
Implementing a Class of
Structural Change Tests:

An Econometric Computing Approach

Achim Zeileis

http://www.ci.tuwien.ac.at/~zeileis/

http://www.ci.tuwien.ac.at/~zeileis/

Contents

❆ Why should we want to do

❖ tests for structural change,

❖ econometric computing?

❆ Generalized M-fluctuation tests

❖ Empirical fluctuation processes: gefp

❖ Functionals for testing: efpFunctional

❆ Applications

❖ Austrian National Guest Survey

Structural change tests

Structural change has been receiving a lot of attention in econo-

metrics and statistics, particularly in time series econometrics.

Aim: to learn if, when and how the structure underlying a set

of observations changes.

In a parametric model with parameter θi for n totally ordered

observations Yi test the null hypothesis of parameter constancy

H0 : θi = θ0 (i = 1, . . . , n).

against changes over “time”.

Econometric computing

Econometrics & computing:

❆ Computational econometrics: methods requiring substantial

computations (bootstrap or Monte Carlo methods),

❆ Econometric computing: translating econometric ideas into

software.

To transport methodology to the users and apply new methods

to data software is needed.

Econometric computing

Desirable features of an implementation:

❆ easy to use,

❆ numerically reliable,

❆ computationally efficient,

❆ flexible and extensible,

❆ reusable components,

❆ open source,

❆ object oriented,

❆ reflect features of the conceptual method.

Undesirable: single monolithic functions.

Also important: software delivery.

Econometric computing

All methods implemented in the R system for statistical com-

puting and graphics

http://www.R-project.org/

in the contributed package strucchange.

Both are available under the GPL (General Public Licence) from

the Comprehensive R Archive Network (CRAN):

http://CRAN.R-project.org/

http://www.R-project.org/
http://CRAN.R-project.org/

Guest Survey Austria

Data from the Austrian National Guest Survey about the summer
seasons 1994 and 1997.

Here: use logistic regression model

❆ response: cycling as a vacation activity (done/not done),
❆ available regressors: age (in years), household income (in

ATS/month), gender and year (as a factors/dummies),
❆ fit model for the subset of male tourists (6256 observations),
❆ (log-)income is not significant.

R> gsa.fm <- glm(cycle ~ poly(Age, 2) + Year, data = gsa,

family = binomial)

But: Maybe there are instabilities in the model for increasing
income?

M-fluctuation tests

❆ fit model

❆ compute empirical fluctuation process reflecting fluctuation

in

❖ residuals

❖ coefficient estimates

❖ M-scores (including OLS or ML scores etc.)

❆ theoretical limiting process is known

❆ choose boundaries which are crossed by the limiting process

(or some functional of it) only with a known probability α.

❆ if the empirical fluctuation process crosses the theoretical

boundaries the fluctuation is improbably large ⇒ reject the

null hypothesis.

Empirical fluctuation processes

Model fitting: parameters can often be estimated based on a

score function or estimating equation ψ with

E[ψ(Yi, θi)] = 0.

Under parameter stability estimate θ0 by:

n∑
i=1

ψ(Yi, θ̂) = 0.

Includes: OLS, ML, Quasi-ML, robust M-estimation, IV, GMM,

GEE.

Available in R: linear models lm, GLMs, logit, probit models glm,

robust regression rlm, etc.

Empirical fluctuation processes

Test idea: if θ is not constant the scores ψ should fluctuate and

systematically deviate from 0.

Capture fluctuations by partial sums:

efp(t) = Ĵ−1/2 n−1/2
bntc∑
i=1

ψ(Yi, θ̂).

and scale by covariance matrix estimate Ĵ.

Empirical fluctuation processes

Test idea: if θ is not constant the scores ψ should fluctuate and

systematically deviate from 0.

Capture fluctuations by partial sums:

efp(t) = Ĵ−1/2 n−1/2
bntc∑
i=1

ψ(Yi, θ̂).

and scale by covariance matrix estimate Ĵ.

Functional central limit theorem: empirical fluctuation process

converges to a Brownian bridge

efp(·) d−→ W0(·)

Empirical fluctuation processes

Implementation idea:

❆ don’t reinvent the wheel: use existing model fitting functions

and just extract the scores or estimating functions,

❆ also allow plug-in of HC and HAC covariance matrix estima-

tors,

❆ provide infrastructure for computing processes.

Empirical fluctuation processes

Implementation idea:

❆ don’t reinvent the wheel: use existing model fitting functions

and just extract the scores or estimating functions,

❆ also allow plug-in of HC and HAC covariance matrix estima-

tors,

❆ provide infrastructure for computing processes.

gefp(..., fit = glm, scores = estfun,

vcov = NULL, order.by = NULL)

Empirical fluctuation processes

For Austrian guest survey data:

R> gsa.efp <- gefp(cycle ~ poly(Age, 2) + Year, family = binomial,

data = gsa, order.by = ~ log(HHIncome), parm = 1:3)

Empirical fluctuation processes

(I
nt

er
ce

pt
)

−
0.

5
0.

5
1.

5

po
ly

(A
ge

, 2
)1

−
1.

0
0.

0
0.

5

6 8 10 12

0.
0

1.
0

2.
0

po
ly

(A
ge

, 2
)2

log(Household Income)

Functionals

The empirical fluctuation process can be aggregated to a scalar

test statistic by a functional λ(·)

λ

(
efpj

(
i

n

))
,

where j = 1, . . . , k and i = 1, . . . n.

λ can usually be split into two components: λtime and λcomp.

Typical choices for λtime: L∞ (absolute maximum), mean, range.

Typical choice for λcomp: L∞, L2.

⇒ can identify component and/or timing of shift.

Functionals

Double maximum statistic:

max
i=1,...,n

max
j=1,...,k

∣∣∣∣∣efpj(i/n)b(i/n)

∣∣∣∣∣ ,
typically with b(t) = 1.

Cramér-von Mises statistic:

n−1
n∑
i=1

∣∣∣∣∣∣efpj(i/n)∣∣∣∣∣∣2
2
,

Critical values can easily be obtained by simulation of λ(W0). In

certain special cases, closed form solutions are known.

Functionals

Implementation idea:

❆ specify functional (and boundary function)

❆ simulate critical values (or use closed form solution)

❆ combine all information about a functional in a single object:

process visualization, computation of test statistic, compu-

tation of p values,

❆ provide infrastructure which can be used by the methods of

the generic functions plot for visualization and sctest for

significance testing.

For the double maximum and the Cramér-von Mises functionals

such objects are available in strucchange: maxBB, meanL2BB.

Functionals

R> plot(gsa.efp, functional = maxBB)

6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

Time

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

M−fluctuation test

Functionals

R> plot(gsa.efp, functional = maxBB, aggregate = FALSE)

(I
nt

er
ce

pt
)

−
0.

5
0.

5
1.

5

po
ly

(A
ge

, 2
)1

−
1.

0
0.

0
0.

5

6 8 10 12

0.
0

1.
0

2.
0

po
ly

(A
ge

, 2
)2

Time

M−fluctuation test

Functionals

R> plot(gsa.efp, functional = meanL2BB)

6 8 10 12

0
1

2
3

4

Time

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

M−fluctuation test

Functionals

R> sctest(gsa.efp, functional = maxBB)

M-fluctuation test

data: gsa.efp

f(efp) = 2.0594, p-value = 0.001242

R> sctest(gsa.efp, functional = meanL2BB)

M-fluctuation test

data: gsa.efp

f(efp) = 2.2119, p-value = 0.005

Functionals

New functionals can be easily generated with

efpFunctional(

functional = list(comp = function(x) max(abs(x)), time = max),

boundary = function(x) rep(1, length(x)),

computePval = NULL, computeCritval = NULL,

nobs = 10000, nrep = 50000, nproc = 1:20)

An object created by efpFunctional has slots with functions

❆ plotProcess

❆ computeStatistic

❆ computePval

that are defined based on lexical scoping.

Functionals

Use functional similar to double max functional, but with bound-

ary function

b(t) =
√
t · (1− t) + 0.05,

which is proportional to the standard deviation of the process

plus an offset.

myFun1 <- efpFunctional(

functional = list(comp = function(x) max(abs(x)), time = max),

boundary = function(x) sqrt(x * (1-x)) + 0.05,

nobs = 10000, nrep = 50000, nproc = NULL)

Functionals

R> plot(gsa.efp, functional = myFun1)

6 8 10 12

0.
0

0.
5

1.
0

1.
5

2.
0

Time

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

M−fluctuation test

Functionals

Use standard double max functional but aggregate over “time”

first. Leads to the same test statistic and p value, but the

aggregated process looks different.

myFun2 <- efpFunctional(

functional = list(time = function(x) max(abs(x)), comp = max),

computePval = maxBB$computePval)

Functionals

R> plot(gsa.efp, functional = myFun2)

M−fluctuation test

Component

S
ta

tis
tic

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

(Intercept) poly(Age, 2)1 poly(Age, 2)2

Functionals

R> sctest(gsa.efp, functional = myFun1)

M-fluctuation test

data: gsa.efp

f(efp) = 4.7947, p-value = < 2.2e-16

R> sctest(gsa.efp, functional = myFun2)

M-fluctuation test

data: gsa.efp

f(efp) = 2.0594, p-value = 0.001242

Conclusions

The general class of M-fluctuation tests is implemented in

strucchange:

❆ gefp – computation of empirical fluctuation processes from

(possibly user-defined) estimation functions,

❆ efpFunctional – aggregation of empirical fluctuation pro-

cesses to test statistics, automatic tabulation of critical val-

ues,

❆ plot and sctest – methods for visualization and significance

testing based on empirical fluctuation processes and corre-

sponding functionals.

See more at . . .

The 1st R user conference

Vienna, May 20–22, 2004

http://www.ci.tuwien.ac.at/Conferences/useR-2004/

http://www.ci.tuwien.ac.at/Conferences/useR-2004/

