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Motivation

Starting point: Most recursive partitioning algorithms learn
a partition/segmentation from data and then fit a naive
model in each terminal node, e.g., a mean, relative frequen-
cies or a Kaplan-Meier curve.

Idea: Employ parametric models in each node. Solutions
exist only for special cases, e.g., linear regression (M5’,
GUIDE), logistic regression (LMT).

Goal: Unified algorithm for constructing general segmented
parametric models by recursive partitioning.



Parametric models

Consider models M(Y, θ) with (possibly vector-valued) ob-
servations Y ∈ Y and a k-dimensional vector of parameters
θ ∈ Θ.

Given n observations Yi (i = 1, . . . , n) the model can be fit
by minimizing some objective function Ψ(Y, θ) yielding the
parameter estimate θ̂

θ̂ = argmin
θ∈Θ

n∑
i=1

Ψ(Yi, θ).

This type of estimators includes maximum likelihood (ML),
ordinary least squares (OLS), Quasi-ML and further M-type
estimators.



Segmented models

Idea: In many situations, it is unreasonable to assume that
a single global model M(Y, θ) can be fit to all n observa-
tions. But it might be possible to partition the observations
with respect to covariates Z = (Z1, . . . , Zl) such that a fit-
ting model can be found in each cell of the partition.

Goal: Learn partition via recursive partitioning with respect
to Zj ∈ Zj (j = 1, . . . , l).



The recursive partitioning algorithm

1. Fit the model once to all observations in the current
node by estimating θ̂ via minimization of Ψ.

2. Assess whether the parameter estimates are stable with
respect to every ordering Z1, . . . , Zl. If there is some
overall instability, select the variable Zj associated with
the highest parameter instability, otherwise stop.

3. Compute the split point(s) that locally optimize Ψ (either
for a fixed number of splits, or choose the number of
splits adaptively).

4. Split this node into daughter nodes and repeat the pro-
cedure.



1. Model fitting

Under mild regularity conditions it can be shown that the
estimate θ̂ can also be computed by solving the first order
conditions

n∑
i=1

ψ(Yi, θ̂) = 0,

where

ψ(Y, θ) =
∂Ψ(Y, θ)

∂θ

is the score function or estimating function corresponding
to Ψ(Y, θ).



2. Testing for parameter instability

Generalized M-fluctuation tests (Zeileis & Hornik, 2003) can
be used to assess whether the parameter estimates θ̂ are
stable over a certain variable or not.

Capture instabilities in an empirical fluctuation process of
cumulative scores for each ordering of the observations

W (t, θ̂) = Ĵ−1/2n−1/2
bntc∑
i=1

ψ(Yi, θ̂) (0 ≤ t ≤ 1)

and assess its fluctuation by a suitable functional.



Assessing numerical variables

The most intuitive functional for assessing the stability with
respect to a numerical partitioning variable Zj is the supLM
statistic of Andrews (1993):

λsupLM(Wj) = max
i=i,...,ı
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This gives the maximum of the single changepoint LM
statistics over all possible changepoints in [i, ı].

The limiting distribution is given by the supremum of a
squared, k-dimensional tied-down Bessel process.



Assessing categorical variables

To assess the stability of a categorical variable with C lev-
els, a χ2 statistic is most intuitive

λχ2(Wj) =
C∑
c=1

n
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because it is insensitive to re-ordering of the levels and the
observations within the levels.

It essentially captures the instability when splitting the
model into C groups.

The limiting distribution is χ2 with k · (C − 1) degrees of
freedom.



3. Splitting

A single optimal split of the observations with respect to Zj
into B = 2 partitions can easily be computed in O(n) by
exhaustive search.

For B > 2, when an exhaustive search would be of or-
der O(nB−1), the optimal partition can be found using a
dynamic programming approach of order O(n2) (Hawkins,
2001; Bai & Perron, 2003) or via iterative algorithms
(Muggeo, 2003).

Various algorithms for adaptively choosing the number of
segments B are available, e.g., via information criteria.



Pruning

The algorithm described so far employs a pre-pruning
strategy, i.e., uses an internal stopping criterion: if no vari-
able exhibits significant parameter instability, the algorithm
stops.

Alternatively/additionally, a post-pruning strategy can be
used. This seems particularly attractive if ML is used for
parameter estimation. Then a ML tree can be grown which
is consequently associated with a segmented ML model.
This can be pruned afterwards using information criteria for
example.



Example: Demand for econ. journals

Goal: Explain demand for economic journals (number of
library subscriptions in logs).

Clear: Demand depends on price (price per citation, also
in logs)

Here: Segment the demand equation, a linear regression,
with respect to further variables such as age, number of
characters, society etc.



Example: Demand for econ. journals

R> fmJ <- mob(subs ~ citeprice | society + citations + age + chars + price,
+ data = journals, model = linearModel, control = mob_control(minsplit = 10))

-------------------------------------------
Fluctuation tests of splitting variables:

society citations age chars price
statistic 3.2797248 5.2614434 4.219816e+01 4.563841 16.3127521
p.value 0.6598605 0.9958892 1.465145e-07 0.999475 0.0489191

Best splitting variable: age
Perform split? yes
-------------------------------------------
Node properties:
age <= 18; criterion = 1, statistic = 42.198
...

R> plot(fmJ)



Example: Demand for econ. journals
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Example: Pima Indians diabetes

Goal: Explain outcome of a test for diabetes among Pima
Indian women.

Clear: Outcome depends on plasma glucose concentra-
tion.

Here: Segment a logistic regression with explanatory vari-
able glucose. All remaining variables are used as partition-
ing variables.



Example: Pima Indians diabetes
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Summary

Model-based recursive partitioning:

• based on well-established statistical models,
• aims at minimizing a clearly defined objective function

(and not certain heuristics),
• unbiased due to separation of variable and cutpoint se-

lection,
• statistically motivated stopping criterion,
• employs general class of tests for parameter instability.
• available in function mob() in package party available

from
http://CRAN.R-project.org/

http://CRAN.R-project.org/


References

Andrews DWK (1993). “Tests for Parameter Instability and Structural Change With Un-
known Change Point.” Econometrica, 61, 821–856.

Hothorn T, Hornik K, Zeileis A (2006). “Unbiased Recursive Partitioning: A Conditional
Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), Forth-
coming.

Zeileis A, Hornik K (2003). “Generalized M-Fluctuation Tests for Parameter Instability.”
Report 80, SFB “Adaptive Information Systems and Modelling in Economics and Man-
agement Science”. URL http://www.wu-wien.ac.at/am/reports.htm#80.

Zeileis A, Hothorn T, Hornik K (2005). “Model-based Recursive Partitioning.” Report 19,
Department of Statistics and Mathematics, Wirtschaftsuniversität Wien, Research Report
Series. URL http://epub.wu-wien.ac.at/.

Zeileis A, Hothorn T, Hornik K (2006). “Evaluating Model-based Trees in Practice.” Re-
port 32, Department of Statistics and Mathematics, Wirtschaftsuniversität Wien, Research
Report Series. URL http://epub.wu-wien.ac.at/.

http://www.wu-wien.ac.at/am/reports.htm#80
http://epub.wu-wien.ac.at/
http://epub.wu-wien.ac.at/

	Overview
	Motivation
	Parametric models
	Segmented models
	The recursive partitioning algorithm
	1. Model fitting
	2. Testing for parameter instability
	Assessing numerical variables
	Assessing categorical variables
	3. Splitting
	Pruning
	Example: Demand for econ. journals
	Example: Pima Indians diabetes
	Summary
	References

