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Motivation

Starting point: Most recursive partitioning algorithms learn
a partition/segmentation from data and then fit a naive
model in each terminal node, e.g., a mean, relative frequen-
cies or a Kaplan-Meler curve.

Idea: Employ parametric models in each node. Solutions
exist only for special cases, e.g., linear regression (M5,
GUIDE), logistic regression (LMT).

Goal: Unified algorithm for constructing general segmented
parametric models by recursive partitioning.



Parametric models

Consider models M (Y, 0) with (possibly vector-valued) ob-
servations Y € )Y and a k-dimensional vector of parameters
6 € ©.

Given n observations Y; (: = 1,...,n) the model can be fit
by minimizing some objective function W (Y, ) yielding the
parameter estimate 0

6 = argmin Y W(Y;0).
0cO ;—1

This type of estimators includes maximum likelihood (ML),
ordinary least squares (OLS), Quasi-ML and further M-type
estimators.



Segmented models

Idea: In many situations, it is unreasonable to assume that
a single global model M (Y, 6) can be fit to all n observa-
tions. But it might be possible to partition the observations
with respect to covariates Z = (71, ..., Z;) such that a fit-
ting model can be found in each cell of the partition.

Goal: Learn partition via recursive partitioning with respect
toZ,€2, (j=1,...,10).



The recursive partitioning algorithm

1. Fit the model once to all observations in the current
node by estimating 9 via minimization of W.

2. Assess whether the parameter estimates are stable with
respect to every ordering Zi,...,Z;. If there is some
overall instability, select the variable Z; associated with
the highest parameter instability, otherwise stop.

3. Compute the split point(s) that locally optimize W (either
for a fixed number of splits, or choose the number of
splits adaptively).

4. Split this node into daughter nodes and repeat the pro-
cedure.



1. Model fitting

Under mild regularity conditions it can be shown that the
estimate 6 can also be computed by solving the first order
conditions

Y0 = o
where
CAW(Y,0)

IS the score function or estimating function corresponding
to W(Y,0).



2. Testing for parameter instability

Generalized M-fluctuation tests (Zeileis & Hornik, 2003) can
be used to assess whether the parameter estimates 0 are
stable over a certain variable or not.

Capture instabilities in an empirical fluctuation process of
cumulative scores for each ordering of the observations

_ - [t _
W(t,0) = J Y2 123 u(Y; 0) (0<t<1)

i—=1 -

and assess its fluctuation by a suitable functional.



Assessing numerical variables

The most intuitive functional for assessing the stability with
respect to a numerical partitioning variable Z; is the supL M
statistic of Andrews (1993):
" ()
n

This gives the maximum of the single changepoint LM
statistics over all possible changepoints in [i, z].
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Nsuprar(W;) = max (i-” )

1=1,...,2 \ 7 n
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The limiting distribution is given by the supremum of a
squared, k-dimensional tied-down Bessel process.



Assessing categorical variables

To assess the stability of a categorical variable with C' lev-
els, a y? statistic is most intuitive

n 2
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>‘><2(Wj) — Z
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because it is insensitive to re-ordering of the levels and the
observations within the levels.

It essentially captures the instability when splitting the
model into C' groups.

The limiting distribution is x? with & - (C — 1) degrees of
freedom.



3. Splitting

A single optimal split of the observations with respect to Z;
iInto B = 2 partitions can easily be computed in O(n) by
exhaustive search.

For B > 2, when an exhaustive search would be of or-
der O(n?~1), the optimal partition can be found using a
dynamic programming approach of order O(n?) (Hawkins,
2001; Bai & Perron, 2003) or via iterative algorithms
(Muggeo, 2003).

Various algorithms for adaptively choosing the number of
segments B are available, e.g., via information criteria.



Pruning

The algorithm described so far employs a pre-pruning
strategy, i.e., uses an internal stopping criterion: if no vari-
able exhibits significant parameter instability, the algorithm
stops.

Alternatively/additionally, a post-pruning strategy can be
used. This seems particularly attractive it ML is used for
parameter estimation. Then a ML tree can be grown which
Is consequently associated with a segmented ML model.
This can be pruned afterwards using information criteria for
example.



Example: Demand for econ. journals

Goal: Explain demand for economic journals (number of
library subscriptions in logs).

Clear: Demand depends on price (price per citation, also
in logs)

Here: Segment the demand equation, a linear regression,
with respect to further variables such as age, number of
characters, society etc.



Example: Demand for econ. journals

R> fmJ <- mob(subs ~ citeprice | society + citations + age + chars + price,
+ data = journals, model = linearModel, control = mob_control(minsplit = 10))

Fluctuation tests of splitting variables:

society citations age chars price
statistic 3.2797248 5.2614434 4.219816e+01 4.563841 16.3127521
p.value 0.6598605 0.9958892 1.465145e-07 0.999475 0.0489191

Best splitting variable: age
Perform split? yes

Node properties:
age <= 18; criterion = 1, statistic = 42.198

R> plot(fmJ)



Example: Demand for econ. journals




Example: Pima Indians diabetes

Goal: Explain outcome of a test for diabetes among Pima
Indian women.

Clear: Outcome depends on plasma glucose concentra-
tion.

Here: Segment a logistic regression with explanatory vari-
able glucose. All remaining variables are used as partition-
Ing variables.



Example: Pima Indians diabetes
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Summary

Model-based recursive partitioning:

e based on well-established statistical models,

e aims at minimizing a clearly defined objective function
(and not certain heuristics),

e unbiased due to separation of variable and cutpoint se-
lection,

e statistically motivated stopping criterion,

e employs general class of tests for parameter instability.

e available in function mob() In package party available
from

http://CRAN.R-project.org/


http://CRAN.R-project.org/
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