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Abstract

Conditioning on the observed data is an important and flexible design principle for statis-
tical test procedures. Although generally applicable, permutation tests currently in use are
limited to the treatment of special cases, such as contingency tables or K-sample problems. A
new theoretical framework for permutation tests opens up the way to a unified and generalized
view. We argue that the transfer of such a theory to practical data analysis has important
implications in many applications and requires tools that enable the data analyst to compute
on the theoretical concepts as closely as possible. We re-analyze four data sets by adapting
the general conceptual framework to these challenging inference problems and utilizing the
coin add-on package in the R system for statistical computing to show what one can gain from
going beyond the ‘classical’ test procedures.
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1. Introduction

The distribution of a test statistic under the circumstances of a null hypothesis clearly depends on
the unknown distribution of the data and thus is unknown as well. Two concepts are commonly
applied to dispose of this dependency. Unconditional tests impose assumptions on the distribution
of the data such that the null distribution of a test statistic can be derived analytically. In contrast,
conditional tests replace the unknown null distribution by the conditional null distribution, i.e.,
the distribution of the test statistic given the observed data. The latter approach is known as
permutation testing and was developed by R. A. Fisher more than 70 years ago (Fisher 1935).
The pros and cons of both approaches in different fields of application have been widely discussed
(e.g. by Ludbrook and Dudley 1998; Berger 2000; Shuster 2005). Here, we focus on the practical
aspects of permutation testing rather than dealing with its methodological foundations.
For the construction of permutation tests it is common exercise to ‘recycle’ test statistics well
known from the unconditional world, such as linear rank statistics, ANOVA F statistics or χ2

statistics for contingency tables, and to replace the unconditional null distribution with the con-
ditional distribution of the test statistic under the null hypothesis (Edgington 1987; Good 2000;
Pesarin 2001; Ernst 2004). Because the choice of the test statistic is the only ‘degree of freedom’
for the data analyst, the classical view on permutation tests requires a ‘cook book’ classification of
inference problems (categorical data analysis, multivariate analysis, K-sample location problems,
correlation, etc.), each being associated with a ‘natural’ form of the test statistic.
The theoretical advances of the last decade (notably Strasser and Weber 1999; Pesarin 2001;
Janssen and Pauls 2003) give us a much better understanding of the strong connections between the
‘classical’ permutation tests defined for different inference problems. As we will argue in this paper,
the new theoretical tools open up the way to a simple construction principle for test procedures in
new and challenging inference problems. Especially attractive for this purpose is the theoretical
framework for permutation tests developed by Strasser and Weber (1999). This unifying theory
is based on a flexible form of multivariate linear statistics for the general independence problem.
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2 A Lego System for Conditional Inference

This framework provides us with a conceptual Lego system for the construction of permutation
tests consisting of Lego bricks for linear statistics suitable for different inference problems (con-
tingency tables, multivariate problems, etc.), different forms of test statistics (such as quadratic
forms for global tests or test statistics suitable for multiple comparison procedures), and several
ways to derive the conditional null distribution (by means of exact computations or approxima-
tions). The classical procedures, such as a permutation t test, are part of this framework and,
even more interesting, new test procedures can be embedded into the same theory whose main
ideas are sketched in Section 2.

Currently, the statistician’s toolbox consists of rather specialized spanners, such as the Wilcoxon-
Mann-Whitney test for comparing two distributions or the Cochran-Mantel-Haenszel χ2 test for
independence in contingency tables. With this work, we add an adjustable spanner to the statis-
tician’s toolbox which helps to address both the common as well as new or unusual inference
problems with the appropriate conditional test procedures. In the main part of this paper we
show how one can construct and implement permutation tests ‘on the fly’ by plugging together
Lego bricks for the multivariate linear statistic, the test statistic and the conditional null distri-
bution, both conceptually and practically by means of the coin add-on package (Hothorn, Hornik,
van de Wiel, and Zeileis 2006) in the R system for statistical computing (R Development Core
Team 2005).

2. A conceptual Lego system

To fix notations, we assume that we are provided with independent and identically distributed
observations (Yi,Xi) for i = 1, . . . , n. The variables Y and X from sample spaces Y and X may
be measured at arbitrary scales and may be multivariate as well. We are interested in testing the
null hypothesis of independence of Y and X

H0 : D(Y|X) = D(Y)

against arbitrary alternatives. Strasser and Weber (1999) suggest to derive scalar test statistics
for testing H0 from multivariate linear statistics of the form

T = vec

(
n∑

i=1

g(Xi)h(Yi)>
)
∈ Rpq×1.

Here, g : X → Rp×1 is a transformation of the X measurements and h : Y → Rq×1 is called
influence function. The function h(Yi) = h(Yi, (Y1, . . . ,Yn)) may depend on the full vector
of responses (Y1, . . . ,Yn), however only in a permutation symmetric way, i.e., the value of the
function must not depend on the order in which Y1, . . . ,Yn appear. We will give several examples
how to choose g and h for specific inference problems in Section 3.

The distribution of T depends on the joint distribution of Y and X, which is unknown under
almost all practical circumstances. At least under the null hypothesis one can dispose of this
dependency by fixing X1, . . . ,Xn and conditioning on all possible permutations S of the responses
Y1, . . . ,Yn. Tests that have been constructed by means of this conditioning principle are called
permutation tests.

The conditional expectation µ ∈ Rpq×1 and covariance Σ ∈ Rpq×pq of T under H0 given all
permutations σ ∈ S of the responses are derived by Strasser and Weber (1999):

µ = E(T|S) = vec

((
n∑

i=1

g(Xi)

)
E(h|S)>

)

Σ = V(T|S) =
n

n− 1
V(h|S)⊗

(∑
i

g(Xi)⊗ g(Xi)>
)
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− 1
n− 1

V(h|S)⊗

(∑
i

g(Xi)

)
⊗

(∑
i

g(Xi)

)>
where ⊗ denotes the Kronecker product, and the conditional expectation of the influence function
is E(h|S) = n−1

∑
i h(Yi) with corresponding q × q covariance matrix

V(h|S) = n−1
∑

i

(h(Yi)− E(h|S)) (h(Yi)− E(h|S))> .

The key step for the construction of test statistics based on the multivariate linear statistic T is
its standardization utilizing the conditional expectation µ and covariance matrix Σ. Univariate
test statistics c mapping a linear statistic T ∈ Rpq×1 into the real line can be of arbitrary form.
Obvious choices are the maximum of the absolute values of the standardized linear statistic or a
quadratic form:

cmax(T, µ,Σ) = max
∣∣∣∣ T− µ

diag(Σ)1/2

∣∣∣∣ ,
cquad(T, µ,Σ) = (T− µ)Σ+(T− µ)>,

involving the Moore-Penrose inverse Σ+ of Σ.
The conditional distribution P(c(T, µ,Σ) ≤ z|S) is the number of permutations σ ∈ S of the data
with corresponding test statistic not exceeding z divided by the total number of permutations in
S. For some special forms of the multivariate linear statistic the exact distribution of some test
statistics is tractable for small and moderate sample sizes. In principle, resampling procedures can
always be used to approximate the exact distribution up to any desired accuracy by evaluating
the test statistic for a random sample from the set of all permutations S. It is important to note
that in the presence of a grouping of the observations into independent blocks, only permutations
within blocks are eligible and that the conditional expectation and covariance matrix need to be
computed separately for each block.
Less well known is the fact that a normal approximation of the conditional distribution can be
computed for arbitrary choices of g and h. Strasser and Weber (1999) showed in their Theorem 2.3
that the conditional distribution of linear statistics T with conditional expectation µ and covari-
ance Σ tends to a multivariate normal distribution with parameters µ and Σ as n → ∞. Thus,
the asymptotic conditional distribution of test statistics of the form cmax is normal and can be
computed directly in the univariate case (pq = 1) and by numerical algorithms in the multivariate
case (Genz 1992). For quadratic forms cquad which follow a χ2 distribution with degrees of free-
dom given by the rank of Σ (see Johnson and Kotz 1970, Chapter 29), exact probabilities can be
computed efficiently.

3. Playing Lego

The Lego system sketched in the previous section consists of Lego bricks for the multivariate
linear statistic T, namely the transformation g and influence function h, multiple forms of the test
statistic c and several choices of approximations of the null distribution. In this section, we will
show how classical procedures, starting with the conditional Kruskal-Wallis test and the Cochran-
Mantel-Haenszel test, can be embedded into this general theory and, much more interesting from
our point of view, how new conditional test procedures can be constructed conceptually and
practically. We highlight the important aspects of the application in R and the full computational
details for reproducing the following analyses are available as a package vignette via the command
vignette("LegoCondInf", package = "coin") directly in R.

Independent K-Samples: Genetic Components of Alcoholism. Various studies have
linked alcohol dependence phenotypes to chromosome 4. One candidate gene is NACP (non-
amyloid component of plaques), coding for alpha synuclein. Bönsch, Lederer, Reulbach, Hothorn,

Copyright c© 2006 American Statistical Association



4 A Lego System for Conditional Inference
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Figure 1: alpha data: Distribution of levels of expressed alpha synuclein mRNA in three groups
defined by the NACP -REP1 allele lengths.

Kornhuber, and Bleich (2005) found longer alleles of NACP -REP1 in alcohol-dependent patients
compared with healthy controls and report that the allele lengths show some association with
levels of expressed alpha synuclein mRNA in alcohol-dependent subjects (see Figure 1). Allele
length is measured as a sum score built from additive dinucleotide repeat length and categorized
into three groups: short (0− 4, n = 24), intermediate (5− 9, n = 58), and long (10− 12, n = 15).
Our first attempt to test for different levels of gene expression in the three groups is the classical
Kruskal-Wallis test. Here, the transformation g is a dummy coding of the allele length (g(Xi) =
(0, 1, 0)> for intermediate length, for example) and the value of the influence function h(Yi) is the
rank of Yi in Y1, . . . ,Yn. Thus, the linear statistic T is the vector of rank sums in each of the
three groups and the test statistic is a quadratic form (T−µ)Σ+(T−µ)> utilizing the conditional
expectation µ and covariance matrix Σ. For computing p-values, the limiting χ2 distribution is
typically used.
In R, this specific test is readily implemented in the well established function kruskal.test which
takes a symbolic formula description of the inference problem and a data set containing the actual
observations as its main arguments. Here, the independence of expression levels (elevel) and allele
lengths (alength) is formulated as elevel ~ alength, the associated observations are available
in a data frame alpha:

R> kruskal.test(elevel ~ alength, data = alpha)

Kruskal-Wallis rank sum test

data: elevel by alength
Kruskal-Wallis chi-squared = 8.8302, df = 2, p-value = 0.01209

Alternatively, the same result can be obtained by embedding the classical Kruskal-Wallis test
into the more general conditional inference framework implemented in the independence_test
function in the coin package. This also takes a formula and a data frame as its main arguments
and additionally allows for the specification of the transformations g and h via xtrafo and ytrafo,
respectively, as well as setting teststat to "max" or "quad" (for cmax or cquad, respectively) and
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the distribution to be used. Thus, for computing the Kruskal-Wallis test ytrafo has to be set
to the function rank for computing ranks, in xtrafo dummy codings have to be used (the default
for categorical variables), teststat is the "quad" type statistic cquad and the default asymptotic
distribution is applied:

R> independence_test(elevel ~ alength, data = alpha,

ytrafo = rank, teststat = "quad")

Asymptotic General Independence Test

data: elevel by groups short, intermediate, long
chi-squared = 8.8302, df = 2, p-value = 0.01209

The output gives equivalent results as reported by kruskal.test above. So what is the advantage
of using independence_test? Going beyond the classical functionality in kruskal.test would
require extensive programming but is easily possible in independence_test. For example, the
resampling distribution instead of the asymptotic distribution could be used by setting distri-
bution = approximate(). More interestingly, ignoring the ordinal structure of the allele length
is suboptimal, especially when we have an ordered alternative in mind. An intuitive idea for cap-
turing the ordinal information would be to assign numeric scores to the allele length categories in
the transformation g rather than the dummy codings used above. A natural choice of scores would
be the mid-points of the intervals originally used to categorize the allele lengths, i.e., g(Xi) = 2
for short (∈ [0, 4]), 7 for intermediate (∈ [5, 9]) and 11 for long (∈ [10, 12]) alleles. In R, such a
function g is easily implemented as

R> mpoints <- function(x) c(2, 7, 11)[unlist(x)]

which can then be passed as xtrafo argument to independence_test. The resulting p-value
is p = 0.003 and emphasizes the impression from Figure 1 that the expression levels increase
with increasing allele lengths. It should be pointed out that a test based on such a numerical
transformation for ordinal variables is equivalent to linear-by-linear association tests (Agresti 2002)
for which further convenience infrastructure is available in the independence_test function via
the scores argument.

Contingency Tables: Smoking and Alzheimer’s Disease. Salib and Hillier (1997) report
results of a case-control study on Alzheimer’s disease and smoking behavior of 198 female and
male Alzheimer patients and 164 controls. The alzheimer data have been re-constructed from
Table 4 in Salib and Hillier (1997). The authors conclude that ‘cigarette smoking is less frequent
in men with Alzheimer’s disease.’
We are interested to assess whether there is any association between smoking and Alzheimer’s
(or other dementia) diseases and, in a second step, how a potential association can be described.
First, the global null hypothesis of independence between smoking behavior and disease status for
both females and males, i.e., treating gender as a block factor, can be tested with a cquad-type test
statistic, i.e., the Cochran-Mantel-Haenszel test:

R> it_alz <- independence_test(disease ~ smoking | gender,

data = alzheimer, teststat = "quad")

R> it_alz

Asymptotic General Independence Test

data: disease by groups None, <10, 10-20, >20
stratified by gender

chi-squared = 23.3163, df = 6, p-value = 0.0006972
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Figure 2: alzheimer data: Association of smoking behavior and disease status stratified by gender.

which suggests that there is a clear deviation from independence. By default, the influence function
h (the ytrafo argument) and the transformation g (the xtrafo argument) are dummy codings
of the factors disease status Y and smoking behavior X, i.e., h(Yi) = (1, 0, 0)> and g(Xi) =
(1, 0, 0, 0)> for a non-smoking Alzheimer patient. Consequently, the linear multivariate statistic
T based on g and h is the contingency table of both variables

R> statistic(it_alz, type = "linear")

Alzheimer’s Other dementias Other diagnoses
None 126 79 104
<10 15 8 5
10-20 30 33 47
>20 27 44 20

with conditional expectation expectation(it_alz) and conditional covariance covariance(it_alz)
which are available for standardizing the contingency table T. The conditional distribution is ap-
proximated by its limiting χ2 distribution by default.
Given that there is significant departure from independence, we further investigate the structure
of association between smoking and Alzheimer’s disease. When we assess for which gender the
violation of independence occured, i.e., perform independence tests for female and male subjects
separately, it turns out that the association is due to the male patients only (p < 0.001 for male
patients and p = 0.091 for female patients, see also Figure 2). We therefore focus on the male
patients in the following. A standardized contingency table is useful for gaining insight into the
association structure of contingency tables. Thus, a test statistic based on the standardized linear
statistic T (and thus the standardized contingency table) would be more useful than a cquad-type
test statistic where the contributions of all cells are collapsed in such a quadratic form. Therefore,
we choose the maximum of the standardized contingency table as cmax test statistic via

R> it_alzmax <- independence_test(disease ~ smoking,

data = alzheimer, subset = alzheimer$gender == "Male",

teststat = "max")

R> it_alzmax
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Asymptotic General Independence Test

data: disease by groups None, <10, 10-20, >20
maxT = 4.9504, p-value = 1.148e-05

where the underlying standardized contingency table highlights the cells with deviations from
independence

R> statistic(it_alzmax, "standardized")

Alzheimer’s Other dementias Other diagnoses
None 2.5900465 -2.340275 -0.1522407
<10 2.9713093 -2.056864 -0.8446233
10-20 -0.7765307 -1.237441 2.1146396
>20 -3.6678046 4.950373 -1.5303056

This leads to the impression that heavy smokers suffer less frequently from Alzheimer’s disease but
more frequently from other dementias than expected under independence. However, interpreting
the standardized contingency table requires knowledge about the distribution of the standardized
statistics. An approximation of the joint distribution of all elements of the standardized contin-
gency table can be obtained from the 12-dimensional multivariate limiting normal distribution of
the linear statistic T. Most useful is an approximation of the 95% quantile of the permutation
null distribution which is available from

R> qperm(it_alzmax, 0.95)

[1] 2.813175

These results support the conclusion that the rejection of the null hypothesis of independence is
due to a large number of patients with other dementias and a small number with Alzheimer’s
disease in the heavy smoking group. In addition, there is some evidence that, for the small group
of men smoking less than ten cigarettes per day, the reverse association is true.

Multivariate Response: Photococarcinogenicity Experiments. The effect on tumor fre-
quency and latency in photococarcinogenicity experiments, where carcinogenic doses of ultraviolet
radiation (UVR) are administered, are measured by means of (at least) three response variables:
the survival time, the time to first tumor and the total number of tumors of animals in different
treatment groups. The main interest is testing the global null hypothesis of no treatment effect
with respect to any of the three responses survival time, time to first tumor or number of tumors
(Molefe, Chen, Howard, Miller, Sambuco, Forbes, and Kodell 2005, analyze the detection time of
tumors in addition, this data is not given here). In case the global null hypothesis can be rejected,
the deviations from the partial hypotheses are of special interest.
Molefe et al. (2005) report data of an experiment where 108 female mice were exposed to different
levels of UVR (group A: n = 36 with topical vehicle and 600 Robertson–Berger units of UVR,
group B: n = 36 without topical vehicle and 600 Robertson–Berger units of UVR and group C:
n = 36 without topical vehicle and 1200 Robertson–Berger units of UVR). The data are taken
from Tables 1–3 in Molefe et al. (2005), where a parametric test procedure is proposed. Figure 3
depicts the group effects for all three response variables.
First, we construct a global test for the null hypothesis of independence of treatment and all three
response variables. A cmax-type test based on the standardized multivariate linear statistic and an
approximation of the conditional distribution utilizing the asymptotic distribution simply reads

R> it_ph <- independence_test(Surv(time, event) +

Surv(dmin, tumor) + ntumor ~ group, data = photocar)

R> it_ph
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Figure 3: photocar data: Kaplan-Meier estimates of time to death and time to first tumor as well
as boxplots of the total number of tumors in three treatment groups.

Asymptotic General Independence Test

data: Surv(time, event), Surv(dmin, tumor), ntumor
by groups A, B, C

maxT = 7.0777, p-value = 8.1e-12

Here, the influence function h consists of the logrank scores (the default ytrafo argument for
censored observations) of the survival time and time to first tumor as well as the number of tumors,
i.e., for the first animal in the first group h(Y1) = (−1.08,−0.56, 5)> and g(X1) = (1, 0, 0)>. The
multivariate linear statistic T is the sum of each of the three components of the influence function
h in each of the groups. It is important to note that this global test utilizes the complete covariance
structure Σ when p-values are computed. Alternatively, a test statistic based on the quadratic
form cquad directly incorporates the covariance matrix and leads to a very similar p-value.
The deviations from the partial null hypotheses, i.e., independence of each single response and
treatment groups, can be inspected by comparing the standardized linear statistic T to its critical
value 2.715 (which can be obtained by qperm(it_ph, 0.95))

R> statistic(it_ph, type = "standardized")

Surv(time, event) Surv(dmin, tumor) ntumor
A -2.327338 -2.178704 0.2642120
B -4.750336 -4.106039 0.1509783
C 7.077674 6.284743 -0.4151904

Clearly, the rejection of the global null hypothesis is due to the group differences in both survival
time and time to first tumor whereas no treatment effect on the total number of tumors can be
observed.

Independent Two-Samples: Contaminated Fish Consumption. In the former three ap-
plications, pre-fabricated Lego bricks—i.e., standard transformations for g and h such as dummy
codings, ranks and logrank scores—have been employed. In the fourth application, we will show
how the Lego system can be used to construct new bricks and implement a newly invented test
procedure.
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Rosenbaum (1994) proposed to compare groups by means of a coherence criterion and studied a
data set of subjects who ate contaminated fish for more than three years in the ‘exposed’ group
(n = 23) and a control group (n = 16). Three response variables are available: the mercury level
of the blood, the percentage of cells with structural abnormalities and the proportion of cells with
asymmetrical or incomplete-symmetrical chromosome aberrations. The coherence criterion defines
a partial ordering: an observation is said to be smaller than another when all three variables are
smaller. The rank score for observation i is the number of observations that are larger (following
the above sketched partial ordering) than observation i minus the number of observations that are
smaller. The distribution of the rank scores in both groups is to be compared and the corresponding
test is called ‘POSET-test’ (partially ordered sets test) and may be viewed as a multivariate form
of the Wilcoxon-Mann-Whitney test.
The coherence criterion can be formulated in a simple function by utilizing column-wise sums of
indicator functions applied to all individuals

R> coherence <- function(data)

apply(x <- t(as.matrix(data)), 2, function(y)

sum(colSums(x < y) == nrow(x)) -

sum(colSums(x > y) == nrow(x)))

which is now defined as influence function h via the ytrafo argument

R> poset <- independence_test(mercury + abnormal + ccells ~ group,

data = mercuryfish, ytrafo = coherence,

distribution = exact())

Once the transformations g (the default zero-one coding of the exposed and control group) and h
(the coherence criterion) are defined, we enjoy the whole functionality of the framework, including
an exact two-sided p-value

R> pvalue(poset)

[1] 4.486087e-06

and density (dperm), distribution (pperm) and quantile functions (qperm) of the conditional dis-
tribution.

4. Discussion

Conditioning on the observed data is a simple, yet powerful, design principle for statistical tests.
Conceptually, one only needs to choose an appropriate test statistic and evaluate it for all admis-
sible permutations of the data (Ernst 2004, gives some examples). In practical setups, an imple-
mentation of this two-step procedure requires a certain amount of programming and computing
time. Sometimes, permutation tests are even regarded as being ‘computationally impractical’ for
larger sample sizes (Balkin and Mallows 2001).
The permutation test framework by Strasser and Weber (1999) helps us to take a fresh look at
conditional inference procedures and makes at least two important contributions: analytic formulae
for the conditional expectation and covariance and the limiting normal distribution of a class of
multivariate linear statistics. Thus, test statistics can be defined for appropriately standardized
linear statistics and a fast approximation of the conditional distribution is available, especially for
large sample sizes.
It is one mission, if not the mission, of statistical computing to transform new theoretical develop-
ments into flexible software tools for the data analyst. The coin package is an attempt to translate
the theoretical concepts of Strasser and Weber (1999) into software tools preserving the simplicity
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and flexibility of the theory as closely as possible. With this package, the specialized spanners
currently in use, such as wilcox.test for the Wilcoxon-Mann-Whitney test or mantelhaen.test
for the Cochran-Mantel-Haenszel χ2 test in the S language and NPAR1WAY for linear rank statistics
in SAS as well as the tools implemented in StatXact, LogXact, Stata, and Testimate (see Oster 2002,
2003, for an overview), are extended by independence_test, a much more flexible and adjustable
spanner.
But who stands to benefit from such a software infrastructure? We argue that an improved data
analysis is possible in cases when the appropriate conditional test is not available from standard
software packages. Statisticians can modify existing test procedures or even try new ideas by
computing directly on the theory. A high-level Lego system is attractive for both researchers and
software developers, because only the transformation g and influence function h need to be newly
defined, but the burden of implementing a resampling procedure, or even deriving the limiting
distribution of a newly invented test statistic, is waived.
With a unifying conceptual framework in mind and a software implementation at hand, we are
no longer limited to already published and implemented permutation test procedures and are free
to define our own transformations and influence functions, can choose several forms of suitable
test statistics and utilize several methods for the computation or approximation of the conditional
distribution of the test statistic of interest. Thus, the construction of an appropriate permutation
test, for both classical and new inference problems, is only a matter of putting together adequate
Lego bricks.
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