
Open-Source Econometric Computing
in R

Achim Zeileis

http://statmath.wu-wien.ac.at/∼zeileis/

http://statmath.wu-wien.ac.at/~zeileis/

Overview

• Implementing econometric methodology:
– Why should we write software (and make it available)?
– Why should it be open-source software?
– What should be the guiding principles for implementation?
– Why R?

• Robust covariance matrix estimators
– Sandwich estimators
– Implementation in sandwich
– Illustrations

Why software?

Authors of econometric methodology usually have an implemen-
tation for own applications and running simulations and bench-
marks, but not necessarily in production quality.

Why should they be interested in taking the extra effort to adapt
them to more general situations, document it and make it avail-
able to others?

Supplying software that is sufficiently easy to use is an excellent
way of communicating ideas and concepts to researchers and
practitioners.

Given the description of an excellent method and code for a good
one, you choose . . . ?

Why open source?

Claerbout’s principle

An article about computational science in a scientific pub-
lication is not the scholarship itself, it is merely advertis-
ing of the scholarship. The actual scholarship is the com-
plete software development environment and the com-
plete set of instructions which generated the figures.

To evaluate the correctness of all the results in such an article,
the source code must also be available for inspection. Only this
way gradual refinement of computational (and conceptual) tools
is possible.

Implementation principles

Task: Turn conceptual tools into computational tools

Goals: desirable features

• easy to use,
• numerically reliable,
• computationally efficient,
• flexible and extensible,
• re-usable components,
• object oriented,
• reflect features of the conceptual method.

Implementation principles

Problem: often antagonistic. E.g., computational efficiency vs.
extensibility.

Guiding principle: The implementation should be guided by the
properties of the underlying methods while trying to ensure as
much efficiency and accuracy as possible.

The resulting functions should do what we think an algorithm
does conceptually.

Implementation principles

In practice: Many implementations are still guided by the limita-
tions that programming languages used to have (and some still
have) where everything has to be represented by numeric vec-
tors and matrices.

What language features are helpful for improving this?

Implementation principles

Object orientation: Create (potentially complex) objects that
represent an abstraction of a procedure or type of data. Methods
performing typical tasks can be implemented.

Functions as first-class objects: Functions are a basic data
type that can be passed to and returned by another function.

Lexical scope: more precisely nested lexically scoped func-
tions. Returned functions (e.g., prediction methods) can have
free variables stored in the function closure.

Implementation principles

Compiled code: Combine convenience of using interpreted
code and efficiency of compiled code by (byte) compilation or
dynamic linking of compiled code.

Re-usable components: The programming environment should
provide procedures that the implementation can build on. Like-
wise, the implementation should create objects that can be re-
used in other programs.

Why R?

R offers all these features and more:

• R is a full-featured interactive computational environment for
data analysis, inference and visualization.

• R is an open-source project, released under GPL.

• Developed for the Unix, Windows and Macintosh families of
operating systems by the R Development Core Team.

• Offers several means of object orientation, including S3 and
S4 classes.

Why R?

• Everything in R is an object, including functions and even
function calls.

• Nested functions are lexically scoped.

• Allows for dynamic linking of C, C++ or FORTRAN code.

• Highly extensible with a fast-growing list of add-on packages.

Why R?

Software delivery is particularly easy:

R itself and ∼1000 packages are available (most of them under
the GPL) from the Comprehensive R Archive Network (CRAN):

http://CRAN.R-project.org/

and can easily be installed from within R via, e.g.

R> install.packages("sandwich")

http://CRAN.R-project.org/

Why R?

CRAN Task View: Econometrics

• linear models: OLS estimation, diagnostic tests, robust re-
gression, simultaneous equations.

• microeconometrics: binary data (GLMs, logit, probit), count
data models (poisson, negbin, zero-inflated, hurdle), cen-
sored data (tobit).

• time series models: ARIMA, structural time series models,
unit root, cointegration, structural change.

• basic infrastructure: matrix manipulations, optimization,
time/date and time series classes.

http://CRAN.R-project.org/src/contrib/Views/

http://CRAN.R-project.org/src/contrib/Views/

Sandwich estimators

Inference for models estimated by estimating equations
n∑
i=1

ψ(yi, xi, θ̂) = 0

(including maximum likelihood and least squares estimators) is
typically based on a central limit theorem

√
n (θ̂ − θ) d−→ N (0, S(θ)),

where the covariance matrix is of a sandwich form:

sandwich: S(θ) = B(θ)M(θ)B(θ),
bread: B(θ) = E[−ψ′(y, x, θ)]−1,
meat: M(θ) = VAR[ψ(y, x, θ)].

Sandwich estimators

In correctly specified models estimated by ML,M(θ) = B(θ)−1

is the Fisher information matrix and the covariance matrix is typ-
ically based only on an estimator for the bread B̂.

If the estimating functions ψ(y, x, θ) are correctly specified, but
the remaining likelihood is not, a more robust covariance matrix
estimate can be obtained by estimating the full sandwich and not
only the bread.

Sandwich estimators

HC and HAC sandwich estimate of the meat M̂

M̂ = n−1
n∑

i,j=1
w|i−j|ψ(yi, xi, θ̂)ψ(yj, xj, θ̂)

>

where the weights are

• cross-section data: w0 = 1, wi = 0 (i > 0),
• time-series data: wk chosen by a kernel function (plus band-

width selection).

Special cases: Eicker-Huber-White sandwich estimator, An-
drews kernel HAC estimator, Newey-West estimator.

Implementation in sandwich

Translation to R: Provide functions (similar to vcov())

sandwich(obj)

vcovHC(obj, ...)

vcovHAC(obj, weights, ...)

that work for (in principle) arbitrary fitted model objects obj.

• uses the estfun(obj) method to extract the empirical val-
ues of the estimating function,

• expects weights to be either a vector of weights, or a func-
tion that computes the weights in a data-driven way from obj.

• can deal with weights functions that again rely on a function
for choosing the bandwidth.

Implementation in sandwich

This implementation uses

• object orientation: different models can be plugged in as
long as there is a estfun() method.

• functions as first-class objects: strategies for selecting
weights (and bandwidths) can be implemented as functions
and are then evaluated by vcovHAC.

• lexical scope: these functions can also be defined locally in
convenience wrapper functions.

• re-usable components: by taking fitted objects it relies on
existing model fitting functions and returns a covariance esti-
mators that can easily be re-used in inference functions.

Illustrations

Example: time series regression (investment equation from
Greene, 1993).

R> fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment)
R> vcovHAC(fm)

(Intercept) RealGNP RealInt
(Intercept) 615.5987887 -0.5679537232 9.24170225
RealGNP -0.5679537 0.0005448671 -0.02222363
RealInt 9.2417023 -0.0222236251 14.53971300

Illustrations

Re-use in partial Wald tests:

R> coeftest(fm, vcov = vcovHAC(fm))

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.533601 24.811263 -0.5052 0.6203
RealGNP 0.169136 0.023342 7.2459 1.955e-06 ***
RealInt -1.001438 3.813098 -0.2626 0.7962

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Illustrations

Or even simpler:

R> coeftest(fm, vcov = vcovHAC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.533601 24.811263 -0.5052 0.6203
RealGNP 0.169136 0.023342 7.2459 1.955e-06 ***
RealInt -1.001438 3.813098 -0.2626 0.7962

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Illustrations

Example: demand for medical care count data regression (Deb
and Trivedi, 1997).

Simple poisson model

R> fm1 <- glm(ofp ~ numchron + health + gender + privins,
+ data = DebTrivedi, family = poisson)

and negative binomial hurdle model

R> fm2 <- hurdle(ofp ~ numchron + health + gender + privins |
+ numchron + gender + privins, data = DebTrivedi,
+ dist = "negbin")

Illustrations

The hurdle is clearly superior as a likelihood model

R> logLik(fm1)

’log Lik.’ -18390.07 (df=6)

R> logLik(fm2)

’log Lik.’ -12174.09 (df=12)

but as regression models for the mean both lead to similar re-
sults. Account for likelihood misspecification of poisson model
by sandwich standard errors.

Illustrations

R> coeftest(fm1, vcov = sandwich)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.253836 0.044976 27.8780 < 2.2e-16 ***
numchron 0.167858 0.012217 13.7392 < 2.2e-16 ***
healthexcellent -0.356653 0.077575 -4.5975 4.275e-06 ***
healthpoor 0.288914 0.054659 5.2858 1.252e-07 ***
gendermale -0.109147 0.035898 -3.0405 0.002362 **
privinsyes 0.285169 0.042250 6.7496 1.483e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Illustrations

R> coeftest(fm2)

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
count_(Intercept) 1.368469 0.046516 29.4192 < 2.2e-16 ***
count_numchron 0.146406 0.012702 11.5264 < 2.2e-16 ***
count_healthexcellent -0.347083 0.067535 -5.1393 2.757e-07 ***
count_healthpoor 0.353430 0.048641 7.2661 3.700e-13 ***
count_gendermale -0.051415 0.033260 -1.5458 0.1221
count_privinsyes 0.193528 0.041439 4.6702 3.009e-06 ***
zero_(Intercept) 0.510442 0.097952 5.2112 1.877e-07 ***
zero_numchron 0.565456 0.042770 13.2209 < 2.2e-16 ***
zero_gendermale -0.408241 0.086993 -4.6928 2.695e-06 ***
zero_privinsyes 0.904685 0.093858 9.6389 < 2.2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

References

Achim Zeileis (2004). “Econometric Computing with HC and HAC Co-
variance Matrix Estimators,” Journal of Statistical Software, 11(10). URL
http://www.jstatsoft.org/v11/i10/

Achim Zeileis (2005). “Implementing a Class of Structural Change Tests:
An Econometric Computing Approach,” Computational Statistics & Data
Analysis, 50(11), 2987–3008. doi:10.1016/j.csda.2005.07.001

Achim Zeileis (2006). “Object-oriented Computation of Sandwich Estima-
tors,” Journal of Statistical Software, 16(9). URL http://www.jstatsoft.
org/v16/i09/

Achim Zeileis, Christian Kleiber, and Simon Jackman (2007). “Count Data
Regression in R,” Forthcoming.

Christian Kleiber and Achim Zeileis (2008?). Applied Econometrics with
R. Springer-Verlag, New York.

http://www.jstatsoft.org/v11/i10/
http://dx.doi.org/10.1016/j.csda.2005.07.001
http://www.jstatsoft.org/v16/i09/
http://www.jstatsoft.org/v16/i09/

	Overview
	Why software?
	Why open source?
	Implementation principles
	Why R?
	Sandwich estimators
	Implementation in sandwich
	Illustrations
	References

