M universitat
™ innsbruck

Extended-Support Beta Regression for [0, 1] Responses

loannis Kosmidis, Achim Zeileis

https://www.zeileis.org/

SO,


https://www.zeileis.org/

Frequency

Motivation

60

N
o

20

0.0

0.2 0.4 0.6 0.8
Average invested proportion (over 9 rounds)

1.0

Goal: Model limited response
variables in unit interval.

Examples: Fractions or
proportions (not from
independent Bernoulli trials).

Illustration: investmentin a
risky lottery with positive
expected payout, explained by
arrangement, grade, ...Of
high-school students.

1/12



invest

Motivation

1.0

0.8

0.6

0.4

0.2

0.0

'
—_—

single

_

team single

arrangement

team

grade

[ ]e-8
| J10-12

Goal: Model limited response
variables in unit interval.

Examples: Fractions or
proportions (not from
independent Bernoulli trials).

Illustration: investmentin a
risky lottery with positive
expected payout, explained by
arrangement, grade, ...Of
high-school students.

1/12



f(y)

Beta distribution

1.5 A

1.0

0.5 1

0.0

0.0 0.2 0.4

0.6

0.8

1.0

Parameters: Mean 4,
precision ¢.

Regression: Link both
parameters to predictors.

Advantage: Flexible shape, full
likelihood.

Disadvantage: Zero
probability for 0 and 1.
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than beta.
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Extended-support beta mixture distribution
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Advantage: Single parameter
v links normal and beta.

Disadvantage: Somewhat
more complex.
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Theory

More formally: XB(u, ¢, u) is a beta distribution B(u, ¢) with support extended
to (—u,1 + u) and censored at 0 and 1.
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Special cases: Beta (u = 0) and censored normal (u — oo) distributions.
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Theory

Shrinkage: XBX(u, ¢,v) is a continuous mixture of XB(u, ¢, u) with u ~ Exp(v).

7/12



Theory

Shrinkage: XBX(u, ¢,v) is a continuous mixture of XB(u, ¢, u) with u ~ Exp(v).

oo
f(XBX)(y | 122 QS’ V) = Vl/ f(XB)(y | M, ¢7 U) 67U/Vdu
0

7/12



Loss aversion

Behavioral economics experiment: Glatzle-Rutzler at al. (2015).
® Determinants of loss aversion in high-school students.
® Proportion of tokens invested in risky lottery with positive expected payouts.
® Qutcome: Average investments over nine rounds.

® Experimental factors: grade (lower vs. upper), arrangement (single vs. team
of two), male (at least one), and age.
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Behavioral economics experiment: Glatzle-Rutzler at al. (2015).
® Determinants of loss aversion in high-school students.
® Proportion of tokens invested in risky lottery with positive expected payouts.
® Qutcome: Average investments over nine rounds.

® Experimental factors: grade (lower vs. upper), arrangement (single vs. team
of two), male (at least one), and age.

Of interest: Extent of risk aversion.
® Mean investments: E(Y).
* Probability to behave like a rational homo oeconomicus: P(Y > 0.95).
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Loss aversion

Original analysis: Linear regression model for mean only.

R> la_ols <- glm(invest grade * (arrangement + age) + male, data = LossAversion)
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Loss aversion

Original analysis: Linear regression model for mean only.

R> la_ols <- glm(invest grade * (arrangement + age) + male, data = LossAversion)

Alternatively: Probabilistic models to simultaneously model mean and
probability.
® N: Linear regression, interpreted as homoscedastic normal model.
® CN: Heteroscedastic censored normal model.
® B: Beta regression after ad-hoc scaling to the open unit interval.
e XBX: Extended-support beta mixture model.

R> la_xbx <- betareg(invest ~ grade * (arrangement + age) + male |
+ arrangement + male + grade, data = LossAversion)

etc.
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Loss aversion

sqrt(Frequency)

000 025 050 075 100 000 025 050 075 100
Proportion of tokens invested

10/12



Loss aversion

Arrangement effects: For 16-year old, (at least one) male players.

Expected proportion of tokens invested
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