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Motivation: Trees

Breiman (2001, Statistical Science) distinguishes two cultures of
statistical modeling.

Data models: Stochastic models, typically parametric.

Algorithmic models: Flexible models, data-generating process
unknown.

Example: Recursive partitioning models dependent variable Y by
“learning” a partition w.r.t explanatory variables Z1, . . . ,Zl .

Key features:

Predictive power in nonlinear regression relationships.

Interpretability (enhanced by visualization), i.e., no “black box”
methods.



Motivation: Leaves

Typically: Simple models for univariate Y , e.g., mean or proportion.

Examples: CART and C4.5 in statistical and machine learning,
respectively.

Problems: For classical tree algorithms.

No concept of “significance”, possibly biased variable selection.

No complex (parametric) models in leaves.

Many different tree algorithms for different types of data.

Solutions: Flexible generic frameworks based on statistical inference.

Nonparametric: Employ only empirical distribution for inference.

Parametric: Synthesis of parametric data models and algorithmic
tree models.



Motivation: Branches

Base algorithm: Growth of branches from the roots to the leaves of the
tree typically follows a simple recursive partitioning algorithm.

1 Fit a (possibly very simple) model for the response Y .
2 Assess association of Y and each Zj .
3 Split sample along the Zj∗ with strongest association: Choose

breakpoint with highest improvement of the model fit.
4 Repeat steps 1–3 recursively in the subsamples until some

stopping criterion is met.

Generally: Tree algorithms differ w.r.t. choice of model (1), association
measure (2), split strategy (3) and stopping criterion or “pruning”
strategy (4).



Conditional inference trees

Idea: Fully nonparametric approach using a modern framework
unifying classical nonparametric tests.

Algorithm
1 Model: Nonparametric, empirical distribution of Y .
2 Association measure: Permutation test (i.e., conditional inference)

for independence of Y and each Zj .
3 Split strategy: Maximize two-smaple contrast of Y along Z ∗j .
4 Stopping criterion: Significance of test in step 2.

Note: Both model and tests condition on the observed data.



Conditional inference trees

Model: Predictions can be computed from any quantity of the empirical
distribution of Y in the relevant node, e.g., the mean/median/etc. for
numeric Y , proportion of “successes” for binary Y , Kaplan-Meier
survivor function for censored Y , etc.

Association measure: Independence tests derived from general
correlation of Y and Zj .

tj = vec

(
n∑

i=1

h(Yi) · g(Zj,i)

)
,

with p-dimensional transformation g(·) and q-dimensional influence
function h(·).



Conditional inference trees

Test statistics: Scalar standardized statistic based on conditional
expectation µj and covariance matrix Σj (given the data).

smax(t, µ,Σ) = max
k

∣∣∣∣∣(t − µ)k√
Σk ,k

∣∣∣∣∣ ,
squad(t, µ,Σ) = (t − µ)Σ+(t − µ).

Under independence, all permutations of Y yield the conditional
distribution of tj . Taking expectations w.r.t. this yields:

µj = E(tj) = vec

((
n∑

i=1

g(Zj,i)

)
E(h)>

)
,

E(h) = n−1
∑

i

h(Yi),



Conditional inference trees

Similarly: pq × pq conditional covariance matrix Σj computed from the
permutation distribution under independence:

Σj = Var(tj) =
n

n − 1
Var(h)⊗

(∑
i

g(Zj,i)⊗ g(Zj,i)
>

)
−

1
n − 1

Var(h)⊗

(∑
i

g(Zj,i)

)
⊗

(∑
i

g(Zj,i)

)>
,

Var(h) = n−1
∑

i

(h(Yi)− E(h)) (h(Yi)− E(h))> ,

where ⊗ denotes the Kronecker product.



Conditional inference trees

Significance: Various approaches can be used to assess the
significance of the test statistic s(tj , µj ,Σj):

Exact: Direct computation of the statistic for all permutations.
Typically burdensome.

Approximate: Compute statistics for a sufficiently large number of
permutations, drawn using Monte Carlo methods.

Asymptotic: Compute the conditional asymptotic distribution of s
based on the asymptotic conditional distribution of tj .
tj ∼ N (µj ,Σj).



Conditional inference trees

Choice of transformations: Based on scale of Y and Zj and type of
dependence.

Categorical: Indicator functions for all C categories
h(y) = (I1(y), . . . , IC(y))>.
Numeric:

Location: h(y) = y or h(y) = rank(y).
Scatter: h(y) = (y − ȳ)2 or h(y) = (rank(y)− (n + 1)/2)2.
Threshold: h(y) = I(y > ζ).

Survival: Log rank scores

Special cases: Choice of h(·) and analogously g(·) yields many
classical tests as special cases. Wilcoxon-Mann-Whitney, Spearman,
Pearson’s χ2, Cochran-Armitage, log rank, Kruskal-Wallis, and many
more.



Conditional inference trees

Split strategy: Maximize two-smaple contrast of Y along Zj .

Employ threshold transformation g(Zj) = I(Zj > ζ) for all possible
thresholds ζ.

Choose split ζ∗ that maximizes the associated test statistic.

Stopping criterion: Non-significance of Bonferroni-adjusted p values
from permutation tests.



Application: Pima Indians diabetes

Task: Classification of diabetes in Pima Indian women.

Source: Asuncion & Newman (2007), UCI Repository of Machine
Learning Databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Response: Test result for diabetes (positive/negative).

Explanatory variables: Plasma glucose concentration, number of
times pregnant, diastolic blood pressure (mm Hg), body mass index,
diabetes pedigree function, age (in years).

http:// www.ics.uci.edu/~mlearn/MLRepository.html


Application: Pima Indians diabetes
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Application: Pima Indians diabetes

Inference: In each node, an asymptotic permutation test for
independence of diabetes (Y ) and each of the variables glucose, . . . ,
age (Z1, . . . ,Z6) is carried out.

Transformations: Indicator function for categorical variables
(response) and identity for numeric variables (all regressors).

h(Yi) = (Ipos(Yi), Ineg(Yi))> ,

g(Zj,i) = Zj,i .

Interpretation: Corresponds to two-sample t test with pooled
one-sample standard deviation.



Model-based recursive partitioning

Idea: More complex models for multivariate Y , e.g., multivariate normal
model, regression models, etc.

Goal:

Synthesis of parametric data models and algorithmic tree models.

Fitting local models by partitioning of the sample space.

Algorithm
1 Model: Parametric model for Y with additive objective function.
2 Association measure: Parameter instability tests.
3 Split strategy: Model segmentation.
4 Stopping criterion: Significance of test in step 2.



Model-based recursive partitioning: Estimation

Models: M(Y , θ) with (potentially) multivariate observations Y ∈ Y
and k -dimensional parameter vector θ ∈ Θ.

Parameter estimation: θ̂ by optimization of objective function Ψ(Y , θ)
for n observations Yi (i = 1, . . . , n):

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(Yi , θ).

Special cases: Maximum likelihood (ML), weighted and ordinary least
squares (OLS and WLS), quasi-ML, and other M-estimators.

Central limit theorem: If there is a true parameter θ0 and given certain
weak regularity conditions, θ̂ is asymptotically normal with mean θ0 and
sandwich-type covariance.



Model-based recursive partitioning: Estimation

Estimating function: θ̂ can also be defined in terms of

n∑
i=1

ψ(Yi , θ̂) = 0,

where ψ(Y , θ) = ∂Ψ(Y , θ)/∂θ.

Idea: In many situations, a single global modelM(Y , θ) that fits all
n observations cannot be found. But it might be possible to find a
partition w.r.t. the variables Z = (Z1, . . . ,Zl) so that a well-fitting model
can be found locally in each cell of the partition.

Tool: Assess parameter instability w.r.t to partitioning variables
Zj ∈ Zj (j = 1, . . . , l).



Model-based recursive partitioning: Tests

Generalized M-fluctuation tests capture instabilities in θ̂ for an ordering
w.r.t Zj .

Basis: Empirical fluctuation process of cumulative deviations w.r.t. to
an ordering σ(Zij).

Wj(t, θ̂) = V̂−1/2n−1/2
bntc∑
i=1

ψ(Yσ(Zij ), θ̂) (0 ≤ t ≤ 1)

Functional central limit theorem: Under parameter stability
Wj(·, θ̂)

d−→ W 0(·), where W 0 is a k -dimensional Brownian bridge.



Model-based recursive partitioning: Tests

Test statistics: Scalar functional λ(Wj) that captures deviations from
zero.

Null distribution: Asymptotic distribution of λ(W 0).

Special cases: Class of test encompasses many well-known tests for
different classes of models. Certain functionals λ are particularly
intuitive for numeric and categorical Zj , respectively.

Advantage: ModelM(Y , θ̂) just has to be estimated once. Empirical
estimating functions ψ(Yi , θ̂) just have to be re-ordered and aggregated
for each Zj .



Model-based recursive partitioning: Tests

Splitting numeric variables: Assess instability using supLM statistics.

λsupLM(Wj) = max
i=i,...,ı

(
i
n
· n − i

n

)−1 ∣∣∣∣∣∣∣∣Wj

(
i
n

)∣∣∣∣∣∣∣∣2
2
.

Interpretation: Maximization of single shift LM statistics for all
conceivable breakpoints in [i, ı].

Limiting distribution: Supremum of a squared, k -dimensional
tied-down Bessel process.



Model-based recursive partitioning: Tests

Splitting categorical variables: Assess instability using χ2 statistics.

λχ2(Wj) =
C∑

c=1

n
|Ic|

∣∣∣∣∣∣∣∣∆Ic Wj

(
i
n

)∣∣∣∣∣∣∣∣2
2

Feature: Invariant for re-ordering of the C categories and the
observations within each category.

Interpretation: Captures instability for split-up into C categories.

Limiting distribution: χ2 with k · (C − 1) degrees of freedom.



Model-based recursive partitioning: Segmentation

Goal: Split model into b = 1, . . . ,B segments along the partitioning
variable Zj associated with the highest parameter instability. Local
optimization of ∑

b

∑
i∈Ib

Ψ(Yi , θb).

B = 2: Exhaustive search of order O(n).

B > 2: Exhaustive search is of order O(nB−1), but can be replaced by
dynamic programming of order O(n2). Different methods (e.g.,
information criteria) can choose B adaptively.

Here: Binary partitioning.



Model-based recursive partitioning: Pruning

Pruning: Avoid overfitting.

Pre-pruning: Internal stopping criterion. Stop splitting when there is no
significant parameter instability.

Post-pruning: Grow large tree and prune splits that do not improve the
model fit (e.g., via cross-validation or information criteria).

Here: Pre-pruning based on Bonferroni-corrected p values of the
fluctuation tests.



Application: Pima Indians diabetes

Task: Reconsider classification of diabetes in Pima Indian women.

Idea:

Variable glucose occurred in many splits in conditional inference
tree.

More parsimonious model may be possible if glucose is employed
as continuous regressor rather than partitioning variable.

Model: Logistic regression of diabetes on glucose.

Partitioning variables: All remaining variables.



Application: Pima Indians diabetes
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Application: Pima Indians diabetes

Model-based recursive partitioning:

Coefficient estimates for regressors.

Parameter instability tests for partitioning variables (bold =
significant at adjusted 5% level, underlined = smallest p value).

Regressors Partitioning variables

(const.) glucose pregnant pressure mass pedigree age

1 −5.608 0.039 26.49 8.67 43.41 21.04 39.47

2 −10.999 0.065 8.40 4.50 9.31 4.02 4.53

3 −4.958 0.037 24.80 7.63 9.05 19.29 33.71

4 −6.573 0.045 3.46 3.77 5.09 7.20 6.20

5 −3.319 0.027 6.24 1.74 13.34 14.89 10.24



Application: Pima Indians diabetes

Benchmark: Compare predictive performance (misclassification rate)
and model complexity (number of parameters/splits) of model-based
recursive partitioning with other tree algorithms.

Setup: 250 bootstrap samples and out-of-bag misclassification rate.
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Application: Treatment effect for chronic disease

Task: Identify groups of chronic disease patients with different
treatment effects.

Source: Anonymized data from consulting project.

Model: Logistic regression.

Response: Improvement (yes/no) of chronic disease after
treatment over several weeks.

Regressor: Treatment (active drug/placebo).

Partitioning variables: 11 variables that describe disease status of
patients. Lower values indicate more severe forms of the disease.

Result: Treatment is most effective for certain intermediate forms of the
disease.



Application: Treatment effect for chronic disease
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Software

All methods are implemented in the R system for statistical computing
and graphics. Freely available under the GPL (General Public License)
from the Comprehensive R Archive Network:

Trees/recursive partytioning: ctree() in party for conditional
inference trees, and mob() in party for model-based recursive
partitioning.

Inference: independence_test() in coin for permutation tests
for independence, and gefp() in strucchange for structural
change tests.

http://www.R-project.org/

http://CRAN.R-project.org/

http://www.R-project.org/
http://CRAN.R-project.org/


Summary

Conditional inference trees:

Tree models based on nonparametric statistical inference.

Based on modern class of permutation tests for independence.

Aims to capture dependence patterns by recursive partitioning.

Can be adapted to dependent and explanatory variables of
arbitrary types, by employing suitable transformations/influence
functions.

Flexible implementation freely available: New
transformations/influence functions can be simply plugged in.



Summary

Model-based recursive partitioning:

Synthesis of classical parametric data models and algorithmic tree
models.

Based on modern class of parameter instability tests.

Aims to minimize clearly defined objective function by greedy
forward search.

Can be applied general class of parametric models.

Alternative to traditional means of model specification, especially
for variables with unknown association.

Object-oriented implementation freely available: Extension for new
models requires some coding but not too extensive if interfaced
model is well designed.
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