
kernlab
An R Package for Kernel Learning

Alexandros Karatzoglou Alex Smola Kurt Hornik Achim Zeileis

http://www.ci.tuwien.ac.at/~zeileis/

http://www.ci.tuwien.ac.at/~zeileis/


Overview

• Implementing learning algorithms:
– Why should we write software (and make it available)?
– Why should it be open source software?
– What should be the guiding principles for implementation?
– Why R?

• Kernel learning implementation in kernlab
– Kernels and kernel expressions
– Learning algorithms
– Other tools



Why software?

Authors of learning algorithms usually have an implementation
for own applications and running simulations and benchmarks,
but not necessarily in production quality.

Why should they be interested in taking the extra effort to adapt
them to more general situations, document it and make it avail-
able to others?

Supplying software that is sufficiently easy to use is an excellent
way of communicating ideas and concepts to researchers and
practitioners.

Given the description of an excellent method and code for a good
one, you choose . . . ?



Why open source?

Claerbout’s principle

An article about computational science in a scientific pub-
lication is not the scholarship itself, it is merely advertis-
ing of the scholarship. The actual scholarship is the com-
plete software development environment and the com-
plete set of instructions which generated the figures.

To evaluate the correctness of all the results in such an article,
the source code must also be available for inspection. Only this
way gradual refinement of computational (and conceptual) tools
is possible.



Implementation principles

Task: Turn conceptual tools into computational tools

Goals: desirable features

• easy to use,
• numerically reliable,
• computationally efficient,
• flexible and extensible,
• re-usable components,
• object oriented,
• reflect features of the conceptual method.



Implementation principles

Problem: often antagonistic. E.g., computational efficiency vs.
extensibility.

Guiding principle: The implementation should be guided by the
properties of the underlying methods while trying to ensure as
much efficiency and accuracy as possible.

The resulting functions should do what we think an algorithm
does conceptually.



Implementation principles

In practice: Many implementations are still guided by the limita-
tions that programming languages used to have (and some still
have) where everything has to be represented by numeric vec-
tors and matrices.

What language features are helpful for improving this?



Implementation principles

Object orientation: Create (potentially complex) objects that
represent an abstraction of a procedure or type of data. Methods
performing typical tasks can be implemented.

Functions as first-class objects: Functions are a basic data
type that can be passed to and returned by another function.

Lexical scope: more precisely nested lexically scoped func-
tions. Returned functions (e.g., prediction methods) can have
free variables stored in the function closure.



Implementation principles

Compiled code: Combine convenience of using interpreted
code and efficiency of compiled code by (byte) compilation or
dynamic linking of compiled code.

Re-usable components: The programming environment should
provide procedures that the implementation can build on. Like-
wise, the implementation should create objects that can be re-
used in other programs.



Why R?

R offers all these features and more:

• R is a full-featured interactive computational environment for
data analysis, inference and visualization.

• R is an open source project, released under GPL.

• Developed for the Unix, Windows and Macintosh families of
operating systems by the R Development Core Team.

• Offers several means of object orientation, including S3 and
S4 classes.



Why R?

• Everything in R is an object, including functions and even
function calls.

• Nested functions are lexically scoped.

• Allows for dynamic linking of C, C++ or FORTRAN code.

• Highly extensible with a fast-growing list of add-on packages.



Why R?

Software delivery is particularly easy:

R itself and more than 470 packages are available (most of them
under the GPL) from the Comprehensive R Archive Network
(CRAN):

http://CRAN.R-project.org/

and can easily be installed from within R via, e.g.

R> install.packages("kernlab")

http://CRAN.R-project.org/


Kernel learning

Motivation: Flexible implementation of a collection of ker-
nel learning techniques, in particular support vector machines
(SVMs), employing different kernels.

Goals:

• Make it easy to plug in new kernels (potentially user-defined).
• Provide typical kernel expressions as building blocks to high-

level algorithms.
• Provide further tools typically required for kernel learning.



Kernel learning

Problem: Many learning tasks are difficult to solve in the ob-
served feature space.

Solution: Project observations into a high-dimensional space
where the learning task is easier to solve.

Kernel trick: Kernels compute dot product

k(x, x′) = 〈Φ(x),Φ(x′)〉

in a high dimensional projection space.



Kernel learning

Kernel learners use the dot product representation of data, i.e.,
typically rely on expressions like the kernel matrix K defined by

Kij = k(xi, xj)

with i, j = 1, . . . , n.

Changing the kernel changes the projection of the data and
hence the distances in the projection space.



Kernel learning in kernlab

Simple idea: Kernels are functions k(x, x′) which, given two
vectors x and x′, compute a scalar.

Implementation: Kernels are represented as objects of class
"kernel" (extending the "function" class).

These functions can be passed as an argument to generic func-
tions which evaluate more useful kernel expressions like a kernel
matrix.



Kernel expressions

• kernelMatrix(kernel, x) computes the kernel matrix

Kij = k(xi, xj)

• kernelPol(kernel, x, y) computes the matrix

Pij = yiyj k(xi, xj)

• kernelMult(kernel, x, alpha) computes the vector

fi =
m∑

j=1
k(xi, xj)αj



Kernel expressions

R> library(kernlab)

R> set.seed(20050305)

R> X <- matrix(rnorm(300), ncol = 100)

R> rbf1 <- function(x, y) exp(-0.1 * sum((x - y)^2))

R> class(rbf1) <- "kernel"

R> rbf1(X[1, ], X[2, ])

[1] 4.303873e-10



Kernel expressions

R> kernelMatrix(rbf1, X)

[,1] [,2] [,3]

[1,] 1.000000e+00 4.303873e-10 8.321654e-09

[2,] 4.303873e-10 1.000000e+00 3.780441e-10

[3,] 8.321654e-09 3.780441e-10 1.000000e+00

Problems:

• These default methods can become very slow.
• For hyperparameter tuning, a notion of families of kernels is

needed.



Kernel expressions

Solution:

• kernlab provides “kernel generating functions” creating ker-
nel functions from commonly used families.

• Using object orientation mechanism memory efficient meth-
ods are provided for vectorized computation of kernel expres-
sions in compiled code.

• For user-defined kernels new methods to kernelMatrix and
friends can be defined.



Kernel families

• Linear kernel vanilladot

k(x, x′) = 〈x, x′〉

• Gaussian radial basis rbfdot

k(x, x′) = exp(−σ · ‖x − x′‖2)

• Hyperbolic tangent tanhdot

k(x, x′) = tanh
(
scale · 〈x, x′〉+ offset

)

• Polynomial kernel polydot

k(x, x′) = (scale · 〈x, x′〉+ offset)degree



Kernel families

These kernel generating functions create kernel functions ob-
jects that store the kernel family and its parameters within the
object.

R> rbf2 <- rbfdot(sigma = 0.1)

R> rbf2

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.1



Kernel families

R> rbf2(X[1, ], X[2, ])

[,1]

[1,] 4.303873e-10

R> kernelMatrix(rbf2, X)

[,1] [,2] [,3]

[1,] 1.000000e-00 4.303873e-10 8.321654e-09

[2,] 4.303873e-10 1.000000e+00 3.780441e-10

[3,] 8.321654e-09 3.780441e-10 1.000000e+00



Kernel learners

Functions implementing kernel learning algorithms should take
the kernel function as an argument.

These high-level functions should also employ the generic func-
tions like kernelMatrix

• such that these operations do not have to be re-implemented
for each algorithm,

• and to exploit the efficient methods supplied for certain kernel
families.



Kernel learners

• Support vector machine: ksvm
• Relevance vector machine: rvm
• Gaussian processes: gausspr
• Ranking: ranking
• Online learning: onlearn
• Spectral clustering: specc
• Kernel principal component analysis: kpca
• Kernel feature analysis: kfa
• Kernel canonical correlation analysis: kcca



Other tools

Quadratic optimizer: in many kernel-based algorithms (espe-
cially SVMs) a quadratic programming solver is needed. kernlab
provides ipop, an optimizer using an interior point code for

minimize c>x + 1
2
x>Hx

subject to b ≤ Ax ≤ b + r

l ≤ x ≤ u



Other tools

Incomplete Cholesky decomposition: As the kernel matrix is
usually of low rank, employing an incomplete Cholesky factoriza-
tion T is useful:

K = TT>

This is implemented in chol.reduce in kernlab .



Support vector machine

• C- and ν-SVM for classification, regression,
• Novelty detection (one-class classification),
• One-against-one and multi-class SVM formulation,
• Built-in cross-validation,
• Class probabilities output,
• Scaling of variables,
• Automatic σ estimation for RBF kernels.

• ksvm returns fitted object of class "ksvm",
• Methods for predict, show, and plot are provided,
• Slots of fitted objects can be extracted via accessor func-

tions.



Examples: SVM

R> library(mvtnorm)

R> x1 <- rmvnorm(60, mean = c(1.5, 1.5),

sigma = matrix(c(1, 0.8, 0.8, 1), ncol = 2))

R> x2 <- rmvnorm(60, mean = c(-1, -1),

sigma = matrix(c(1, -0.3, -0.3, 1), ncol = 2))

R> X <- rbind(x1, x2)

R> ex1 <- data.frame(x1 = X[,1], x2 = X[,2],

class = factor(rep(letters[1:2], c(60, 60))))

R> rm(x1, x2, X)

R> plot(x2 ~ x1, data=ex1, pch=19, col=rep(c(2, 4), c(60, 60)))

R> library(ellipse)

R> lines(ellipse(0.8, centre = c(1.5, 1.5), level = 0.9), col = 2)

R> lines(ellipse(-0.3, centre = c(-1, -1), level = 0.9), col = 4)



Examples: SVM

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x2



Examples: SVM

R> fm1 <- ksvm(class ~ x1 + x2, data = ex1, kernel = rbf1)

R> plot(fm1)



Examples: SVM

R> fm1 <- ksvm(class ~ x1 + x2, data = ex1, kernel = rbf1)

R> plot(fm1)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−2 −1 0 1

−2

−1

0

1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●
●●

SVM classification plot

x2

x1



Examples: SVM

R> fm2 <- ksvm(class ~ x1 + x2, data = ex1, kernel = rbf2)

R> plot(fm2)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−2 −1 0 1

−2

−1

0

1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●
●●

SVM classification plot

x2

x1



Examples: SVM

R> fm <- ksvm(class ~ x1 + x2, data = ex1)

R> plot(fm)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−2 −1 0 1

−2

−1

0

1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

SVM classification plot

x2

x1



Examples: RVM

R> x <- seq(-20, 20, 0.5)

R> ymean <- sin(x)/x

R> ymean[41] <- 1

R> ex2 <- data.frame(x = x, ymean = ymean,

y = ymean + rnorm(81, sd = 0.1))

R> rm(x, ymean)



Examples: RVM

R> plot(y ~ x, data = ex2)

R> lines(ymean ~ x, data = ex2, col = grey(0.5))

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

●●●

●

●

●●●

●

●

●

●

●
●●

●●

●

●

●

−20 −10 0 10 20

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y



Examples: RVM

R> fm <- rvm(y ~ x, data = ex2)

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

●●●

●

●

●●●

●

●

●

●

●
●●

●●

●

●

●

−20 −10 0 10 20

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y



Examples: RVM

R> fm <- rvm(y ~ x, data = ex2)

R> lines(predict(fm, ex2) ~ x, data = ex2, col = 4)

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

●●●

●

●

●●●

●

●

●

●

●
●●

●●

●

●

●

−20 −10 0 10 20

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y



Examples: RVM

R> fm <- rvm(y ~ x, data = ex2)

R> lines(predict(fm, ex2) ~ x, data = ex2, col = 4)

R> points(y[RVindex(fm)] ~ x[RVindex(fm)], data = ex2, pch = 19)

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●
●

●
●

●●

●

●

●

●
●

●●●

●

●

●●●

●

●

●

●

●
●●

●●

●

●

●

−20 −10 0 10 20

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x

y

●

● ●

●

●

● ●

●



Examples: Spam data

Data set collect at the Hewlett-Packard labs:

• classifies 4601 e-mails as spam or non-spam,
• further 57 variables indicating frequency of certain words or

characters.

Load data and select test set indices:

R> data(spam)

R> tindex <- sample(1:nrow(spam), 10)



Examples: Spam data

Fit SVM on training set:

R> fm <- ksvm(type ~ ., data = spam[-tindex, ], kernel = "rbfdot",

+ kpar = "automatic", C = 60, cross = 5)

Using automatic sigma estimation (sigest) for RBF or laplace kernel



Examples: Spam data

R> fm

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)

parameter : cost C = 60

Gaussian Radial Basis kernel function.

Hyperparameter : sigma = 0.0106338562059120

Number of Support Vectors : 875

Training error : 0.027881

Cross validation error : 0.061862



Examples: Spam data

Predictions on test set:

R> predict(fm, spam[tindex, ])

[1] nonspam nonspam nonspam spam spam nonspam nonspam spam nonspam

[10] nonspam

Levels: nonspam spam

R> table(predict(fm, spam[tindex, ]), spam[tindex, 58])

nonspam spam

nonspam 7 0

spam 0 3



Summary

kernlab provides a comprehensive, flexible and extensible tool-
box for kernel learning in R.

1. Kernel functions

• Users can create and explore their own kernels.
• A function which takes two arguments and returns a scalar.
• Kernel can be plugged into any kernel learning algorithm like

SVMs etc.
• Memory-efficient methods for kernel expressions can (but do

not have to) be supplied.



Summary

2. Kernel learners

• Large collection of state-of-the art kernel learners.
• Infrastructure for creating new high-level algorithms.

3. Implemented in R

• Standard formula interface for model specification.
• Standard methods for predictions etc.
• Full statistical toolbox and powerful visualization techniques.



References

Alexandros Karatzoglou, Alex Smola, Kurt Hornik, Achim Zeileis
(2004). “kernlab – An S4 Package for Kernel Methods in R,”
Journal of Statistical Software, 11(9).
URL http://www.jstatsoft.org/v11/i09/

Achim Zeileis (2004). “Implementing a Class of Structural
Change Tests: An Econometric Computing Approach,” Depart-
ment of Statistics and Mathematics, Wirtschaftsuniversität Wien,
Research Report Series, 7.

Torsten Hothorn, Friedrich Leisch, Achim Zeileis, Kurt Hornik
(2004). “The Design and Analysis of Benchmark Experiments,”
Journal of Computational and Graphical Statistics, Forthcoming.

http://www.jstatsoft.org/v11/i09/

