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Abstract

Recursive binary partitioning is a popular tool for regression analysis. Two fundamental
problems of exhaustive search procedures usually applied to fit such models have been known
for a long time: overfitting and a selection bias towards covariates with many possible splits
or missing values. While pruning procedures are able to solve the overfitting problem, the
variable selection bias still seriously affects the interpretability of tree-structured regression
models. For some special cases unbiased procedures have been suggested, however lacking a
common theoretical foundation. We propose a unified framework for recursive partitioning
which embeds tree-structured regression models into a well defined theory of conditional
inference procedures. Stopping criteria based on multiple test procedures are implemented and
it is shown that the predictive performance of the resulting trees is as good as the performance
of established exhaustive search procedures. It turns out that the partitions and therefore
the models induced by both approaches are structurally different, confirming the need for an
unbiased variable selection. Moreover, it is shown that the prediction accuracy of trees with
early stopping is equivalent to the prediction accuracy of pruned trees with unbiased variable
selection. The methodology presented here is applicable to all kinds of regression problems,
including nominal, ordinal, numeric, censored as well as multivariate response variables and
arbitrary measurement scales of the covariates. Data from studies on glaucoma classification,
node positive breast cancer survival and mammography experience are re-analyzed.

Keywords: permutation tests, variable selection, multiple testing, ordinal regression trees, multi-
variate regression trees.

1. Introduction

Statistical models that regress the distribution of a response variable on the status of multiple
covariates are tools for handling two major problems in applied research: prediction and expla-
nation. The function space represented by regression models focusing on the prediction problem
may be arbitrarily complex; indeed, ‘black box’ systems like support vector machines or ensemble
methods are excellent predictors. In contrast, regression models appropriate for gaining insight
into the mechanism of the data generating process are required to offer a human readable repre-
sentation. Generalized linear models or the Cox model are representatives of regression models
where parameter estimates of the coefficients and their distribution are used to judge the relevance
of single covariates.

With their seminal work on automated interaction detection (AID), Morgan and Sonquist (1963)
introduced another class of simple regression models for prediction and explanation nowadays
known as ‘recursive partitioning’ or ‘trees’. Many variants and extensions have been published in
the last 40 years, the majority of which are special cases of a simple two-stage algorithm: first
partition the observations by univariate splits in a recursive way and second fit a constant model
in each cell of the resulting partition. The most popular implementations of such algorithms are
‘CART’ (Breiman, Friedman, Olshen, and Stone 1984) and ‘C4.5’ (Quinlan 1993). Not unlike AID,
both perform an exhaustive search over all possible splits maximizing an information measure of
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2 Unbiased Recursive Partitioning: A Conditional Inference Framework

node impurity selecting the covariate showing the best split. This approach has two fundamental
problems: overfitting and a selection bias towards covariates with many possible splits. With
respect to the overfitting problem Mingers (1987) notes that the algorithm

[. . . ] has no concept of statistical significance, and so cannot distinguish between a
significant and an insignificant improvement in the information measure.

Within the exhaustive search framework, pruning procedures, mostly based on some form of
cross-validation, are necessary to restrict the number of cells in the resulting partitions in order
to avoid overfitting problems. While pruning is successful in selecting the right-sized tree, the
interpretation of the trees is affected by the biased variable selection. This bias is induced by
maximizing a splitting criterion over all possible splits simultaneously and was identified as a
problem by many researchers (e.g., Kass 1980; Segal 1988; Breiman et al. 1984, p. 42). The nature
of the variable selection problem under different circumstances has been studied intensively (White
and Liu 1994; Jensen and Cohen 2000; Shih 2004) and Kim and Loh (2001) argue that exhaustive
search methods are biased towards variables with many missing values as well. With this article
we enter at the point where White and Liu (1994) demand for

[. . . ] a statistical approach [to recursive partitioning] which takes into account the
distributional properties of the measures.

We present a unified framework embedding recursive binary partitioning with piecewise constant
fits into the well-defined theory of permutation tests developed by Strasser and Weber (1999). The
conditional distribution of statistics measuring the association between responses and covariates
is the basis for an unbiased selection among covariates measured at different scales. Moreover,
multiple test procedures are applied to determine whether no significant association between any
of the covariates and the response can be stated and the recursion needs to stop. We show that
such statistically motivated stopping criteria implemented via hypothesis tests lead to regression
models whose predictive performance is equivalent to the performance of optimally pruned trees,
therefore offering an intuitive and computationally efficient solution to the overfitting problem.
The development of the framework presented here was inspired by various attempts to solve both
the overfitting and variable selection problem published in the last 25 years (a far more detailed
overview is given by Murthy 1998). The χ2 automated interaction detection algorithm (‘CHAID’,
Kass 1980) is the first approach based on statistical significance tests for contingency tables. The
basic idea of this algorithm is the separation of the variable selection and splitting procedure. The
significance of the association between a nominal response and one of the covariates is investigated
by a χ2 test and the covariate with highest association is selected for splitting. Consequently, this
algorithm has a concept of statistical significance and a criterion to stop the algorithm can easily
be implemented based on formal hypothesis tests.
A series of papers aiming at unbiased recursive partitioning for nominal and continuous responses
starts with ‘FACT’ (Loh and Vanichsetakul 1988), where covariates are selected within an analysis
of variance (ANOVA) framework treating a nominal response as the independent variable. Basi-
cally, the covariate with largest F -ratio is selected for splitting. Nominal covariates are coerced to
ordered variables via the canonical variate of the corresponding matrix of dummy codings. This
induces a biased variable selection when nominal covariates are present and therefore ‘QUEST’
(Loh and Shih 1997) addresses this problem by selecting covariates on a P -value scale. For contin-
uous variables, P -values are derived from the corresponding ANOVA F -statistics and for nominal
covariates a χ2 test is applied. This approach reduces the variable selection bias substantially.
Further methodological developments within this framework include the incorporation of a linear
discriminant analysis model within each node of a tree (Kim and Loh 2003) and multiway splits
(‘CRUISE’, Kim and Loh 2001). For continuous responses, ‘GUIDE’ (Loh 2002) seeks to implement
unbiasedness by a different approach. Here, the association between the sign of model residuals
and each covariate is measured by a P -value derived from a χ2 test. Continuous covariates are
categorized to four levels prior to variable selection; however, models are fitted to untransformed
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covariates in the nodes. These approaches are already very successful in reducing the variable
selection bias and typically perform very well in the partitioning tasks they were designed for.
Building on these ideas, we introduce a new unifying conceptual framework for unbiased recursive
partitioning based on conditional hypothesis testing that, in addition to models for continuous and
categorical data, includes procedures applicable to censored, ordinal or multivariate responses.

Previous attempts to implement permutation (or randomization) tests in recursive partitioning
algorithms aimed at solving the variable selection and overfitting problem (Jensen and Cohen
2000), however focusing on special situations only. Resampling procedures have been employed for
assessing split statistics for censored responses by LeBlanc and Crowley (1993). Frank and Witten
(1998) utilize the conditional Monte-Carlo approach for the approximation of the distribution of
Fisher’s exact test for nominal responses and the conditional probability of an observed contingency
table is used by Martin (1997). The asymptotic distribution of a 2×2 table obtained by maximizing
the χ2 statistic over possible splits in a continuous covariate is derived by Miller and Siegmund
(1982). Maximally selected rank statistics (Lausen and Schumacher 1992) can be applied to
continuous and censored responses as well and are applied to correct the bias of exhaustive search
recursive partitioning by Lausen, Hothorn, Bretz, and Schumacher (2004). An approximation to
the distribution of the Gini criterion is given by Dobra and Gehrke (2001). However, lacking
solutions for more general situations, these auspicious approaches are hardly ever applied and the
majority of tree-structured regression models reported and interpreted in applied research papers
is biased. The main reason is that computationally efficient solutions are available for special cases
only.

The framework presented in Section 3 is efficiently applicable to regression problems where both
response and covariates can be measured at arbitrary scales, including nominal, ordinal, discrete
and continuous as well as censored and multivariate variables. The treatment of special situations
is explained in Section 4 and applications including glaucoma classification, node positive breast
cancer survival and a questionnaire on mammography experience illustrate the methodology in
Section 5. Finally, we show by benchmarking experiments that recursive partitioning based on sta-
tistical criteria as introduced in this paper lead to regression models whose predictive performance
is as good as the performance of optimally pruned trees.

2. Recursive binary partitioning

We focus on regression models describing the conditional distribution of a response variable Y
given the status of m covariates by means of tree-structured recursive partitioning. The response
Y from some sample space Y may be multivariate as well. The m-dimensional covariate vector
X = (X1, . . . , Xm) is taken from a sample space X = X1 × · · · × Xm. Both response variable
and covariates may be measured at arbitrary scales. We assume that the conditional distribution
D(Y|X) of the response Y given the covariates X depends on a function f of the covariates

D(Y|X) = D(Y|X1, . . . , Xm) = D(Y|f(X1, . . . , Xm)),

where we restrict ourselves to partition based regression relationships, i.e., r disjoint cells B1, . . . , Br

partitioning the covariate space X =
⋃r

k=1 Bk. A model of the regression relationship is to be
fitted based on a learning sample Ln, i.e., a random sample of n independent and identically
distributed observations, possibly with some covariates Xji missing,

Ln = {(Yi, X1i, . . . , Xmi); i = 1, . . . , n}.

A generic algorithm for recursive binary partitioning for a given learning sample Ln can be for-
mulated using non-negative integer valued case weights w = (w1, . . . , wn). Each node of a tree is
represented by a vector of case weights having non-zero elements when the corresponding observa-
tions are elements of the node and are zero otherwise. The following generic algorithm implements
recursive binary partitioning:
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4 Unbiased Recursive Partitioning: A Conditional Inference Framework

1. For case weights w test the global null hypothesis of independence between any of the m
covariates and the response. Stop if this hypothesis cannot be rejected. Otherwise select the
j∗th covariate Xj∗ with strongest association to Y.

2. Choose a set A∗ ⊂ Xj∗ in order to split Xj∗ into two disjoint sets A∗ and Xj∗ \ A∗. The
case weights wleft and wright determine the two subgroups with wleft,i = wiI(Xj∗i ∈ A∗)
and wright,i = wiI(Xj∗i 6∈ A∗) for all i = 1, . . . , n (I(·) denotes the indicator function).

3. Recursively repeat steps 1 and 2 with modified case weights wleft and wright, respectively.

As we sketched in the introduction, the separation of variable selection and splitting procedure
into steps 1 and 2 of the algorithm is the key for the construction of interpretable tree structures
not suffering a systematic tendency towards covariates with many possible splits or many missing
values. In addition, a statistically motivated and intuitive stopping criterion can be implemented:
We stop when the global null hypothesis of independence between the response and any of the m
covariates cannot be rejected at a pre-specified nominal level α. The algorithm induces a partition
{B1, . . . , Br} of the covariate space X , where each cell B ∈ {B1, . . . , Br} is associated with a
vector of case weights.

3. Recursive partitioning by conditional inference

In the main part of this section we focus on step 1 of the generic algorithm. Unified tests for
independence are constructed by means of the conditional distribution of linear statistics in the
permutation test framework developed by Strasser and Weber (1999). The determination of the
best binary split in one selected covariate and the handling of missing values is performed based
on standardized linear statistics within the same framework as well.

Variable selection and stopping criteria

At step 1 of the generic algorithm given in Section 2 we face an independence problem. We need
to decide whether there is any information about the response variable covered by any of the m
covariates. In each node identified by case weights w, the global hypothesis of independence is
formulated in terms of the m partial hypotheses Hj

0 : D(Y|Xj) = D(Y) with global null hypothesis
H0 =

⋂m
j=1 Hj

0 . When we are not able to reject H0 at a pre-specified level α, we stop the recursion.
If the global hypothesis can be rejected, we measure the association between Y and each of the
covariates Xj , j = 1, . . . ,m, by test statistics or P -values indicating the deviation from the partial
hypotheses Hj

0 .
For notational convenience and without loss of generality we assume that the case weights wi are
either zero or one. The symmetric group of all permutations of the elements of (1, . . . , n) with
corresponding case weights wi = 1 is denoted by S(Ln,w). A more general notation is given in
Appendix A. We measure the association between Y and Xj , j = 1, . . . ,m, by linear statistics of
the form

Tj(Ln,w) = vec

(
n∑

i=1

wigj(Xji)h(Yi, (Y1, . . . ,Yn))>
)
∈ Rpjq (1)

where gj : Xj → Rpj is a non-random transformation of the covariate Xj . The influence function
h : Y×Yn → Rq depends on the responses (Y1, . . . ,Yn) in a permutation symmetric way. Section 4
explains how to choose gj and h in different practical settings. A pj × q matrix is converted into
a pjq column vector by column-wise combination using the ‘vec’ operator.

The distribution of Tj(Ln,w) under Hj
0 depends on the joint distribution of Y and Xj , which

is unknown under almost all practical circumstances. At least under the null hypothesis one can
dispose of this dependency by fixing the covariates and conditioning on all possible permutations of
the responses. This principle leads to test procedures known as permutation tests. The conditional
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expectation µj ∈ Rpjq and covariance Σj ∈ Rpjq×pjq of Tj(Ln,w) under H0 given all permutations
σ ∈ S(Ln,w) of the responses are derived by Strasser and Weber (1999):

µj = E(Tj(Ln,w)|S(Ln,w)) = vec

((
n∑

i=1

wigj(Xji)

)
E(h|S(Ln,w))>

)
,

Σj = V(Tj(Ln,w)|S(Ln,w))

=
w·

w· − 1
V(h|S(Ln,w))⊗

(∑
i

wigj(Xji)⊗ wigj(Xji)>
)

(2)

− 1
w· − 1

V(h|S(Ln,w))⊗

(∑
i

wigj(Xji)

)
⊗

(∑
i

wigj(Xji)

)>

where w· =
∑n

i=1 wi denotes the sum of the case weights, ⊗ is the Kronecker product and the
conditional expectation of the influence function is

E(h|S(Ln,w)) = w−1
·

∑
i

wih(Yi, (Y1, . . . ,Yn)) ∈ Rq

with corresponding q × q covariance matrix

V(h|S(Ln,w)) = w−1
·

∑
i

wi (h(Yi, (Y1, . . . ,Yn))− E(h|S(Ln,w)))

(h(Yi, (Y1, . . . ,Yn))− E(h|S(Ln,w)))> .

Having the conditional expectation and covariance at hand we are able to standardize a linear
statistic T ∈ Rpq of the form (1) for some p ∈ {p1, . . . , pm}. Univariate test statistics c mapping
an observed multivariate linear statistic t ∈ Rpq into the real line can be of arbitrary form. An
obvious choice is the maximum of the absolute values of the standardized linear statistic

cmax(t, µ,Σ) = max
k=1,...,pq

∣∣∣∣∣ (t− µ)k√
(Σ)kk

∣∣∣∣∣
utilizing the conditional expectation µ and covariance matrix Σ. The application of a quadratic
form cquad(t, µ,Σ) = (t−µ)Σ+(t−µ)> is one alternative, although computationally more expensive
because the Moore-Penrose inverse Σ+ of Σ is involved. It is important to note that the test
statistics c(tj , µj ,Σj), j = 1, . . . ,m, cannot be directly compared in an unbiased way unless all
of the covariates are measured at the same scale, i.e., p1 = pj , j = 2, . . . ,m. In order to allow
for an unbiased variable selection we need to switch to the P -value scale because P -values for
the conditional distribution of test statistics c(Tj(Ln,w), µj ,Σj) can be directly compared among
covariates measured at different scales. In step 1 of the generic algorithm we select the covariate
with minimum P -value, i.e., the covariate Xj∗ with j∗ = argminj=1,...,m Pj , where

Pj = PHj
0
(c(Tj(Ln,w), µj ,Σj) ≥ c(tj , µj ,Σj)|S(Ln,w))

denotes the P -value of the conditional test for Hj
0 .

So far, we have only addressed testing each partial hypothesis Hj
0 , which is sufficient for an unbiased

variable selection. A global test for H0 required in step 1 can be constructed via an aggregation
of the transformations gj , j = 1, . . . ,m, i.e., using a linear statistic of the form

T(Ln,w) = vec

(
n∑

i=1

wi

(
g1(X1i)>, . . . , gm(Xmi)>

)>
h(Yi, (Y1, . . . ,Yn))>

)
.
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6 Unbiased Recursive Partitioning: A Conditional Inference Framework

However, this approach is less attractive for learning samples with missing values. Universally ap-
plicable approaches are multiple test procedures based on P1, . . . , Pm. Simple Bonferroni-adjusted
P -values or a min-P -value resampling approach are just examples and we refer to the multiple
testing literature (e.g., Westfall and Young 1993) for more advanced methods. We reject H0 when
the minimum of the adjusted P -values is less than a pre-specified nominal level α and otherwise
stop the algorithm. In this sense, α may be seen as a unique parameter determining the size of
the resulting trees.
The conditional distribution and thus the P -value of the statistic c(t, µ,Σ) can be computed in
several different ways (see Hothorn, Hornik, van de Wiel, and Zeileis 2006, for an overview). For
some special forms of the linear statistic, the exact distribution of the test statistic is tractable;
conditional Monte-Carlo procedures can always be used to approximate the exact distribution.
Strasser and Weber (1999) proved (Theorem 2.3) that the conditional distribution of linear statis-
tics T with conditional expectation µ and covariance Σ tends to a multivariate normal distribution
with parameters µ and Σ as n,w· → ∞. Thus, the asymptotic conditional distribution of test
statistics of the form cmax is normal and can be computed directly in the univariate case (pjq = 1)
or approximated by means of quasi-randomized Monte-Carlo procedures in the multivariate setting
(Genz 1992). Quadratic forms cquad follow a asymptotic χ2 distribution with degrees of freedom
given by the rank of Σ (Theorem 6.20, Rasch 1995), and therefore asymptotic P -values can be
computed efficiently.

Splitting criteria

Once we have selected a covariate in step 1 of the algorithm, the split itself can be established by any
splitting criterion, including those established by Breiman et al. (1984) or Shih (1999). Instead of
simple binary splits, multiway splits can be implemented as well, for example utilizing the work of
O’Brien (2004). However, most splitting criteria are not applicable to response variables measured
at arbitrary scales and we therefore utilize the permutation test framework described above to
find the optimal binary split in one selected covariate Xj∗ in step 2 of the generic algorithm. The
goodness of a split is evaluated by two-sample linear statistics which are special cases of the linear
statistic (1). For all possible subsets A of the sample space Xj∗ the linear statistic

TA
j∗(Ln,w) = vec

(
n∑

i=1

wiI(Xj∗i ∈ A)h(Yi, (Y1, . . . ,Yn))>
)
∈ Rq

induces a two-sample statistic measuring the discrepancy between the samples {Yi|wi > 0 and Xji ∈
A; i = 1, . . . , n} and {Yi|wi > 0 and Xji 6∈ A; i = 1, . . . , n}. The conditional expectation µA

j∗ and
covariance ΣA

j∗ can be computed by (2). The split A∗ with a test statistic maximized over all
possible subsets A is established:

A∗ = argmax
A

c(tA
j∗ , µ

A
j∗ ,Σ

A
j∗). (3)

Note that we do not need to compute the distribution of c(tA
j∗ , µ

A
j∗ ,Σ

A
j∗) in step 2. In order to

prevent pathological splits one can restrict the number of possible subsets that are evaluated, for
example by introducing restrictions on the sample size or the sum of the case weights in each of
the two groups of observations induced by a possible split.

Missing values and surrogate splits

If an observation Xji in covariate Xj is missing, we set the corresponding case weight wi to zero
for the computation of Tj(Ln,w) and, if we would like to split in Xj , in TA

j (Ln,w) as well. Once
a split A∗ in Xj has been implemented, surrogate splits can be established by searching for a split
leading to roughly the same division of the observations as the original split. One simply replaces
the original response variable by a binary variable I(Xji ∈ A∗) coding the split and proceeds as
described in the previous part.
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Choice of α

The parameter α can be interpreted in two different ways: as pre-specified nominal level of the
underlying association tests or as a simple hyper parameter determining the tree size. In the first
sense, α controls the probability of falsely rejecting H0 in each node. The typical conventions for
balancing the type I and type II errors apply in this situation.

Although the test procedures used for constructing the tree are general independence tests, they
will only have high power for very specific directions of deviation from independence (depending
on the choice of g and h) and lower power for any other direction of departure. Hence, a strategy
to assure that any type of dependence is detected could be to increase the significance level α.
To avoid that the tree grown with a very large α overfits the data, a final step could be added
for pruning the tree in a variety of ways, for example by eliminating all terminal nodes until the
terminal splits are significant at level α′, with α′ being much smaller than the initial α. Note, that
by doing so the interpretation of α as nominal significance level of conditional test procedures is
lost. Moreover, α can be seen as a hyper parameter that is subject to optimization with respect
to some risk estimate, e.g., computed via cross-validation or additional test samples.

For explanatory modelling, the view of α as a significance level seems more intuitive and easier
to explain to subject matter scientists, whereas for predictive modelling the view of α as a hyper
parameter is also feasible. Throughout the paper we adopt the first approach and also evaluate it
in a predictive setting in Section 6.

Computational complexity

The computational complexity of the variable selection step is of order n (for fixed pj , j = 1, . . . ,m
and q) since computing each Tj with corresponding µj and Σj can be performed in linear time.
The computations of the test statistics c is independent of the number of observations. Searching
the optimal splits in continuous variables involves ranking these and hence is of order n log n.
However, for nominal covariates measured at K levels, the evaluation of all 2K−1 − 1 possible
splits is not necessary for the variable selection.

4. Examples

Univariate continuous or discrete regression

For a univariate numeric response Y ∈ R, the most natural influence function is the identity
h(Yi, (Y1, . . . ,Yn)) = Yi. In cases where some observations with extremely large or small values
have been observed, a ranking of the observations may be appropriate: h(Yi, (Y1, . . . ,Yn)) =∑n

k=1 wkI(Yk ≤ Yi) for i = 1, . . . , n. Numeric covariates can be handled by the identity trans-
formation gji(x) = x (ranks or non-linear transformations are possible, too). Nominal covariates
at levels 1, . . . ,K are represented by gji(k) = eK(k), the unit vector of length K with kth element
being equal to one. Due to this flexibility, special test procedures like the Spearman test, the
Wilcoxon-Mann-Whitney test or the Kruskal-Wallis test and permutation tests based on ANOVA
statistics or correlation coefficients are covered by this framework. Splits obtained from (3) max-
imize the absolute value of the standardized difference between two means of the values of the
influence functions. For prediction, one is usually interested in an estimate of the expectation of
the response E(Y|X = x) in each cell; an estimate can be obtained by

Ê(Y|X = x) =

(
n∑

i=1

wi(x)

)−1 n∑
i=1

wi(x)Yi,

where wi(x) = wi when x is element of the same terminal node as the ith observation and zero
otherwise.
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8 Unbiased Recursive Partitioning: A Conditional Inference Framework

Censored regression

The influence function h may be chosen as logrank or Savage scores taking censoring into account
and one can proceed as for univariate continuous regression. This is essentially the approach first
published by Segal (1988). An alternative is the weighting scheme suggested by Molinaro, Dudoit,
and van der Laan (2004). A weighted Kaplan-Meier curve for the case weights w(x) can serve as
prediction.

J-Class classification

The nominal response variable at levels 1, . . . , J is handled by influence functions h(Yi, (Y1, . . . ,Yn)) =
eJ(Yi). Note that for a nominal covariate Xj at levels 1, . . . ,K with gji(k) = eK(k) the corre-
sponding linear statistic Tj is a vectorized contingency table of Xj and Y. The conditional class
probabilities can be estimated via

P̂(Y = y|X = x) =

(
n∑

i=1

wi(x)

)−1 n∑
i=1

wi(x)I(Yi = y), y = 1, . . . , J.

Ordinal regression

Ordinal response variables measured at J levels, and ordinal covariates measured at K levels, are
associated with score vectors ξ ∈ RJ and γ ∈ RK , respectively. Those scores reflect the ‘distances’
between the levels: If the variable is derived from an underlying continuous variable, the scores
can be chosen as the midpoints of the intervals defining the levels. The linear statistic is now a
linear combination of the linear statistic Tj of the form

MTj(Ln,w) = vec

(
n∑

i=1

wiγ
>gj(Xji)

(
ξ>h(Yi, (Y1, . . . ,Yn)

)>)

with gj(x) = eK(x) and h(Yi, (Y1, . . . ,Yn)) = eJ(Yi). If both response and covariate are ordinal,
the matrix of coefficients is given by the Kronecker product of both score vectors M = ξ ⊗ γ ∈
R1,KJ . In case the response is ordinal only, the matrix of coefficients M is a block matrix

M =

 ξ1 0
. . .

0 ξ1

∣∣∣∣∣∣∣ . . .

∣∣∣∣∣∣∣
ξq 0

. . .
0 ξq

 or M = diag(γ)

when one covariate is ordered but the response is not. For both Y and Xj being ordinal, the
corresponding test is known as linear-by-linear association test (Agresti 2002).

Multivariate regression

For multivariate responses, the influence function is a combination of influence functions appropri-
ate for any of the univariate response variables discussed in the previous paragraphs, e.g., indicators
for multiple binary responses (Zhang 1998; Noh, Song, and Park 2004), logrank or Savage scores
for multiple failure times and the original observations or a rank transformation for multivariate
regression (De’ath 2002).

5. Illustrations and applications

In this section, we present regression problems which illustrate the potential fields of application of
the methodology. Conditional inference trees based on cquad-type test statistics using the identity
influence function for numeric responses and asymptotic χ2 distribution are applied. For the
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Figure 1: Conditional inference tree for the glaucoma data. For each inner node, the Bonferroni-
adjusted P -values are given, the fraction of glaucomateous eyes is displayed for each terminal node.

stopping criterion a simple Bonferroni correction is used and we follow the usual convention by
choosing the nominal level of the conditional independence tests as α = 0.05. Conditional inference
trees are implemented in the party add-on package to the R system for statistical computing
(version 2.0.1, R Development Core Team 2004), both being freely available from CRAN (http:
//CRAN.R-project.org/). Our analyses can be reproduced using the code given in Appendix B.

Glaucoma and laser scanning images

Laser scanning images taken from the eye background are expected to serve as the basis of an
automated system for glaucoma diagnosis. Although prediction is more important in this appli-
cation (Mardin, Hothorn, Peters, Jünemann, Nguyen, and Lausen 2003), a simple visualization of
the regression relationship is useful for comparing the structures inherent in the learning sample
with subject matter knowledge. For 98 patients and 98 controls, matched by age and gender,
62 covariates describing the eye morphology are available. The data is part of the ipred package
(Peters, Hothorn, and Lausen 2002). The first split in Figure 1 separates eyes with a volume above
reference less than 0.059 mm3 in the inferior part of the optic nerve head (vari). Observations
with larger volume are mostly controls, a finding which corresponds to subject matter knowledge:
The volume above reference measures the thickness of the nerve layer, expected to decrease with
a glaucomateous damage of the optic nerve. Further separation is achieved by the volume above
surface global (vasg) and the volume above reference in the temporal part of the optic nerve head
(vart).

Node positive breast cancer

Recursive partitioning for censored responses has attracted a lot of interest (e.g., Segal 1988;
LeBlanc and Crowley 1992). Survival trees using P -value adjusted logrank statistics are used by
Schumacher, Holländer, Schwarzer, and Sauerbrei (2001) for the evaluation of prognostic factors
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Figure 2: Tree-structured survival model for the GBSG2 data with Kaplan-Meier estimates of the
survival time (in years) in the terminal nodes.

for the German Breast Cancer Study Group (GBSG2) data, a prospective controlled clinical trial
on the treatment of node positive breast cancer patients. Here, we use logrank scores as well.
Complete data of seven prognostic factors of 686 women are used for prognostic modeling, the
dataset is available within the ipred package. The number of positive lymph nodes (pnodes)
and the progesterone receptor (progrec) have been identified as prognostic factors in the survival
tree analysis by Schumacher et al. (2001). Here, the binary variable coding whether a hormonal
therapy was applied or not (horTh) additionally is part of the model depicted in Figure 2.

Mammography experience

Ordinal response variables are common in investigations where the response is a subjective human
interpretation. We use an example given by Hosmer and Lemeshow (2000), p. 264, studying
the relationship between the mammography experience (never, within a year, over one year) and
opinions about mammography expressed in questionnaires answered by n = 412 women. The
resulting partition based on scores ξ = (1, 2, 3) is given in Figure 3. Most women who (strongly)
agree with the question ‘You do not need a mammogram unless you develop symptoms’ have
not experienced a mammography. The variable benefit is a score with low values indicating a
strong agreement with the benefits of the examination. For those women in (strong) disagreement
with the first question above, low values of benefit identify persons being more likely to have
experienced such an examination at all.

6. Empirical comparisons

In this section, we investigate both the estimation and prediction accuracy of the conditional
inference trees suggested in this paper. Three assertions are to be tested by means of benchmark
experiments: 1) conditional inference trees are unbiased, 2) conditional inference trees do not
suffer from overfitting and 3) the prediction accuracy of conditional inference trees is equivalent
to the prediction accuracy of optimally pruned trees.

The rpart, QUEST and GUIDE software implementations serve as competitors for the compar-
isons. The rpart package (Therneau and Atkinson 1997) essentially implements the algorithms
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Figure 3: Ordinal regression for the mammography experience data with the fractions of (never,
within a year, over one year) given in the nodes.

described in the CART book by Breiman et al. (1984) and is the de-facto standard in open-source
recursive partitioning software. It implements cost-complexity pruning based on cross-validation
after an initial large tree was grown by exhaustive search. QUEST (quick, unbiased and efficient
statistical tree for nominal responses, Loh and Shih 1997), version 1.9.1, and GUIDE (generalized,
unbiased, interaction detection and estimation for numeric responses, Loh 2002), version 2.1, aim
at unbiased variable selection and determine the tree size by pruning as well. For the comparisons
between conditional inference trees and GUIDE, the latter is limited to fitting constant models
within each terminal node such that all algorithms fit a model from the same model class. We use
binaries of both implementations available from http://www.stat.wisc.edu/~loh/.
The conditional inference trees are constructed with cquad-type test statistics and α = 0.05 with
simple Bonferroni correction. Each split needs to send at least 1% of the observations into each
of the two daughter nodes. The sample size in each node is restricted to 20 observations for all
four algorithms under test, otherwise, the default settings of rpart, QUEST and GUIDE were not
changed.

Estimation accuracy

The assertions 1) and 2) are tested by means of a simple simulation experiment, following the
approach of Kim and Loh (2001) who demonstrate the unbiasedness of CRUISE empirically. An
algorithm for recursive partitioning is called unbiased when, under the conditions of the null
hypothesis of independence between a response Y and covariates X1, . . . , Xm, the probability of
selecting covariate Xj is 1/m for all j = 1, . . . ,m regardless of the measurement scales or number
of missing values.
Five uniformly distributed random variables X1, . . . , X5 ∼ U [0, 1] serve as numeric covariates. In
covariate X4, 25% of the values are drawn missing at random, and the values of covariate X5 are
rounded to one digit, i.e., we induce 11 unique realizations. An additional nominal covariate X6 is
measured at two levels, with 50% of the observations being equal to zero. In this simple regression
problem, the response variable Y is normal with means zero and µ in the two groups defined by
covariate X6.
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rpart Conditional Inference Trees
Estimate 95% Confidence Interval Estimate 95% Confidence Interval

X1 ∼ U [0, 1] 0.231 (0.220, 0.243) 0.168 (0.159, 0.178)
X2 ∼ U [0, 1] 0.225 (0.214, 0.236) 0.167 (0.157, 0.177)
X3 ∼ U [0, 1] 0.227 (0.216, 0.238) 0.162 (0.153, 0.172)
X4, missings 0.197 (0.187, 0.208) 0.169 (0.159, 0.179)
X5, ties 0.100 (0.092, 0.108) 0.166 (0.156, 0.176)
X6, binary 0.020 (0.017, 0.024) 0.169 (0.159, 0.179)

Table 1: Simulated probabilities of variable selection of six mutually independent variables when
the response is independent of X1, . . . , X6, i.e., µ = 0. The results are based on 10,000 replications.
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Figure 4: Simulated power, i.e. the probability of a root split (left), and the simulated conditional
probability of a correct split in variable X6 given that any root split was established (right) are
displayed. The dotted horizontal line represents α = 0.05. The results are based on 10,000
replications.

Y ∼
{
N (0, 1) if X6 = 0
N (µ, 1) if X6 = 1.

For µ = 0, the response is independent of all covariates. The probability of selecting Xj , j =
1, . . . , 6, based on learning samples of size n = 100 drawn from the model above is estimated for
both rpart and conditional inference trees by means of 10,000 simulation runs. Note that the root
split is forced, i.e., no stopping criterion is applied for this experiment. The estimated probabilities
in Table 1 illustrate the well-known fact that exhaustive search procedures, like rpart, are heavily
biased towards covariates with many possible splits. The 95% simultaneous confidence intervals
for the proportions (as described by Goodman 1965) for rpart never include 1/6. In contrast, the
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confidence intervals for the conditional inference trees always include the probability 1/6 expected
for an unbiased variable selection, regardless of the measurement scale of the covariates. This result
indicates that the selection of covariates by asymptotic P -values of conditional independence tests
is unbiased.
From a practical point of view, two issues with greater relevance arise. On the one hand, the
probability of selecting any of the covariates for splitting for some µ ≥ 0 (power) and, on the
other hand, the conditional probability of selecting the “correct split” in covariate X6 given any
covariate was selected for splitting are interesting criteria with respect to which the two algorithms
are compared. Figure 4 depicts the estimated probabilities for varying µ. For µ = 0, the probability
of splitting the root node is 0.0435 for conditional inference trees and 0.0893 for rpart. Thus, the
probability of such an incorrect decision is bounded by α for the conditional inference trees and is
twice as large for pruning as implemented in rpart. Under the alternative µ > 0, the conditional
inference trees are more powerful compared to rpart for µ > 0.2. For small values of µ the larger
power of rpart is due to the size distortion under the null hypothesis. In addition, the probability of
selecting X6 given that any covariate was selected is uniformly greater for the conditional inference
trees.
The advantageous properties of the conditional inference trees are obvious for the simple simulation
model with one split only. We now extend our investigations to a simple regression tree with four
terminal nodes. The response variable is normal with mean µ depending on the covariates as
follows:

Y ∼


N (1, 1) if X6 = 0 and X1 < 0.5
N (2, 1) if X6 = 0 and X1 ≥ 0.5
N (3, 1) if X6 = 1 and X2 < 0.5
N (4, 1) if X6 = 1 and X2 ≥ 0.5.

(4)

We will focus on two closely related criteria describing the partitions induced by the algorithms:
the complexity of the induced partitions and the structure of the trees. The number of terminal
nodes of a tree is a measure of the complexity of the model and can easily be compared with the
number of cells in the true data partition defined by (4). However, the appropriate complexity
of a tree does not ensure that the tree structure describes the true data partition well. Here, we
measure the discrepancy between the true data partition and the partitions obtained from recursive
partitioning by the normalized mutual information (‘NMI’, Strehl and Ghosh 2003), essentially
the mutual information of two partitions standardized by the entropy of both partitions. Values
near one indicate similar to equal partitions while values near zero are obtained for structurally
different partitions.
For 1,000 learning samples of size n = 100 drawn from the simple tree model, Table 2 gives
the cross-tabulated number of terminal nodes of conditional inference trees and pruned exhaustive
search trees computed by rpart. The null hypothesis of marginal homogeneity for ordered variables

Conditional Inference Trees
2 3 4 5 6 ≥ 7

2 3 4 5 0 0 0 12
3 0 48 47 3 0 0 98

rpart 4 0 36 549 49 3 0 637
5 0 12 134 25 1 0 172
6 2 6 42 10 1 0 61

≥ 7 0 3 10 6 1 0 20
5 109 787 93 6 0 1000

Table 2: Number of terminal nodes for rpart and conditional inference trees when the learning
sample is actually partitioned into four cells.
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Figure 5: Density estimate of the difference in normalized mutual information of the true parti-
tion and the partitions induced by rpart and conditional inference trees. Instances with a NMI
difference of zero were excluded – the results are based on 394 replications.

(Agresti 2002) can be rejected (P -value < 0.0001) indicating that the partitions obtained from
both algorithms differ with respect to the number of terminal nodes. Conditional inference trees
select a right-sized tree (four terminal nodes) in 78.7% of the cases while rpart generates trees
with four terminal nodes for 63.7% of the learning samples. In general, pruning as implemented
in rpart tends to produce trees with a larger number of terminal nodes in this example.
The correct tree structure with four leaves, with the first split in X6 and splits in X1 and X2 in the
left or right node, is detected by rpart in 63.3% of the simulation runs and in 77.5% of the cases
by conditional inference trees. The NMI measure between the true partition of the data given by
(4) and the partitions induced by the tree algorithms needs to be compared for instances with
informative NMI measures only, i.e., the cases where the NMI between rpart and the true data
partition and the NMI between conditional inference trees and the true data partition coincide do
not cover any information. A density estimate of the NMI difference between partitions obtained
from rpart and conditional inference tree partitions in Figure 5 shows that the partitions induced
by conditional inference trees are, one average, closer to the true data partition.

Prediction accuracy

Assertion 3) is investigated by means of 11 benchmarking problems from the UCI repository
(Blake and Merz 1998) as well as the glaucoma data (see Section 5). Characteristics of the
problems are given in Table 3. We draw 500 random samples from the out-of-bag performance
measures (misclassification or mean-squared error) in a dependent K-sample design as described
in the conceptual framework for benchmark experiments of Hothorn, Leisch, Zeileis, and Hornik
(2005).
The performance of conditional inference trees is compared to the performance of exhaustive search
trees with pruning (as implemented in rpart) and unbiased QUEST trees (nominal responses) and
piecewise constant GUIDE trees (numeric responses), respectively. The tree sizes for QUEST and
GUIDE are determined by pruning as well.
Two performance distributions are said to be equivalent when the performance of the conditional
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J n NA m nominal ordinal continuous
Boston Housing – 506 – 13 – – 13
Ozone – 361 158 12 3 – 9
Servo – 167 – 4 4 – –
Breast Cancer 2 699 16 9 4 5 –
Diabetes 2 768 – 8 – – 8
Glass 6 214 – 9 – – 9
Glaucoma 2 196 – 62 – – 62
Ionosphere 2 351 – 33 1 – 32
Sonar 2 208 – 60 – – 60
Soybean 19 683 121 35 35 5 –
Vehicle 4 846 – 19 – – 19
Vowel 11 990 – 10 1 – 9

Table 3: Summary of the benchmarking problems showing the number of classes of a nominal
response J (‘–’ indicates a continuous response), the number of observations n, the number of
observations with at least one missing value (NA) as well as the measurement scale and number
m of the covariates.

inference trees compared to the performance of one competitor (rpart, QUEST or GUIDE) does
not differ by an amount of more than 10%. The null hypothesis of non-equivalent performances
is then defined in terms of the ratio of the expectations of the performance distribution of condi-
tional inference trees and its competitors. Equivalence can be established at level α based on two
one-sided level α tests by the intersection-union principle (Berger and Hsu 1996). Here, this corre-
sponds to a rejection of the null hypothesis of non-equivalence performances at the 5% level when
the 90% two-sided Fieller (1940) confidence interval for the ratio of the performance expectations
is completely included in the equivalence range (0.9, 1.1).

The boxplots of the pairwise ratios of the performance measure evaluated for conditional in-
ference trees and pruned exhaustive search trees (rpart, Figure 6) and pruned unbiased trees
(QUEST/GUIDE, Figure 7) are accomplished by estimates of the ratio of the expected perfor-
mances and corresponding Fieller confidence intervals. For example, an estimate of the ratio of
the misclassification errors of rpart and conditional inference trees for the glaucoma data of 1.043
means that the misclassification error of conditional inference trees is 4.3% larger than the mis-
classification error of rpart. The confidence interval of (1.023, 1.064) leads to the conclusion that
this inferiority is within the pre-defined equivalence margin of ±10% and thus the performance of
conditional inference trees is on par with the performance of rpart for the glaucoma data.

Equivalent performance between conditional inference trees and rpart cannot be postulated for the
Glass data. The performance of the conditional inference trees is roughly 10% worse compared
with rpart. In all other cases, the performance of conditional inference trees is better than or
equivalent to the performance of exhaustive search (rpart) and unbiased procedures (QUEST or
GUIDE) with pruning. The conditional inference trees perform better compared to rpart trees
by a magnitude of 25% (Boston Housing), 10% (Ionosphere) and 15% (Ozone). The improvement
upon unbiased QUEST and piecewise constant GUIDE models is 10% for the Boston Housing
data and 50% for the Ionosphere and Soybean data. For all other problems, the performance of
conditional inference trees fitted within a permutation testing framework can be assumed to be
equivalent to the performance of all three competitors.

The simulation experiments with model (4) presented in the first paragraph on estimation accuracy
lead to the impression that the partitions induced by rpart trees are structurally different from the
partition induced by conditional inference trees. Because the ‘true’ partition is unknown for the
datasets used here, we compare the partitions obtained from conditional inference trees and rpart
by their normalized mutual information. The median normalized mutual information is 0.447 and
a bivariate density estimate depicted in Figure 8 does not indicate any relationship between the
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Figure 6: Distribution of the pairwise ratios of the performances of the conditional inference trees
and rpart accomplished by estimates and 90% Fieller confidence intervals for the ratio of the
expectations of the performance distributions. Stars indicate equivalent performances, i.e., the
confidence interval is covered by the equivalence range (0.9, 1.1).
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Figure 8: Distribution of the pairwise performance ratios of conditional inference trees and rpart
and the normalized mutual information measuring the discrepancy of the induced partitions.

ratio of the performances and the discrepancy of the partitions.

This results is interesting from a practical point of view. It implies that two recursive partitioning
algorithms can achieve the same prediction accuracy but, at the same time, represent structurally
different regression relationships, i.e., different models and thus may lead to different conclusions
about the influence of certain covariates on the response.

7. Discussion

In this paper, recursive binary partitioning with piecewise constant fits, a popular tool for regres-
sion analysis, is embedded into a well-defined framework of conditional inference procedures. Both
the overfitting and variable selection problems induced by a recursive fitting procedure are solved
by the application of the appropriate statistical test procedures to both variable selection and stop-
ping. Therefore, the conditional inference trees suggested in this paper are not just heuristics but
non-parametric models with well-defined theoretical background. The methodology is generally
applicable to regression problems with arbitrary measurement scales of responses and covariates.
In addition to its advantageous statistical properties, our framework is computationally attractive
since we do not need to evaluate all 2K−1 − 1 possible splits of a nominal covariate at K levels
for the variable selection. In contrast to algorithms incorporating pruning based on resampling,
the models suggested here can be fitted deterministically, provided that the exact conditional
distribution is not approximated by Monte-Carlo methods.

The simulation and benchmarking experiments in Section 6 support two conclusions: Conditional
inference trees as suggested in this paper select variables in an unbiased way and the partitions
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induced by this recursive partitioning algorithm are not affected by overfitting. Even in a very
simple simulation model, the partitions obtained from conditional inference trees are, on aver-
age, closer to the true data partition compared to partitions obtained from an exhaustive search
procedure with pruning. When the response is independent of all covariates, the proportion of
incorrect decisions in the root node is limited by α and when the response is associated with
one of the covariates, conditional inference trees select the correct covariate more often than the
exhaustive search procedure. In the light of these findings, the conditional inference trees seem
to be more appropriate for diagnostic purposes than exhaustive search procedures. The results
of the benchmarking experiments with real data show that the prediction accuracy of conditional
inference trees is competitive with the prediction accuracy of both an exhaustive search procedure
(rpart) and unbiased recursive partitioning (QUEST/GUIDE) which select the tree size by prun-
ing. Therefore, our findings contradict the common opinion that pruning procedures outperform
algorithms with internal stopping with respect to prediction accuracy. From our point of view,
internal stopping criteria based on hypothesis tests evaluated earlier (see for example the results
of Frank and Witten 1998) suffer from that fact that the data are transformed in order to fit the
requirements of a certain test procedure, such as categorizing continuous variables for a χ2 test,
instead of choosing a test procedure defined for the original measurement scale of the covariates.

When the parameter α is interpreted as a pre-defined nominal level of the permutation tests
performed in every node of the tree, the tree structures visualized in a way similar to Figures 1–3
are valid in a sense that covariates without association to the response appear in a node only with
a probability not exceeding α. Moreover, subject matter scientists are most likely more familiar
with the interpretation of α as pre-defined nominal level of hypothesis tests rather than as a
fine-tuned hyper parameter. Although it is possible to choose α in a data-dependent way when
prediction accuracy is the main focus, the empirical experiments in Section 6 show that the classical
convention of α = 0.05 performs well compared to tree models optimizing the prediction accuracy
directly. However, while the predictions obtained from conditional inference trees are as good as
the predictions of pruned exhaustive search trees, the partitions induced by both algorithms differ
structurally. Therefore, the interpretations obtained from conditional inference trees and trees
fitted by an exhaustive search without bias correction cannot be assumed to be equivalent. Thus,
two rather different partitions, and therefore models, may have equal prediction accuracy. Since
a key reason for the popularity of tree based methods stems from their ability to represent the
estimated regression relationship in an intuitive way, interpretations drawn from regression trees
must be taken with a grain of salt.

In summary, this paper introduces a statistical approach to recursive partitioning. Formal hypoth-
esis tests for both variable selection and stopping criterion are established. This choice leads to tree
structured regression models for all kinds of regression problems, including models for censored,
ordinal or multivariate response variables. Because well-known concepts are the basis of variable
selection and stopping criterion, the resulting models are easier to communicate to practitioners.
Simulation and benchmark experiments indicate that conditional inference trees are well-suited
for both explanation and prediction.
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Appendix A

An equivalent but computational simpler formulation of the linear statistic for case weights greater
than one can be written as follows. Let a = (a1, . . . , aw·), al ∈ {1, . . . , n}, l = 1, . . . ,w·, denote
the vector of observation indices, with index i occuring wi times. Instead of recycling the ith
observation wi times it is sufficient to implement the index vector a into the computation of the
test statistic and its expectation and covariance. For one permutation σ of {1, . . . ,w·}, the linear
statistic (1) may be written as

Tj(Ln,w) = vec

(
w·∑

k=1

gj(Xjak
)h(Yσ(a)k

, (Y1, . . . ,Yn))>
)
∈ Rpjq

now taking case weights greater zero into account.

Appendix B

The results shown in Section 5 are, up to some labelling, reproducible using the following R code:

library("party")

data("GlaucomaM", package = "ipred")

plot(ctree(Class ~ ., data = GlaucomaM))

data("GBSG2", package = "ipred")

plot(ctree(Surv(time, cens) ~ ., data = GBSG2))

data("mammoexp", package = "party")

plot(ctree(ME ~ ., data = mammoexp))
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