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Motivation

Psychometric models: Typically measure latent scales based on
certain manifest variables, e.g., item response theory (IRT) models or
confirmatory factor analysis (CFA, today’s focus).

Crucial assumption: Measurement invariance (MI). Otherwise
observed differences in scales cannot be reliably attributed to the latent
variable that the model purports to measure.

Parameter stability: In parametric models, the MI assumption
corresponds to stability of parameters across all possible subgroups.

Inference: The typical approach for assessing MI is

to split the data into reference and focal groups,

assess the stability of selected parameters (all or only a subset)
across these groups

by means of standard tests: likelihood ratio (LR), Wald, or
Lagrange multiplier (LM or score) tests.



Motivation

Problems:

Subgroups have to be formed in advance.

Continuous variables are often categorized into groups in an ad
hoc way (e.g., splitting at the median).

In ordinal variables the ordering of the categories is often not
exploited (assessing only if at least one group differs from the
others).

When likelihood ratio or Wald tests are employed, the model has to
be fitted to each subgroup which can become numerically
challenging and computationally intensive.



Motivation

Idea:

Generalize the LM test.

Thus, the model only has to be fitted once under the MI
assumption to the full data set.

Catpure model deviations along a variable that is suspected to
cause MI violations.

Exploit ordering to assess if there is (at least) one split so that the
model parameters before and after the split differ.

The split does not have to be known or guessed in advance.

Illustration: CFA for artificial data.

Model with two latent scales (verbal and math).

Three manifest variables for each scale.

Violation of MI for the math loadings along the age of the subjects.



Motivation: CFA for age ≤ 16



Motivation: CFA for age > 16



Framework

Model: Based on log-likelihood `(·) for p-dimensional observations x i

(i = 1, . . . , n) based on k -dimensional parameter θ.

Estimation: Maximum likelihood.

θ̂ = argmax
θ

n∑
i=1

`(θ; x i).

Equivalently: Solve first order conditions

n∑
i=1

s(θ̂; x i) = 0,

where the score function is the partial derivative of the casewise
likelihood contributions w.r.t. the parameters θ.

s(θ; x i) =

(
∂`(θ; x i)

∂θ1
, . . . ,

∂`(θ; x i)

∂θk

)>
.



Framework

Assumption: Distribution/likelihood of x i depends only on the latent
scales (through the parameters θ) – but not on any other variable vi .

Alternative view: Parameters θ do not depend any such variable vi .
Hence assess for i = 1, . . . , n

H0 : θi = θ0,

H1 : θi = θ(vi).

Special case: Two subgroups resulting from one split point ν.

H∗1 : θi =

{
θ(A) if vi ≤ ν
θ(B) if vi > ν

Tests: LR/Wald/LM tests can be easily employed if pattern θ(vi) is
known, specifically for H∗1 with fixed split point ν.



Framework

For unknown split points: Compute LR/Wald/LM tests for each
possible split point v1 ≤ v2 ≤ · · · ≤ vn and reject if the maximum
statistic is large.

Caution: By maximally selecting the test statistic different critical
values are required (not from a χ2 distribution)!

Illustration: Assess all k∗ = 19 model parameters from the artificial
CFA example along the continuous variable age (vi ).



Framework
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Framework

Note: For the maxLM test the parameters θ̂ only have to be estimated
once. Only the model scores s(θ̂; x i) have to be aggregated differently
for each split point.

More generally: Consider a class of tests that assesses whether the
model “deviations” s(θ̂; x i) depend on vi . This can consider only a
subset k∗ of all k parameters/scores or try to capture other patterns
than H∗1 .



Score-based tests

Fluctuation process: Capture fluctuations in the cumulative sum of
the scores ordered by the variable v .

B(t; θ̂) = Î
−1/2

n−1/2
bn·tc∑
i=1

s(θ̂; x(i)) (0 ≤ t ≤ 1).

Î – estimate of the information matrix.

t – proportion of data ordered by v .

bn · tc – integer part of n · t .
x(i) – observation with the i-th smallest value of the variable v .

Functional central limit theorem: Under H0 convergence to a

(continuous) Brownian bridge process B(·; θ̂) d→ B0(·), from which
critical values can be obtained – either analytically or by simulation.



Score-based tests: Continuous variables

Test statistics: The empirical process can be viewed as a matrix
B(θ̂)ij with rows i = 1, . . . , n (observations) and columns j = 1, . . . , k
(parameters). This can be aggregated to scalar test statistics along
continuous the variable v .

DM = max
i=1,...,n

max
j=1,...,k

|B(θ̂)ij |

CvM = n−1
∑

i=1,...,n

∑
j=1,...,k

B(θ̂)2
ij ,

max LM = max
i=i,...,ı

{
i
n

(
1− i

n

)}−1 ∑
j=1,...,k

B(θ̂)2
ij .

Critical values: Analytically for DM. Otherwise by direct simulation or
further refined simulation techniques.



Score-based tests: Ordinal variables

Test statistics: Aggregation along ordinal variables v with m levels.

WDMo = max
i∈{i1,...,im−1}

{
i
n

(
1− i

n

)}−1/2

max
j=1,...,k

|B(θ̂)ij |,

max LMo = max
i∈{i1,...,im−1}

{
i
n

(
1− i

n

)}−1 ∑
j=1,...,k

B(θ̂)2
ij ,

where i1, . . . , im−1 are the numbers of observations in each category.

Critical values: For WDMo directly from a multivariate normal
distribution. For max LMo via simulation.



Score-based tests: Categorical variables

Test statistic: Aggregation within the m (unordered) categories of v .

LMuo =
∑

`=1,...,m

∑
j=1,...,k

(
B(θ̂)i` j − B(θ̂)i`−1 j

)2
,

Critical values: From a χ2 distribution (as usual).

Asymptotically equivalent: LR test.



Illustration

Software: In R system for statistical computing.

strucchange implements this general framwork for parameter
instability tests.

Object-oriented implementation that can be applied to many model
classes, including lavaan objects for CFA models.

Data:

Application of adult gratitude scale to n = 1401 youth aged 10–19
years.

GQ-6 scale has five Likert scale items with seven points each.

Assess the factor loadings of a one-factor model.

Question: Measurement invariance across six age groups?



Illustration

Packages:

R> library("lavaan")
R> library("strucchange")

Data: Omitting incomplete cases.

R> data("YouthGratitude", package = "psychotools")
R> compcases <- apply(YouthGratitude[, 4:28], 1,
+ function(x) all(x %in% 1:9))
R> yg <- YouthGratitude[compcases, ]

Estimation: One-factor CFA with loadings restricted to be equal across
age groups.

R> gq6cfa <- cfa("f1 =~ gq6_1 + gq6_2 + gq6_3 + gq6_4 + gq6_5",
+ data = yg, group = "agegroup", meanstructure = TRUE,
+ group.equal = "loadings")



Illustration

Measurement invariance tests:

R> sctest(gq6cfa, order.by = yg$agegroup, parm = 1:4,
+ vcov = "info", functional = "WDMo", plot = TRUE)

M-fluctuation test
data: gq6cfa
f(efp) = 2.9129, p-value = 0.05874

R> sctest(gq6cfa, order.by = yg$agegroup, parm = 1:4,
+ vcov = "info", functional = "maxLMo", plot = TRUE)

M-fluctuation test
data: gq6cfa
f(efp) = 11.163, p-value = 0.09765

Both tests reflect only moderate parameter instability across age
groups and do not show significant violations of measurement
invariance at 5% level.



Illustration
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Illustration
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Summary

General score-based test framework for assessing measurement
invariance in parametric psychometric models.

Assessment is along some variable v which can be continuous,
ordinal, or categorical.

Tests can be seen as generalizations of the Lagrange multiplier
test.

Computation of critical values might require simulation from certain
stochastic processes (Brownian bridges).

Easy-to-use implementation available in R package strucchange.

Can be re-used in model-based recursive partitioning.
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