
Open-Source Machine Learning: R Meets Weka

Kurt Hornik, Christian Buchta, Achim Zeileis
WU Wirtschaftsuniversität Wien

Abstract

Two of the prime open-source environments available for machine/statistical learning in
data mining and knowledge discovery are the software packages Weka and R which have
emerged from the machine learning and statistics communities, respectively. To make the
different sets of tools from both environments available in a single unified system, an R package
RWeka is suggested which interfaces Weka’s functionality to R. With only a thin layer of
(mostly R) code, a set of general interface generators is provided which can set up interface
functions with the usual “R look and feel”, re-using Weka’s standardized interface of learner
classes (including classifiers, clusterers, associators, filters, loaders, savers, and stemmers) with
associated methods.

Keywords: machine learning, statistical learning, Weka, R, Java, interface.

1. Introduction

New Zealand has brought forth two kinds of wekas: a flightless endemic bird (Gallirallus australis)
and the Waikato Environment for Knowledge Analysis (Weka, http://www.cs.waikato.ac.nz/
~ml/weka/), the leading open-source project in machine learning. Weka is a comprehensive col-
lection of machine-learning algorithms for data mining tasks written in Java and released under
the GPL, containing tools for data pre-processing, classification, regression, clustering, association
rules, and visualization. There are three graphical user interfaces (“Explorer”, “Experimenter”
and “KnowledgeFlow”) as well as a standardized command line interface. The Weka project was
started in 1992, and has been funded by the New Zealand government since 1993. It has recently
joined Pentaho (http://www.pentaho.com/), a leading and award-winning open-source business
intelligence project, to add “data mining capabilities to the broad range of business intelligence
features” of Pentaho.
Weka complements the book “Data Mining” (Witten and Frank 2005) which is heavily used in
computer science curricula. It implements a variety of methods popular in machine learning and
useful for statistical learning, but typically not available in statistical software packages. This
includes rule (JRip), (JRip, Cohen 1995), lazy (LBR), and meta learners (MultiBoostAB), as well
as cluster algorithms such as CobWeb and DBSCAN, or the association rule algorithm Tertius. For
many algorithms, Weka provides de-facto reference implementations, including the key decision
tree algorithms J4.8 and M5’ implementing C4.5 and M5, respectively. See Witten and Frank
(2005) for more details and references. Finally, Weka also serves as the basis for a variety of
additional machine learning software projects.
Obviously, it is highly desirable that statisticians have convenient and efficient access to Weka’s
functionality, ideally through seamless integration into their commonly employed software environ-
ment. Such access particularly provides the benefit that data pre-processing, exploratory analysis
and model fitting can be carried out in a single statistical environment or that different modeling
algorithms can easily be compared, e.g., in a benchmark study (see Schauerhuber, Zeileis, Meyer,
and Hornik 2007, for some examples). This paper discusses a Weka interface for R (R Development
Core Team 2007), the leading open-source system for statistical computing and graphics, which is
provided by the R extension package RWeka (Hornik, Zeileis, Hothorn, and Buchta 2007). In the

This is a preprint of an article published in Computational Statistics, 24(2), 225–232.
Copyright© 2008 Springer-Verlag doi:10.1007/s00180-008-0119-7

http://www.cs.waikato.ac.nz/~ml/weka/
http://www.cs.waikato.ac.nz/~ml/weka/
http://www.pentaho.com/
http://dx.doi.org/10.1007/s00180-008-0119-7

2 Open-Source Machine Learning: R Meets Weka

following we focus on the software design for RWeka, presenting the interfacing methodology in
Section 2 and discussing limitations and possible extensions in Section 3. The latter also relates
to general issues arising when interfacing R with “foreign” (e.g., Java-based) systems.

2. Interfacing Weka to R

There are several design issues which relate to the choice of the interface approach taken, includ-
ing generalizability (if access is desired only to a restricted subset of the available functionality,
hand-crafted interface functions suffice) and maintainability (if the foreign system is modified for
interfacing purposes, patches need to be maintained along with new releases). At the technology
level, a system such as Weka can be interfaced “directly” via the operating system’s access to
the command line interface or by building on low-level R/Java interfaces, such as rJava (Urbanek
2007), SJava (Temple Lang and Chambers 2005), or arji (Carey 2007). At the user level, one could
create R versions of Weka’s classes and an object-oriented programming (OOP) style interface for
Weka’s methods (typically by writing $ methods, i.e., “overloading”the $ operator in OOP jargon).
Package RWeka builds on package rJava for low-level direct R/Java interfacing to provide access
Weka’s core functionality. As Weka provides abstract “core” classes for its learners as well as a
consistent “functional” methods interface for these learner classes, it is possible to provide general
interface generators that re-use Weka methods. These yield R functions and methods with “the
usual look and feel”, e.g., a customary formula interface for supervised learners (which are called
“classifiers”in Weka’s terminology), again by re-using corresponding Weka methods. This approach
allows for both generalizability (because new interfaces can be generated on the fly) as well as
maintainability (because only the “exported” functionality of Weka is re-used). In the following,
setting up and fitting classifiers is discussed in more detail— Table 1 gives an overview of the
R/RWeka functions/methods and their Weka counterparts.
RWeka contains R classes I (interface classes) for each key “group” of functionality provided by
Weka and to be interfaced (currently, classifiers, clusterers, associators, filters, loaders, savers, and
stemmers), and functions mI (interface generators) which generate such interfaces by returning
suitably classed functions fI,W interfacing given Weka classes W . The interface functions fI,W

have formals “as usual” and are suitably classed so that standard R methods can be provided. The
implementation is based on the S3 object system (Chambers and Hastie 1992).

Table 1: R/RWeka and corresponding Weka classifier functions/methods.

R/RWeka Weka

classifier interface make_Weka_classifier() Weka class (in JNI notation)
fI,W buildClassifier()
print() globalInfo(),

technicalInformation()
WOW() listOptions()

fitted classifier print() toString()
fitted() classifyInstance()
predict() classifyInstance(),

distributionForInstance()
summary() ‘Evaluation’ class
plot() (‘Weka_tree’) –
write_to_dot() graph()

Copyright© 2008 Springer-Verlag

Kurt Hornik, Christian Buchta, Achim Zeileis 3

The mechanism is best illustrated by an example:

R> library("RWeka")

R> foo <- make_Weka_classifier("weka/classifiers/trees/J48", c("bar",

+ "Weka_tree"))

The interface generator make_Weka_classifier() (mI) creates an interface function foo() (fI,W)
to the given Weka class ‘weka.classifiers.trees.J48’ (W) whose fully qualified class name is
specified in JNI notation. The interface function foo() in fact inherits from the interface class
‘R_Weka_classifier_interface’ (I). When fitted to data sets, it returns objects inheriting from
the given classes ‘bar’ and ‘Weka_tree’ as well as ‘Weka_classifier’ which objects returned
by classifier interface functions always inherit from. All classifier interface functions have the
usual formals formula, data, subset and na.action, as well as formal control for specifying
control arguments to be passed to Weka (in this case, when building the classifier). Printing such
interface functions uses Weka’s globalInfo() and technicalInfomation() methods to provide
a description of the functionality being interfaced.

R> print(foo)

An R interface to Weka class 'weka.classifiers.trees.J48',
which has information

Class for generating a pruned or unpruned C4.5 decision tree. For
more information, see

Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, San Mateo, CA.

BibTeX:

@BOOK{Quinlan1993,
title = {C4.5: Programs for Machine Learning},
author = {Ross Quinlan},
publisher = {Morgan Kaufmann Publishers},
year = {1993},
address = {San Mateo, CA},

}

Argument list:
foo(formula, data, subset, na.action, control = Weka_control())

Returns objects inheriting from classes:
bar Weka_tree Weka_classifier

When the classifier interface function is called, a model frame is set up in R which is transferred to a
Weka instance object. Then, the buildClassifier() method of the Weka class interfaced is called
with these instances. The fitted values (model predictions for the training data) are obtained by
calling the Weka classifyInstances() method for the built classifier and each training instance.
As an example, a J4.8 tree for the iris data can be grown via

R> fm <- foo(Species ~ ., data = iris, control = Weka_control(S = TRUE,

+ M = 5))

R> fm

Copyright© 2008 Springer-Verlag

4 Open-Source Machine Learning: R Meets Weka

J48 pruned tree

Petal.Width <= 0.6: setosa (50.0)
Petal.Width > 0.6
| Petal.Width <= 1.7
| | Petal.Length <= 4.9: versicolor (48.0/1.0)
| | Petal.Length > 4.9: virginica (6.0/2.0)
| Petal.Width > 1.7: virginica (46.0/1.0)

Number of Leaves : 4

Size of the tree : 7

A suitably classed object containing both a reference to the built classifier and the predictions is
returned. Such objects have at least a print() method (using Weka’s toString()), a summary()
method (using Weka’s ‘Evaluation’ class), and a predict() (and fitted()) method for either
“classes” (again using Weka’s terminology: numeric for regression, factor for classification) or class
probabilities (using Weka’s distributionForInstance()). Therefore, a confusion matrix can eas-
ily be computed “by hand” with table(observed = iris$Species, predicted = fitted(fm)).
Additionally, it is also included in the printed output from summary(fm) along with further sum-
mary statistics. Weka provides command-line style options for controlling building the classifiers.
These can be queried online using WOW(), the Weka Option Wizard (taking advantage of Weka’s
listOptions()). The desired control options can be given using the control argument of the
interface function using Weka_control(). This allows the user to conveniently employ R’s typical
tag-value style ((S = TRUE, M = 5)) which is internally wrapped to Weka’s command-line option
style (e.g., ‘-S -M 5’) In the J4.8 example above, the control arguments were set to build a J4.8
tree without subtree raising (S = TRUE) and setting the minimal number of instances per leaf to 5
(M = 5).
In addition to classifiers, RWeka provides interface generation facilities for clusterers, associators,
filters, loaders, savers, and stemmers, with filter interface functions also exhibiting a formula-style
interface. For some of the most important algorithms—but not for all—interface functions are
readily provided. Users can employ the interface generator functions to create additional interface
functions at their discretion, or even create interface functions different from the default ones,
typically to modify the return signature to feature dispatch to different, potentially user-defined,
plot() or summary() methods.
The generality of the RWeka approach is made possible by the fact that, for the kinds of function-
ality interfaced, Weka provides abstract “core” classes (e.g., ‘weka.classifiers. Classifier’)
with basic methods (e.g., buildClassifier() or classifyInstance()) as well as standardized
interfaces such as OptionHandler or TechnicalInformationHandler, such that key functionality
can be accessed in uniform ways. There are situations, however, where interface computations
need to be specialized. For example, Weka’s meta learners expect the base learner to be given
with their fully classified Java class name, but R users would naturally like to specify the interface
functions (or at least only the “base names” of the Java classes). Thus, for interfaces to meta
learners, the control options should be rewritten accordingly. RWeka uses the notion of handlers
for these situations, which are named lists of functions to be called for certain purposes. Cur-
rently, options handlers are used by classifier and saver interfaces, and the corresponding interface
generators allow their specification.
The specification of the return signature of the interface functions allows dispatching to special-
ized S3 methods. As one example, package RWeka provides a customized plot() method for
the models returned by the Weka tree learners (such as J48(), M5P() or LMT()) which inherit
from class ‘Weka_tree’. This method is based on the routines for plotting ‘BinaryTree’ ob-
jects in package party (Hothorn, Hornik, and Zeileis 2006). For Weka learners implementing the

Copyright© 2008 Springer-Verlag

Kurt Hornik, Christian Buchta, Achim Zeileis 5

Petal.Width

≤≤ 0.6 >> 0.6

setosa
(50.0)

Petal.Width

≤≤ 1.7 >> 1.7

Petal.Length

≤≤ 4.9 >> 4.9

versicolor
(48.0/1.0)

virginica
(6.0/2.0)

virginica
(46.0/1.0)

Petal.Width

setosa (50.0)

<= 0.6

Petal.Width

> 0.6

Petal.Length

<= 1.7

virginica (46.0/1.0)

> 1.7

versicolor (48.0/1.0)

<= 4.9

virginica (6.0/2.0)

> 4.9

Figure 1: Visualizing fitted Weka trees within R and via Graphviz.

Drawable interface, i.e., providing a graph() method, it is also possible to use write_to_dot()
to create DOT language representations of the built classifiers for processing via the dot program
of Graphviz (Ellson, Gansner, Koutsofios, North, and Woodhull 2003). Figure 1 illustrates these
approaches. Additionally, the DOT representation could be read back into R and visualized by
means of the Rgraphviz package (Gentry, Long, Gentleman, and Falcon 2007). In fact, one could
also try to interface Weka’s native plotting facilities. This is currently not done, as it cannot
easily be integrated into R’s device system, and thus would not comply with the design principle
of remaining within R’s “usual look and feel”.

The RWeka package includes the unmodified Weka jar file to maximize maintainability: With a new
version of Weka, a new version of RWeka is released which typically needs no further modification
because the interface relies on Weka’s API (application programming interface). In addition to the
jar file, the RWeka code base consists of two components: First, the major component is high-level
R code for interface generators and reporters, and useful methods, based on the low level R/Java
interface provided by package rJava. Second, there is some Java-level interface code for enhancing
performance. E.g., unlike R’s data frames, Weka’s instance objects are organized row-wise, and
predictions (using classifyInstance()) are for single instances: for performance, we use Java
code for looping over all instances.

3. Discussion

We see three directions for possible enhancements of the current functionality of RWeka, which
relate to general issues arising when interfacing R with other systems.

Too much privacy: By definition, information private to Weka’s classes is not available for inter-
facing. E.g. for fitted tree learners, Weka provides a description of the tree in the DOT language.
However, this contains the chosen split variables and split points only as character strings which
can not be re-used (e.g., for computing predictions within R) unless this string representation is
reverse engineered. Similar problems occur for other models (e.g., for LinearRegression from
which the terms structure of the AIC-selected model cannot be extracted). If by design a system
interfaced is not modified for interfacing purposes (as in our case), then such issues need to be
resolved at the upstream source level. We have begun to work with the Weka developers to add
functionality typically available in state-of-the-art statistical software. E.g., Weka 3.5.4 has added
a getAllTheRules() method to access the association rules found by its Tertius or Apriori imple-
mentations, allowing for efficient integration of these algorithms into the association rule mining
environment provided by package arules (Hahsler, Grün, and Hornik 2005).

Copyright© 2008 Springer-Verlag

6 Open-Source Machine Learning: R Meets Weka

Too much data manipulation: E.g., when using a filter interface function such as
Discretize()), data available as an R data frame are transformed to Weka instances, filtered, and
transformed back to a data frame. If the next data analysis step again employs an RWeka interface
function, some of these data transformations are unnecessary. A natural idea would be having
common R/Java data objects encapsulating data access for both systems in a way that transfor-
mations between native representations are only performed when needed (e.g., as references with
transform-on-dereference semantics). A somewhat simpler and less symmetric approach would try
to employ suitably classed R objects which when evaluated transfer data back into R, but can be
dispatched upon without evaluation. However, this is not possible given R’s current semantics.
Developing efficiently and transparently designed proxy objects for common data handling is a
general issue when interfacing two systems (e.g., the various data base interfaces available for R).
One-way communication: The current R/Weka interface is entirely asymmetric in nature as there
is no way to access R’s functionality from the Weka side. Such “callbacks” could be useful in a
variety of circumstances, e.g., to employ R classifiers as base learners for Weka’s meta learners, or a
user-defined R dissimilarity measure as the distance function used by Weka’s clusterers. One idea
would be creating Weka classes representing the corresponding R functionality (and ideally extend-
ing one of Weka’s abstract classes) and providing the basic methods (e.g., buildClassifier(),
classifyInstance() for classifiers representing R regression or classification models) by calling
back into R. Ideally, such Weka-to-R interface classes would be created using an interface genera-
tion approach along the lines described in Section 2. However, apart from implementation issues
such as threading disparity, it is currently unclear whether such callbacks can be implemented in
a satisfactorily efficient way: Clearly, efficient data sharing across systems as discussed above is a
key prerequisite.

References

Carey V (2007). arji: Another R-Java interface. R package version 0.3.16., URL http://www.
bioconductor.org/.

Chambers JM, Hastie TJ (1992). Statistical Models in S. Chapman & Hall, London.

Cohen WW (1995). “Fast Effective Rule Induction.” In Twelfth International Conference on
Machine Learning, pp. 115–123. Morgan Kaufmann.

Ellson J, Gansner E, Koutsofios E, North S, Woodhull G (2003). “Graphviz and Dynagraph –
Static and Dynamic Graph Drawing Tools.” In M Junger, P Mutzel (eds.), Graph Drawing
Software, pp. 127–148. Springer-Verlag. URL http://www.Graphviz.org/.

Gentry J, Long L, Gentleman R, Falcon S (2007). Rgraphviz: Plotting Capabilities for R Graph
Objects. R package version 1.14.1., URL http://www.bioconductor.org/.

Hahsler M, Grün B, Hornik K (2005). “arules – A Computational Environment for Mining As-
sociation Rules and Frequent Item Sets.” Journal of Statistical Software, 14(15), 1–25. ISSN
1548-7660. URL http://www.jstatsoft.org/v14/i15/.

Hornik K, Zeileis A, Hothorn T, Buchta C (2007). RWeka: An R Interface to Weka. R package
version 0.3-4., URL http://CRAN.R-project.org/package=RWeka.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional Inference
Framework.” Journal of Computational and Graphical Statistics, 15(3), 651–674.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0., URL http:
//www.R-project.org/.

Copyright© 2008 Springer-Verlag

http://www.bioconductor.org/
http://www.bioconductor.org/
http://www.Graphviz.org/
http://www.bioconductor.org/
http://www.jstatsoft.org/v14/i15/
http://CRAN.R-project.org/package=RWeka
http://www.R-project.org/
http://www.R-project.org/

Kurt Hornik, Christian Buchta, Achim Zeileis 7

Schauerhuber M, Zeileis A, Meyer D, Hornik K (2007). “Benchmarking Open-Source Tree Learn-
ers in R/RWeka.” In Data Analysis, Machine Learning, and Applications (Proceedings of the
31st Annual Conference of the Gesellschaft für Klassifikation e.V., March 7–9, 2007, Freiburg).
Forthcoming.

Temple Lang D, Chambers J (2005). SJava: The Omegahat Interface for R and Java. R package
version 0.69-0., URL http://www.omegahat.org/RSJava/.

Urbanek S (2007). rJava: Low-Level R to Java Interface. R package version 0.4-16., URL
http://CRAN.R-project.org/package=rJava.

Witten IH, Frank E (2005). Data Mining: Practical Machine Learning Tools and Techniques. 2nd
edition. Morgan Kaufmann, San Francisco.

Copyright© 2008 Springer-Verlag

http://www.omegahat.org/RSJava/
http://CRAN.R-project.org/package=rJava

	Introduction
	Interfacing Weka to R
	Discussion

