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Abstract

Maximally selected statistics for the estimation of simple cutpoint models are embedded
into a generalized conceptual framework based on conditional inference procedures. This
powerful framework contains most of the published procedures in this area as special cases,
such as maximally selected χ2 and rank statistics, but also allows for direct construction of
new test procedures for less standard test problems. As an application, a novel maximally
selected rank statistic is derived from this framework for a censored response partitioned
with respect to two ordered categorical covariates and potential interactions. This new test
is employed to search for a high-risk group of rectal cancer patients treated with a neo-
adjuvant chemoradiotherapy. Moreover, a new efficient algorithm for the evaluation of the
asymptotic distribution for a large class of maximally selected statistics is given enabling the
fast evaluation of a large number of cutpoints.

Keywords: asymptotic distribution, changepoint, conditional inference, maximally selected statis-
tics.

1. Introduction

Dichotomization of variables measured at higher scale levels prior to model building is bad practice
(Royston et al. 2006, among many others). It will result in loss of power and sophisticated
regression models that adapt themselves to the complexity of the regression problem at hand are
widely available. However, simple regression models capturing step-shaped relationships between
two variables (such as a single jump in the mean function) are valuable for the implementation
of scientific results into the real world: a one-parameter ‘good–poor’ or ‘high–low’ decision rule is
attractive to practitioners because of its simplicity.

Such rules of thumb are frequently used to investigate new predictor variables for patient survival
in oncology. Galon et al. (2006) estimate cutpoints for various characteristics of immune cells
within colorectal tumor samples, such as type, density or location, with respect to their ability
to differentiate between patients with good and poor prognosis. Buccisano et al. (2006) obtain a
threshold for residual leukemic cells in acute myeloid leukemia patients from maximally selected
log-rank statistics. Beyond applications in oncology, the identification of ecological thresholds is
of increasing interest (see Huggett 2005), e.g., the estimation of cutpoints for habitat factors dis-
criminating between ecosystems with low and high abundance of certain indicator species (Müller
and Hothorn 2004).

Two questions arise from a statistical point of view. In a first step, we have to make sure that
there is some relevant association between response and covariate and in a second step we want
to estimate the ‘best’ cutpoint in order to approximate this relationship by a simple model. It
is convenient to deal with both problems separately. The first problem needs to be addressed
by a formal hypothesis test for the null hypothesis of independence between covariate (to be
dichotomized) and response variable. A test with power against shift alternatives, i.e., departures
from the null hypothesis where the distribution of the response variable varies between two groups
of observations, is of special interest. Once we are able to reject the null hypothesis, we are
interested in the alternative which led to the rejection, i.e., want to estimate a cutpoint or partition.
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2 Generalized Maximally Selected Statistics

The first procedure of this kind, utilizing the maximum over multiple χ2 statistics for 2 × 2
tables, was described by Miller and Siegmund (1982). Lausen and Schumacher (1992) derived an
approximation for the asymptotical distribution of maximally selected rank statistics, extending
the area of application to continuous and censored response variables. Betensky and Rabinowitz
(1999) propose a maximally selected χ2 test for nominal response variables measured at k > 2
levels and ordered categorical data.
Based on the ideas underlying these established techniques, we suggest a new generalized class of
maximally selected statistics that contains the statistics sketched above as special cases but also
allows for direct construction of new test procedures for less standard test problems. For evaluating
the distribution of the test statistics, a conditional inference approach is adopted by embedding
the tests into the theory of permutation tests of Strasser and Weber (1999). This permits efficient
computation of the complete correlation structure of the statistics to be maximized. For statistics
derived from cutpoints, the correlations have a special product form which we exploit for evaluation
of the conditional asymptotic distribution: A linear-time algorithm is described which enables the
fast assessment of a large number of cutpoints and improves upon approximations currently in
use.
For illustrating the flexibility of the new framework for generalized maximally selected statistics
we exemplify how the methodology can be extended to new areas of application by constructing
a maximally selected log-rank statistic for a censored response partitioned with respect to two
ordered categorical covariates and potential interactions. This new test is employed to search for
a high-risk group determined by the T and N-category of rectal cancer patients. Further novel
procedures include maximally selected statistics for multivariate responses or maximally selected
permutation tests.

2. Binary partitions and two-sample statistics

We are provided with independent and identically distributed observations (Yi,Xi) for i = 1, . . . , n
and are interested in testing the null hypothesis of independence of the response variable Y ∈ Y
and covariate(s) X ∈ X

H0 : D(Y|X) = D(Y)

against shift alternatives. That is, departures from the null hypothesis where the distribution
D(·) of the response variable varies between two groups of observations (with respect to X) are of
special interest.
Such binary partitions are defined in advance by p candidate setsA1, . . . , Ap. Each setAj partitions
the observations into two groups based on the covariate(s) only. For an ordered univariate covariate
X, these sets are typically constructed via cutpoints, i.e., Aj = {X|X ≤ ξj}. When X is a factor
at k levels, there are p = 2k−1 possible partitions of the observations into two samples. For
multivariate covariates, the Aj can code splits in interactions of the components of X. A simple
zero–one dummy coding for the jth partition is gj(X) = I(X ∈ Aj) where I denotes the indicator
function. Only partitions satisfying a sample size constraint

∑
i gj(Xi) ∈ (nε, n − nε) for some

fixed ε ∈ (0, 0.5) are taken into account (typically ε = 0.1).
The two-sample problem associated with the jth binary partition can be tested using a linear
statistic

Tj = vec

{
n∑
i=1

gj(Xi)h(Yi)>
}
∈ Rq×1

where h : Y → Rq×1 is an influence function applied to the responses. The function h(Yi) =
h{Yi, (Y1, . . . ,Yn)} may depend on the full vector of responses (Y1, . . . ,Yn), however only in
a permutation symmetric way, i.e., the value of the function must not depend on the order in
which Y1, . . . ,Yn appear. For example, with h being a rank transformation for a continuous
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response Y, the linear statistic Tj is the sum of the ranks for observations from Aj , i.e., equals
the Wilcoxon-Mann-Whitney statistic. When Y is a factor measured at k levels, h ∈ R(k−1)×1

is the corresponding dummy coding and Tj corresponds to the 2 × k contingency table of the
transformation gj(X) and response Y.
A joint linear statistic for all binary partitions is

T = (T1, . . . ,Tp) = vec

{
n∑
i=1

g(Xi)h(Yi)>
}
∈ Rpq×1

including all p two-sample partitions, as defined by g(X) = {g1(X), . . . , gp(X)}, simultaneously
for testing H0.

3. Standardization and estimation

To assess the partitions/cutpoints on a common scale, the corresponding statistics Tj are typically
standardized using some location and scale measure. Consequently, inference can be based on the
maximally selected absolute standardized statistics and the best separating partition is the one
for which the maximum is attained.
For obtaining valid estimates of the mean and covariance of T, either a parametric model needs to
be specified or non-parametric techniques can be employed, such as permutation or re-sampling
approaches. Here, we adopt the latter and utilize the permutation test framework established by
Strasser and Weber (1999). Thus, T is standardized via its conditional expectation µ = E(T|S) ∈
Rpq×1 and covariance Σ = V(T|S) ∈ Rpq×pq, derived under H0 by conditioning on all possible
permutations S of the responses Y1, . . . ,Yn. Closed-form expressions are as given by Strasser and
Weber (1999):

µ = E(T|S) = vec

[{
n∑
i=1

g(Xi)

}
E(h|S)>

]

Σ = V(T|S) =
n

n− 1
V(h|S)⊗

{∑
i

g(Xi)⊗ g(Xi)>
}

− 1
n− 1

V(h|S)⊗

{∑
i

g(Xi)

}
⊗

{∑
i

g(Xi)

}>
where ⊗ denotes the Kronecker product, and the conditional expectation of the influence function
is E(h|S) = n−1

∑
i h(Yi) with corresponding q × q covariance matrix V(h|S) = n−1

∑
i{h(Yi)−

E(h|S)}{h(Yi)− E(h|S)}>.
When the observations are organized in independent blocks (such as centers in a multicenter trial),
only permutations within blocks are admissible and thus expectations and covariance matrices have
to be computed separately within each block. The expectation µ and covariance matrix Σ of T
are then obtained as the sum over all expectations and covariance matrices. Therefore, it is easily
possible to take a block randomization scheme in a randomized clinical trial or dependent sample
designs into account.
The key step for constructing a maximally selected statistic is the standardization of T by its
conditional expectation µ and covariance matrix Σ: the test statistic is the absolute maximum of
the standardized linear statistic

Tmax = max
|T− µ|√
diag(Σ)

.

When the test statistic is large enough to indicate a deviation from the null hypothesis we are
interested in determining the partition with largest standardized statistic: the best separating
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partition Aj? is the one for which the maximum is attained, i.e., for which the absolute value of
the standardized statistic Tj? equals Tmax.

4. Inference

For testing H0, the conditional distribution of Tmax given all permutations of the responses is used
as reference distribution. Ideally, we want to compute the exact conditional distribution but this is
only possible in special small sample situations (Boulesteix 2006a,b; Boulesteix and Strobl 2007).
Conditional Monte-Carlo methods can be used to approximate the exact conditional distribution
rather easily: evaluate the test statistic Tmax for a large number of randomly shuffled responses Y
and compute the p-value as proportion of permuted statistics that exceed the observed statistic.

Moreover, the exact conditional distribution can be approximated by its limiting distribution.
For n → ∞ the distribution of the multivariate linear statistic T tends to a multivariate normal
distribution with mean µ and covariance matrix Σ (Strasser and Weber 1999, Theorem 3). Thus, in
order to approximate P(Tmax > c) we have to evaluate the probability P{max(|Z1|, ..., |Zpq|) > c}
for standard normal random variables Z1, . . . , Zpq with correlation matrix R corresponding to the
covariance matrix Σ and some c > 0. The computation of this probability is possible using Quasi-
Monte-Carlo methods (Genz 1992) for moderate dimensions (pq < 100, say) but remains infeasible
for higher dimensions. However, for the most important case of statistics maximally selected over
cutpoints induced by an ordered covariate X and an ordered, censored or binary response Y, the
distribution can be evaluated numerically by an algorithm with computing time being linear in
the number of cutpoints p as will be shown in the following.

5. A new and fast approximation

Let Aj = (−∞, ξj ] with ξj < ξk for 1 ≤ j < k ≤ p denote the partitioning sets and let q = 1 (i.e.,
ordered, censored or binary response variable). Then, the correlation between Tj and Tk is given
by

ρj,k =
Σj,k√

Σj,jΣk,k
=

√
{n−

∑
i gk(Xi)}

∑
i gj(Xi)

{n−
∑
i gj(Xi)}

∑
i gk(Xi)

.

It follows that the correlation matrix R = (ρj,k)j,k=1,...,p is completely determined by the subdi-
agonal elements ρj,j−1, j = 2, . . . , p and it holds that

ρ1,k =
k∏
j=2

ρj,j−1.

With v = (ρ1,1, . . . , ρ1,p) the lower triangular part of R can be written as v(1/v)> and it follows
from Meurant (1992, Section 2.1) that the inverse R−1 of the correlation matrix is a tridiagonal
symmetric band matrix:

R−1 =



r1,1 r1,2 0 0 . . . 0
r1,2 r2,2 r2,3 0 . . . 0
0 r2,3 r3,3 r3,4 . . . 0

0 0 r3,4 r4,4
. . . 0

...
...

...
. . . . . .

...
0 0 0 0 rp−1,p−1 rp−1,p

0 0 0 0 rp−1,p rp,p


.
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The probability that any of |Z1|, . . . , |Zp| exceeds c > 0 is

P(Tmax > c) = 1− 1√
|R|(2π)p

c∫
−c

exp
(
−1

2
z>R−1z

)
dz.

Due to the band structure of R−1 the quadratic form z>R−1z simplifies to

z>R−1z = r1,1z
2
1 + 2r2,1z1z2 + r2,2z

2
2 + · · ·+ 2rp,p−1zpzp−1 + rp,pz

2
p

which is employed for evaluating the multivariate normal distribution numerically (Genz and
Kahaner 1986). With φ(z) = exp (−z/2) we have

c∫
−c

φ
(
z>R−1z

)
dz =

c∫
−c

φ(r1,1z2
1)

c∫
−c

φ(2r2,1z1z2 + r2,2z
2
2)

c∫
−c

. . .

c∫
−c

φ(2rp,p−1zpzp−1 + rp,pz
2
p)dz

and with recursively defined functions fj (j = 2, . . . , p+ 1)

fj(z) =

c∫
−c

φ
(
2rj,j−1zz̃ + rj,j z̃

2
)
fj+1(z̃)dz̃ ∀j = 2, . . . , p; fp+1(z) ≡ 1

the above integral can be re-formulated recursively:

P(Tmax > c) = 1− 1√
|R|(2π)p

c∫
−c

φ
(
z>R−1z

)
dz

= 1− 1√
|R|(2π)p

c∫
−c

φ(r1,1z2)f2(z)dz.

This integral can be evaluated numerically in O(p) starting with fp utilizing the techniques de-
scribed by Miwa et al. (2000): For a two-dimensional grid of z ∈ [−c, c] and z̃ ∈ [−c, c] values, the
function fj is evaluated and aggregated over z̃ only, yielding values of fj(z) for a grid of z values.
These values are then re-used when computing fj−1.
Comparing this new approximation of the asymptotic distribution with previously suggested ap-
proximations (see Figure 1), it should be pointed out that these approximations differ with respect
to the asymptotics for p, the number of cutpoints. In a conditional framework, it is most natural
to treat p as fixed (given the observed data). Taking an unconditional view, it depends on the
partition-generating mechanism whether p is fixed as n → ∞ or increases. The former holds for
splits at sample quantiles for numeric covariates or for splits in categorical variables where p = k−1
splits are possible for ordinal factors or p = 2k−1 for unordered factors. However, if all possible
splits in a continuous covariate X are considered, then p→∞ as n→∞ and the sequence of test
statistics Z1, . . . , Zp is known to converge to a stochastic Gaussian process with continuous paths:

Z0(t) =
B0(t)√
t(1− t)

, t ∈ [0, 1]

where B0(t) is a Brownian bridge that is scaled to zero mean and unit variance (Miller and
Siegmund 1982). The correlation of Z0(s) and Z0(t) for s ≤ t is

√
s(1− t)/

√
t(1− s) and is

exactly the same as above. More formally, with tj = limn→∞ n−1
∑
i gj(Xi), Zj and Z0(tj) are
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6 Generalized Maximally Selected Statistics

Figure 1: Approximations of the distribution of a maximally selected Wilcoxon-statistic for n = 100
observations and p = 20 cutpoints. The exact distribution as approximated by 30, 000 random
permutations of the data is shown as a solid line, most closely approximated by the conditional
asymptotic distribution suggested here.
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asymptotically identical in distribution. Therefore, the difference between the two approaches
is that for increasing p the asymptotical distribution is given by supt∈[ε,1−ε] Z

0(t) whereas for
fixed p it is maxt∈{t1,...,tp} Z

0(t). Thus, the supremum over the full interval will always be larger
than the maximum over a subset of times/partitions because of the additional variation in the
intervals (tj , tj+1). The difference between the two approaches decreases with tj+1 − tj . Figure 1
shows that the exact conditional distribution (approximated by 30, 000 permutations) is most
closely captured by the conditional asymptotic distribution suggested above. Less accurate is the
improved Bonferroni correction (Worsley 1982) which also uses a fixed p. The two approximations
for increasing p (Jennen 1985; Hansen 1997) are (not surprisingly) clearly below.
These considerations about the asymptotic behavior of p also raise the question about the quality
of the asymptotic approximation for finite samples when p is large compared to n. The joint
approximation is appropriate if the normal approximation for each two-sample statistic is. Con-
sider a split in a categorical variable with large number of categories, e.g., 10 categories with 10
observations each leads to n = 100 but p = 210−1 = 512. But since each two-sample statistic is
based on at least 10 and 90 observations, respectively, the normal approximation should work well
enough.

6. Applications and special cases

Maximally selected statistics as described in Section 2 can be applied to covariates X and responses
Y measured at arbitrary scales; appropriate influence functions h for nominal, ordered, numeric,
censored and multivariate response variables are given in the sequel (see Hothorn et al. 2006, for
further details), followed by a description of how to partition the covariate space for nominal,
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ordered and multivariate covariates and the derivation of a novel maximally selected statistic.
For categorical responses, h is typically a simple dummy coding for nominal Y and a vector of
numeric scores (corresponding to the k levels) for ordinal Y. Many possible influence functions
are available for discrete or continuous covariates, e.g., identity, square root, log, or rank transfor-
mations; and for censored responses log-rank or Savage scores can be applied.
The most important situation of a univariate and (at least) ordinally measured covariate X leads
to partitions, and thus functions gj , induced by cutpoints defined by the realizations X1, . . . ,Xn.
More specifically, Aj = (−∞, ξj ], where ξj is the jth element of the increasingly sorted unique
realizations of X. Thus, having identified the best separating partition Aj? , the estimated cutpoint
is ξj? . For nominal covariates, all 2k−1 binary partitions of the k levels are considered. For
multiple covariates, we simply look at all binary partitions induced by interactions of all covariates
simultaneously.
This flexible framework can now be utilized to implement a wide variety of already published as
well as novel maximally selected statistics. One should bear in mind that we always utilize the
conditional null distribution which might differ from the unconditional distribution as pointed out
above.

Maximally selected χ2 statistics. The response variable is a factor at two levels a and b, say,
and h(Yi) = I(Yi = a) is a dummy coding. The ordered univariate covariate X offers p ≤ n− 1
cutpoints ξ1, . . . , ξp leading to gj(Xi) = I(Xi ≤ ξj) for j = 1, . . . , p. Thus,

Tj =
n∑
i=1

gj(Xi)h(Yi)> =
n∑
i=1

I(Xi ≤ ξj)I(Yi = a) ∈ R

is the number of observations i with Xi ≤ ξj and Yi = a. Tj is one element of the 2×2 contingency
table for I(X ≤ ξj) and I(Y = a) and determines the complete table because the margins are
fixed. The statistic (T− µ)2/diag(Σ) ∈ Rp×1 is equivalent to the p-vector of χ2 statistics for all p
tables and our maximally selected statistic Tmax is a monotone transformation of the maximally
selected χ2 statistic proposed by Miller and Siegmund (1982). For nominal responses Y with
k > 2 levels, the statistic Tj corresponds to the first k − 1 columns of the first row of the 2 × k
contingency table of Xi ≤ ξj and Y. The Tmax statistic is the maximum over the maximum of p
standardized contingency tables, an alternative to maximally selected χ2 statistics for larger tables
(Betensky and Rabinowitz 1999).

Maximally selected Cochran-Armitage statistics. The ordered response Y is measured at
k ordered levels. The influence function h assigns a score γj to each level j = 1, . . . , k. For the
special case γj = j this corresponds to the Cochran-Armitage test and consequently the statistic
Tmax is equivalent to a maximally selected Cochran-Armitage statistic (Betensky and Rabinowitz
1999). For arbitrary scores, the resulting test is a maximally selected test based on linear-by-linear
association statistics.

Maximally selected rank statistics. Let h denote the rank transformation of a univariate
response Y. Then, the statistic

Tj =
n∑
i=1

I(Xi ≤ ξj)h(Yi)> =
∑

i:Xi≤ξj

rank(Yi)

is the sum of the ranks for all observations with Xi ≤ ξj , i.e., the Wilcoxon rank sum statistic. More
generally, h can be any rank transformation (normal scores, median scores, log-rank scores etc.)
and the linear statistic Tj is equivalent to a linear rank statistic (Hájek et al. 1999). Consequently,
Tmax is equivalent to a maximally selected rank statistic in the sense of Lausen and Schumacher
(1992, 1996) and Hothorn and Lausen (2003).
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Maximally selected statistics for multiple covariates. When multiple covariates are under
test simultaneously, we consider all unique partitions induced by all possible cutpoints in each
covariate. For an ordered response, this special case of maximally selected rank statistics for
multiple covariates has first been studied by Lausen et al. (2004).

Three novel maximally selected statistics. Due to the flexibility of the generalized frame-
work we can easily construct tests adapted to specific problems by choosing a suitable set of can-
didate partitions g and transformation of the response h. Here, we exemplify three applications:
maximally selected permutation tests, maximally selected statistics for multivariate responses and
maximally selected statistics for interactions. Instead of using a rank-based transformation, it
is often more natural to use the original observations, i.e., employ the identity transformation
h(Y) = Y. Thus, each linear statistic Tj corresponds to a two-sample permutation test for lo-
cation alternatives. For a multivariate response, such as abundances of multiple species under
investigation (De’ath 2002), the influence function h is a combination of influence functions ap-
propriate for any of the univariate response variables as suggested above. Finally, for multiple
covariates, we can not only combine the partitions g for each individual covariate—corresponding
to splits in one covariate at a time—but also employ splits in interactions of the covariates. Con-
trary to previously suggested maximally selected procedures (Lausen et al. 2004) or recursive
splitting algorithms such as CART (Breiman et al. 1984), we can simultaneously search for splits
in more than one variable and thus capture interactions like the well-known XOR problem. Be-
low, such a strategy is employed for splitting in two ordinal covariates (an approach to splitting
in SNP-SNP interactions is given in Boulesteix et al. 2007). To reflect the ordering, it is natural
to include only those interactions that correspond to a single cutpoint in each covariate given the
level of the other (and vice versa). Thus, interactions that would correspond to multiple cutpoints
in one covariate given the level of the other are excluded from the set of all potential interactions.

7. Illustration

We attempt to identify high- and low-risk groups of rectal cancer patients by differentiation with
respect to pathological T and N category (ordinal assessments of tumours and lymph nodes,
respectively). The data are taken from the preoperative arm of the CAO/ARO/AIO-94 trial
(Sauer et al. 2004) and comprise survival times for n = 349 patients treated with a neo-adjuvant
chemoradiotherapy regime starting before surgery. All patients belong to M category (assessment
of metastates) M0, 48 patients from category M1 were excluded from the analysis.
For this situation, we propose a new maximally selected statistic for a censored response and two
ordered covariates with potential interactions. Log-rank scores are used as influence function h
for the censored response and the potential partitions g are constructed from all combinations of
the five T and three N categories. As both categories are ordered, only those partitions are used
which are ordered in T given N and vice versa yielding 194 candidate partitions, 187 of which

Table 1: Pathological T and N category of 349 rectal cancer patients treated with a preoperative
chemoradiotherapy.

N category
T category N0 N1 N2 + N3 Total

ypT0 36 4 0 40
ypT1 16 5 0 21
ypT2 90 14 7 111
ypT3 107 33 29 169
ypT4 3 1 4 8
Total 252 57 40 349
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Figure 2: Survival times of rectal cancer patients in two risk groups identified by a novel maximally
selected log-rank statistic based on interactions of T and N category.

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (in months)

O
ve

ra
ll 

S
ur

vi
va

l P
ro

ba
bi

lit
y

N0 or N1 (excluding N1 and ypT4); n = 308

N2 and N3 (plus N1 and ypT4); n = 41

meet the sample size constraints. The maximum of the absolute values of the corresponding 187
standardized statistics is 8.69 with a p-value smaller than 0.0001. The partition chosen by the
algorithm identifies all patients from category N2 or N3 as being under high risk and almost all
patients from N0 and N1 as being under low risk. As an exception, a single patient with ypT4
and N1 is assigned to the high risk group as well—whether or not this decision is sensible or
results from random variation cannot be judged based on one observation alone. Figure 2 depicts
Kaplan-Meier estimates of the survival times in the two risk groups.

To relate these results to current practice, we employ the TNM system (Sobin and Wittekind
2002) for cancer classification. It defines three stages by fixed cutpoints in the interaction of T
and N category: stage I vs. II is discriminated by the T category, stage II vs. III by the N category
(an additional stage IV is based on the M category). Thus, TNM also uses the N category to
distinguish more severe forms of cancer; however, it uses the split N ≤ N0 (associated with a much
smaller standardized statistic of 7.31) while our procedure selects N ≤ N1 by maximizing over
all partially ordered interactions (including all fixed interactions from the TNM stages). Placing
category N1 in the low-risk group might be associated with application of chemoradiotherapy
before rather than after surgical resection (for which the TNM staging is applied). This and other
prognostic factors for preoperative chemoradiotherapy are currently under investigation (Rödel
et al. 2007).

8. Discussion

Maximally selected statistics for the estimation of simple cutpoint models have been in use since
many years. Many researchers appreciate a model that is easy to communicate and implement in
practice. Of course, the trade-off between simplicity and accuracy has to be carefully investigated.

A new class of generalized maximally selected statistics based on the conditional inference frame-
work of Strasser and Weber (1999) allows for a unified treatment of different kinds of maximally
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selected statistics. Test procedures from this framework can be adapted to new test problems by
specifying an influence function h, suitable for the scale level of the response, and setting up a set
of candidate partitions g determined from the available covariates. As the number of potential
partitions can become large, efficient algorithms are required for evaluating the distribution of
the maximum statistic. For partitions based on cutpoints, we provide such an algorithm that
computes the asymptotic distribution in linear time.
The implementation of (known and newly designed) maximally selected statistics only requires the
specification of the binary candidate partitions, via a function g, and a problem-specific influence
function h. Linear statistics T and the test statistic Tmax can be computed in the R system (R
Development Core Team 2007) utilizing the function maxstat_test() from package coin (Hothorn
et al. 2006, 2007) in which approximations for the distribution of Tmax are readily available, both
via the asymptotic distribution and Monte-Carlo methods (also in the presence of blocks, e.g., in
multicenter trials).
In summary, a unified treatment of maximally selected statistics for nominal, ordered, discrete
and continuous numeric, censored and multivariate response variables as well as nominal, ordered
and multivariate covariates to be dichotomized is now possible both conceptually and practically.
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