Dating structural changes

where psi(ij−1+1, ij) is the minimal value of the objective func-
tion for the model fitted on the jth segment.

Dating tries to find

(̂ı1, . . . , ı̂m) = argmin
(i1,...,im)

PSI (i1, . . . , im)

over all partitions (i1, . . . , im) with ij − ij−1 ≥ bnhc ≥ k

Bellman principle of optimality:

PSI (Im,n) = min
mnh≤i≤n−nh

[PSI (Im−1,i) + psi(i+ 1, n)]



Dating structural changes

It is long-known that this problem can be solved by a dynamic
programming algorithm of order O(n2) that essentially relies on
a triangular matrix of psi(i, j) for all 1 ≤ i < j ≤ n.

The algorithm has been re-discovered several times in the litera-
ture, good overviews are given by Hawkins (2001) for likelihood-
based dating and by Bai & Perron (2003) for OLS-based dating.



Dating structural changes

For a given number of breaks m, the optimal breaks can be
found. But how should m be chosen?

The usual techniques for model selection can be applied here,
e.g.

• information criteria,
• sequential tests.

Often, these do not work well out of the box, but should be han-
dled with care and enhanced by other techniques.



Dating structural changes
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Dating structural changes

For the linear regression model, Bai & Perron (2003) provide the
asymptotic distribution of the breakpoint estimators. It is the ratio
of quadratic forms of Brownian bridges.

From this asymptotic distribution, confidence intervals can be
computed.

For the German M1 ECM, the estimated breakpoint is 1990(3).
A 95% confidence interval is 1990(1) to 1991(1).



Dating structural changes
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Dating structural changes
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Software

All methods are implemented in the R system for statistical com-
puting and graphics (R Development Core Team 2005)

http://www.R-project.org/

in the contributed package strucchange (Zeileis et al. 2002).

Both are available under the GPL (General Public Licence) from
the Comprehensive R Archive Network (CRAN):

http://CRAN.R-project.org/

http://www.R-project.org/
http://CRAN.R-project.org/


Summary

• Given a model fitted by M-type estimator, parameter stability
can be captured in partial sums of the empirical estimating
functions.

• FCLT is the basis for inference.
• Significance tests can be constructed by aggregating the em-

pirical fluctuation process to a scalar test statistic.
• Traditional significance tests can be enhanced by graphics

that bring out the timing and/or the component of the struc-
tural change.

• Framework includes (representatives) from all important
classes of structural change tests based on F statstistics,
ML scores, OLS residuals.



Summary

• The same processes can be used for sequential monitoring
of structural changes.

• Boundary functions can direct power against early/late
changes.

• If an (additive) objective function exists (anti-derivative of es-
timating functions), the model can also be optimally seg-
mented.

• Breakpoints are determined by a dynamic programming al-
gorithm.

• Confidence intervals can also be computed.
• Software is freely available, works out of the box for linear

regression, can be adapted to more general models.
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