

Who Will (Most Likely) Win the 2018 FIFA World Cup?

Achim Zeileis

https://eeecon.uibk.ac.at/~zeileis/

- Tournament forecast based on bookmakers odds.
- Main results: Brazil and Germany are the top favorites with winning probabilities of 16.6% and 15.8%.
- Brazil most likely plays France in the first semifinal (8.4%) and Germany Spain in the second (8%).

- Defending champion Germany surprisingly loses two matches, comes in last in its group, and drops out.
- All other favorites "survive" the group stage.
- Poland is also eliminated and instead Japan proceeds to the round of 16.

- France beats Argentina 4:3.
- Spain is eliminated by host Russia in penalties.
- Belgium turns a 0:2 into a 3:2 against Japan.
- Uruguay (with Cavani) beats European champion Portugal.

- France beats Uruguay (without Cavani) 2:0.
- Brazil loses in a great and close game to Belgium.
- England clearly beats Sweden.
- Croatia eliminates host Russia in penalties.

- France cleverly beats Belgium 1:0 with a set-piece goal and a controlled game.
- After trailing 0:1 against England, Croatia turns the game in the second half and the decisive goal in extra time.

• France wins the final in another clever team effort 4:2.

Bookmakers odds

Bookmakers odds: Motivation

Forecasts of sports events:

- Increasing interest in forecasting of competitive sports events due to growing popularity of online sports betting.
- Forecasts often based on ratings or rankings of competitors' ability/strength.

In football:

- Elo rating.
 - Aims to capture relative strength of competitors yielding probabilities for pairwise comparisons.
 - Originally developed for chess.
- FIFA rating.
 - Official ranking, used for seeding tournaments.
 - Often criticized for not capturing *current* strengths well.
 - June 2018: Decision to change calculation to be more similar to Elo.

Bookmakers odds: Motivation

Alternatively: Employ bookmakers odds for winning a competition.

- Bookmakers are "experts" with monetary incentives to rate competitors correctly. Setting odds too high or too low yields less profits.
- Prospective in nature: Bookmakers factor not only the competitors abilities into their odds but also tournament draws/seedings, home advantages, recent events such as injuries, etc.
- Statistical "post-processing" needed to derive winning probabilities and underlying abilities.

Bookmakers odds: Statistics

Odds: In statistics, the ratio of the probabilities for/against a certain event,

$$odds = \frac{p}{1-p}.$$

Bookmakers odds: Statistics

Odds: In statistics, the ratio of the probabilities for/against a certain event,

$$odds = \frac{p}{1-p}.$$

Illustrations:

- Even odds are "50:50" (= 1).
- Odds of 4 correspond to probabilities 4/5 = 80% vs. 1/5 = 20%.

Bookmakers odds: Statistics

Odds: In statistics, the ratio of the probabilities for/against a certain event,

$$odds = \frac{p}{1-p}.$$

Illustrations:

- Even odds are "50:50" (= 1).
- Odds of 4 correspond to probabilities 4/5 = 80% vs. 1/5 = 20%.

Thus: Odds can be converted to probabilities and vice versa.

$$p = \frac{odds}{odds + 1}$$

$$1 - p = \frac{1}{odds + 1}$$

Quoted odds: In sports betting, the payout for a stake of 1.

Quoted odds: In sports betting, the payout for a stake of 1.

Fair bookmaker: Given the probability *p* for the event the bookmaker could set

quoted odds
$$= \frac{1-p}{p} + 1.$$

Quoted odds: In sports betting, the payout for a stake of 1.

Fair bookmaker: Given the probability *p* for the event the bookmaker could set

quoted odds
$$= \frac{1-p}{p} + 1.$$

Expected payout: Wins and losses cancel out each other.

$$p\cdot\frac{1-p}{p}-(1-p)\cdot 1 = 0.$$

Quoted odds: In sports betting, the payout for a stake of 1.

Fair bookmaker: Given the probability *p* for the event the bookmaker could set

quoted odds
$$= \frac{1-p}{p} + 1.$$

Expected payout: Wins and losses cancel out each other.

$$p\cdot\frac{1-p}{p}-(1-p)\cdot 1 = 0.$$

Thus: "Naive" computation of probability

$$p = \frac{1}{quoted\ odds}$$
.

Illustration: Quoted odds for bwin obtained on 2018-05-20.

Team	Quoted odds	"Naive" probability
Brazil	5.0	0.200
Germany	5.5	0.182
Spain	7.0	0.143
France	7.5	0.133
	:	
Saudi Arabia	501.0	0.002
Panama	1001.0	0.001

Illustration: Quoted odds for bwin obtained on 2018-05-20.

Team	Quoted odds	"Naive" probability
Brazil	5.0	0.200
Germany	5.5	0.182
Spain	7.0	0.143
France	7.5	0.133
	:	
Saudi Arabia	501.0	0.002
Panama	1001.0	0.001

Problem: Probabilities of all 32 teams sum to 1.143 > 1.

Bookmakers odds: Adjustment

Reason: Bookmakers do not give honest judgment of winning chances but include a profit margin known as "overround".

Simple solution: Adjust quoted odds by factor 1.143 so that probabilities sum to 1.

Bookmakers odds: Adjustment

Reason: Bookmakers do not give honest judgment of winning chances but include a profit margin known as "overround".

Simple solution: Adjust quoted odds by factor 1.143 so that probabilities sum to 1.

Team	Adjusted odds	Probability	
Brazil	5.71	0.175	
Germany	6.28	0.159	
Spain	8.00	0.125	
France	8.57	0.117	
	:		

Bookmakers odds: Overround

Refinement: Apply adjustment only to the odds, not the stake.

quoted odds_i = odds_i ·
$$\delta$$
 + 1,

- where odds_i is the bookmaker's "true" judgment of the odds for competitor i,
- δ is the bookmaker's payout proportion (overround: $1-\delta$),
- and +1 is the stake.

Bookmakers odds: Overround

Winning probabilities: The adjusted $odds_i$ then corresponding to the odds of competitor i for losing the tournament. They can be easily transformed to the corresponding winning probability

$$p_i = \frac{1}{odds_i + 1}.$$

Determining the overround: Assuming that a bookmaker's overround is constant across competitors, it can be determined by requiring that the winning probabilities of all competitors (here: all 32 teams) sum to 1: $\sum_i p_i = 1$.

Bookmakers odds: 2018 FIFA World Cup

Data processing:

- Quoted odds from 26 online bookmakers.
- Obtained on 2018-05-20 from http://www.bwin.com/ and http://www.oddschecker.com/.
- Computed overrounds $1 \delta_b$ individually for each bookmaker $b = 1, \dots, 26$ by unity sum restriction across teams $i = 1, \dots, 32$.
- Median overround is 15.2%.
- Yields overround-adjusted and transformed winning probabilities $p_{i,b}$ for each team i and bookmaker b.

Goal: Get consensus probabilities by aggregation across bookmakers.

Straightforward: Compute average for team *i* across bookmakers.

$$\bar{p}_i = \frac{1}{26} \sum_{b=1}^{26} p_{i,b}.$$

Goal: Get consensus probabilities by aggregation across bookmakers.

Straightforward: Compute average for team *i* across bookmakers.

$$\bar{p}_i = \frac{1}{26} \sum_{b=1}^{26} p_{i,b}.$$

Refinements:

- Statistical model assuming for latent consensus probability p_i for team i along with deviations $\varepsilon_{i,b}$.
- Additive model is plausible on suitable scale, e.g.,

$$logit(p) = log\left(\frac{p}{1-p}\right).$$

Model: Bookmaker consensus model

$$logit(p_{i,b}) = logit(p_i) + \varepsilon_{i,b},$$

where further effects could be included, e.g., group effects in consensus logits or bookmaker-specific bias and variance in $\varepsilon_{i,b}$.

Model: Bookmaker consensus model

$$logit(p_{i,b}) = logit(p_i) + \varepsilon_{i,b},$$

where further effects could be included, e.g., group effects in consensus logits or bookmaker-specific bias and variance in $\varepsilon_{i,b}$.

Analogously: Methodology can also be used for consensus ratings of default probability in credit risk rating of bank *b* for firm *i*.

Here:

- Simple fixed-effects model with zero-mean deviations.
- Consensus logits are simply team-specific means across bookmakers:

$$\widehat{\operatorname{logit}(p_i)} = \frac{1}{26} \sum_{b=1}^{26} \operatorname{logit}(p_{i,b}).$$

 Consensus winning probabilities are obtained by transforming back to the probability scale:

$$\hat{p}_i = \operatorname{logit}^{-1}\left(\widehat{\operatorname{logit}(p_i)}\right).$$

• Model captures 98.7% of the variance in $logit(p_{i,b})$ and the associated estimated standard error is 0.184.

Team	FIFA code	Probability	Log-odds	Log-ability	Group
Brazil	BRA	16.6	-1.617	-1.778	Е
Germany	GER	15.8	-1.673	-1.801	F
Spain	ESP	12.5	-1.942	-1.925	В
France	FRA	12.1	-1.987	-1.917	С
Argentina	ARG	8.4	-2.389	-2.088	D
Belgium	BEL	7.3	-2.546	-2.203	G
England	ENG	4.9	-2.957	-2.381	G
Portugal	POR	3.4	-3.353	-2.486	В
Uruguay	URU	2.7	-3.566	-2.566	Α
Croatia	CRO	2.5	-3.648	-2.546	D
		:			

$$Pr(i \text{ beats } j) = \pi_{i,j}$$

$$= \frac{ability_i}{ability_i + ability_i}$$


```
tournament R
                                                                              Save ≡ ×
  Open - D
sim log abilities <- function(logodds, groups,
          start = NULL, n = 100000, rounds = 5,
loss = function(x, y) mean(abs(x - y), na.rm = TRUE),
 stopifnot(!is.null(names(logodds)))
 target <- logodds
 if(is.null(start)) start <- logodds
 groups <- tapply(groups, groups, names)
 sim1 <- function(log abilities) {
   simulate tournament(n = n, probs = get probs abilities(exp(log abilities)),
      groups = groups, cores = cores, rounds = rounds)
 loss value <- list()
    loss value[[iter]] <- loss(v[[iter]], target)
    if(trace) cat("Value of the loss function:", round(loss value[[iter]], 4), "\n")
    if((loss value[[iter]] < tol) || (iter >= maxiter))
    break
 list(log abilities = x, result = result, loss value = loss value)
```

R - Tab Width: 8 -

Ln 208, Col 20 ▼ INS

Further questions:

- What are the likely courses of the tournament that lead to these bookmaker consensus winning probabilities?
- Is the team with the highest probability also the strongest team?
- What are the winning probabilities for all possible matches?

Motivation:

- Tournament draw might favor some teams.
- Tournament schedule was known to bookmakers and hence factored into their quoted odds.
- Can abilities (or strengths) of the teams be obtained, adjusting for such tournament effects?

Answer: Yes, an approximate solution can be found by simulation when

- adopting a standard model for paired comparisons (i.e., matches),
- assuming that the abilities do not change over the tournament.

Model: Bradley-Terry model for winning/losing in a paired comparison of team *i* and team *j*.

$$Pr(i \text{ beats } j) = \pi_{i,j} = \frac{ability_i}{ability_i + ability_j}.$$

"Reverse" simulation:

- If the team-specific *ability*_i were known, pairwise probabilities $\pi_{i,i}$ could be computed.
- Given $\pi_{i,j}$ the whole tournament can be simulated (assuming abilities do not change and ignoring possible draws during the group stage).
- Using "many" simulations (here: 1,000,000) of the tournament, the empirical relative frequencies \tilde{p}_i of each team i winning the tournament can be determined.
- Choose ability_i for i = 1, ..., 32 such that the simulated winning probabilities \tilde{p}_i approximately match the consensus winning probabilities \hat{p}_i .
- Found by simple iterative local search starting from log-odds.

Abilities and paired comparisons

Outcome verification

Source: Spiegel.de

Outcome verification

Question: Was the bookmaker consensus model any good?

- Ex post the final France vs. Croatia seems very surprising.
- However, especially Croatia profited from Germany and Spain dropping out of the tournament early on.
- Also, Croatia did not win any of the knockout stage games in normal time.

Problems:

- Just a single observation of the tournament and at most one observation of each paired comparison.
- Hard to distinguish between an unlikely outcome and systematic errors in the predicted (prob)abilities.

Outcome verification

Possible approaches:

- Compare forecasts with the observed tournament ranking (1 FRA, 2 CRO, 3 BEL, 4 ENG, 6.5 URU, 6.5 BRA, . . .).
- Benchmark against Elo and FIFA ratings.
- Note that the Elo rating also implies ability scores based on which pairwise probabilities and "forward" simulation of tournament can be computed:

$$ability_{Elo,i} = 10^{Elo_i/400}.$$

 Check whether pairwise probabilities roughly match empirical proportions from clusters of matches.

Outcome verification: Ranking

Spearman rank correlation of observed tournament ranking with bookmaker consensus model (BCM) as well as FIFA and Elo ranking:

BCM (Probabilities)	0.704
BCM (Abilities)	0.710
Elo (Probabilities)	0.594
Elo	0.592
FIFA	0.411

Outcome verification: BCM pairwise prob.

Outcome verification: Elo pairwise prob.

Outcome verification: BCM abilities

Outcome verification: Elo abilities

Discussion

Summary:

- Expert judgments of bookmakers are a useful information source for probabilistic forecasts of sports tournaments.
- Winning probabilities are obtained by adjustment for overround and averaging on log-odds scale.
- Competitor abilities can be inferred by post-processing based on pairwise-comparison model with "reverse" tournament simulations.
- Approach outperformed Elo and FIFA ratings for recent UEFA Euros and FIFA World Cups.

Limitations:

- Matches are only assessed in terms of winning/losing, i.e., no goals, draws, or even more details.
- Inherent chance is substantial and hard to verify.

References

Zeileis A, Leitner C, Hornik K (2018). "Probabilistic Forecasts for the 2018 FIFA World Cup Based on the Bookmaker Consensus Model." Working Paper 2018-09, Working Papers in Economics and Statistics, Research Platform Empirical and Experimental Economics, Universität Innsbruck. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2018-09. Blog: https://bit.ly/fifa-forecast.

Zeileis A, Leitner C, Hornik K (2016). "Predictive Bookmaker Consensus Model for the UEFA Euro 2016." Working Paper 2016-15. URL http://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-15.

Leitner C, Zeileis A, Hornik K (2011). "Bookmaker Consensus and Agreement for the UEFA Champions League 2008/09." *IMA Journal of Management Mathematics*, **22**(2), 183–194. doi:10.1093/imaman/dpq016.

Leitner C, Zeileis A, Hornik K (2010). "Forecasting Sports Tournaments by Ratings of (Prob)abilities: A Comparison for the EURO 2008." *International Journal of Forecasting*, **26**(3), 471–481. doi:10.1016/j.ijforecast.2009.10.001.

Groups A and B

Rank	Team	Probability (in %)
1	URU	68.1
2	RUS	64.2
3	KSA	19.2
4	EGY	39.3

Rank	Team	Probability (in %)
1	ESP	85.9
2	POR	66.3
3	IRN	26.5
4	MAR	27.3

Groups C and D

Rank	Team	Probability (in %)
1	FRA	87.0
2	DEN	46.7
3	PER	31.7
4	AUS	25.2

Rank	Team	Probability (in %)
1	CRO	58.7
2	ARG	78.7
3	NGA	41.2
4	ISL	30.9

Groups E and F

Rank	Team	Probability (in %)
1	BRA	89.9
2	SUI	45.4
3	SRB	39.0
4	CRC	22.6

Rank	Team	Probability (in %)
1	SWE	44.5
2	MEX	45.2
3	KOR	26.8
4	GER	89.1

Groups G and H

Rank	Team	Probability (in %)
1	BEL	81.7
2	ENG	75.6
3	TUN	23.5
4	PAN	23.2

Rank	Team	Probability (in %)
1	COL	64.6
2	JPN	36.3
3	SEN	37.9
4	POL	57.9